© 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 463-471 doi:10.1242/jeb.093914 RESEARCH ARTICLE Pharmacological characterization of NMDA-like receptors in the single-celled organism Paramecium primaurelia ABSTRACT Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca2+ concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca2+ influx. Here, we evaluated the effects due to the activation or blockade of N-methyl-D-aspartic acid (NMDA) receptors on swimming behaviour in Paramecium. Paramecia normally swim forward, drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA+glycine-treated cells. NMDA action required the presence of Ca2+, as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK801 or the glycine site antagonist DCKA was added. The action of NMDA+glycine was also abolished by Zn2+ or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand-binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genomes, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus suggest that the glutamatergic NMDA system is a phylogenetically old behaviour-controlling mechanism. KEY WORDS: Glutamatergic NMDA system, NMDA receptor pharmacology, Swimming behaviour, Ciliated protozoa INTRODUCTION Glutamate is the most widespread excitatory neurotransmitter in vertebrates, controlling both peripheral and central 1 Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy. 2Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy. 3Institute of Biophysics, CNR Genoa, Via De Marini 6, 16149 Genoa, Italy. 4Institute of Marine Science (ISMAR), CNR Genoa, Via De Marini 6, 16149 Genoa, Italy. 5Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy. 6National Institute of Neuroscience, Corso Raffaello 30, 10125 Torino, Italy. *Author for correspondence ([email protected]) Received 13 July 2013; Accepted 30 September 2013 neurotransmission. Glutamatergic inputs are mediated by receptors subdivided into ionotropic and metabotropic receptor families. On the basis of their pharmacological profile, the ionotropic glutamate receptors are further subdivided into three subtypes: the α-amino-3hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-preferring receptor, the kainate-preferring receptor and the N-methyl-Daspartate (NMDA) receptor (Watkins and Collingridge, 1994; Dingledine et al., 1999). Glutamate and ionotropic glutamatergic receptors are present in vertebrates as well as in prokaryotes and plants, suggesting that the glutamatergic system is archaic and phylogenetically conserved (Tikhonov and Magazanik, 2009). The NMDA receptor mediates the vast majority of excitatory neurotransmission. In vertebrates, most of the NMDA receptors are heteromeric, composed of GluN1 subunits (which bind glycine) in combination with GluN2 subunits (which bind glutamate). As a consequence, the activation of these receptors requires the presence of both glutamate and glycine. The GluN1 subunit arises from one single gene with eight functional splice variants, whereas GluN2 is encoded by four different genes (Mori and Mishina, 1995; Zukin and Bennett, 1995). Recently, a glycine-binding GluN3 subunit, encoded by two different genes, has been identified. The GluN3 subunit can assemble with GluN1 to express a functional glycine receptor that is insensitive to glutamate (Chatterton et al., 2002), but it can also contribute to the expression of native GluN1/GluN2/GluN3 receptors, the activation of which results in an NMDA+glycine-evoked current, which is less sensitive to Mg2+ (Chatterton et al., 2002). An atypical NMDA receptor-like complex composed of four proteins – the glutamate-binding protein (GBP), the glycine/N-[1(2-thienyl)cyclohexyl]piperidine(TCP)-binding protein (Gly/TCPBP), the (+)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acidbinding protein (CPP-BP) and the phencycline-binding protein – has also been described (Ly and Michaelis, 1991; Kumar et al., 1994). This complex is able to induce the expression of glutamate-activated ion channels; its activity depends on the presence of glycine and permits the influx of Ca2+ ions (Aistrup et al., 1996). However, the exact stoichiometry of subunit assembly is still unknown and it has not yet been demonstrated whether these subunits can assemble with GluN subunits to express functional receptors. The purpose of this study was to verify whether NMDA receptors are present in the ciliated protozoan Paramecium primaurelia (Sonneborn, 1975) by evaluating the effects of NMDA receptor activation on swimming behaviour. The locomotion of paramecia depends on ciliary movements, which are controlled by the electrical changes of the cell membrane (Eckert, 1972; Naitoh, 1974). It has been reported that membrane hyperpolarization is correlated with augmented ciliary beating and accelerated forward swimming (Naitoh and Eckert, 1973), whereas depolarization is correlated with ciliary reversal and backward swimming (Machemer and Eckert, 1973). Paramecia normally swim forward, except for episodic brief periods of backward swimming or whirling (Jennings, 1906). Upon 463 The Journal of Experimental Biology Paola Ramoino1,*, Simona Candiani1, Anna Maria Pittaluga2, Cesare Usai3, Lorenzo Gallus1, Sara Ferrando1, Marco Milanese2, Marco Faimali4 and Giambattista Bonanno2,5,6 RESEARCH ARTICLE The Journal of Experimental Biology (2014) doi:10.1242/jeb.093914 120 Cells showing PaCR (%) List of abbreviations CCR CGS19755 CPP-BP continuous ciliary reversal cis-4-phosphonomethyl-2-piperidine carboxylic acid (+)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acidbinding protein D-AP5 D-2-amino-5-phosphonopentanoic acid DCKA 5,7-dichlorokynurenic acid EGTA ethylene glycol tetraacetic acid GBP glutamate-binding protein GluN1 NMDA receptor subunit 1 GluN2 NMDA receptor subunit 2 GluN3 NMDA receptor subunit 3 Gly/TCP-BP glycine/N-[1-(2-thienyl)cyclohexyl]piperidine(TCP)-binding protein GRINA glutamate receptor, ionotropic, N-methyl-D-aspartateassociated protein 1 MK-801 dizocilpine NMDA N-methyl-D-aspartate PaCR partial ciliary reversal PCR periodic ciliary reversal 0 exhibited a PaCR (Fig. 1B–D). Exposure to NMDA concentrations from 1 to 200 μmol l−1, in the presence of 1 μmol l−1 glycine, produced a concentration-dependent rise in the percentage of cells that adopt this spiral-like movement from 13% at 50 μmol l−1 NMDA to 100% at 200 μmol l−1 NMDA (Fig. 2, Table 1). Fig. 2 also shows that the exposure of paramecia to increasing concentrations of NMDA in the absence of exogenously added glycine failed to induce the PaCR in a significant percentage of cells. In addition, glycine (1 μmol l−1), in the absence of NMDA, did not lead to any modification of swimming behaviour in the 80 observed cells (Fig. 2, Table 1). Ion dependence of the NMDA-induced swimming behaviour Effects of NMDA receptor antagonists on swimming behaviour 464 The 200 μmol l−1 NMDA+1 μmol l−1 glycine-induced PaCR was prevented by 1 μmol l−1 MK-801, a non-competitive NMDA receptor C S S D S Fig. 1. Paramecium swimming behaviour alteration after NMDA and glycine exposure. Paramecia usually swim forward (A) but exhibit a spiral-like swimming behaviour due to a partial ciliary reversal when exposed to 200 μmol l−1 NMDA+1 μmol l−1 glycine in the absence of Mg2+ (B–D). Cells can immediately start swimming in circles (C), or first swim forward and then describe circles or loops (B), or, alternatively, after a lasting ciliary reversal, which terminates as a turn on the spot, swim forward followed by reversion and a loop movement (D). The movement was digitally recorded for 60 s at 4 frames s−1. Swimming registration starts at ‘S’. The Journal of Experimental Biology In order to analyse the impact of Mg2+ ions on the NMDA-mediated changes in swimming behaviour, experiments were performed in the presence of 0.5–3.0 mmol l−1 MgCl2. Regardless of the concentration used, MgCl2 was unable to trigger ciliary reversal and 2.0 mmol l−1 MgCl2 completely counteracted the NMDA effect (Table 2). The NMDA+glycine-induced spiral-like Paramecium swimming relies on the influx of Ca2+ ions. Indeed, paramecia exposed to 200 μmol l−1 NMDA+1 μmol l−1 glycine in medium without Ca2+ and containing 1 mmol l−1 EGTA normally swim forward (Table 2). In contrast, the omission of Na+ from the extracellular milieu, replaced by an isosmotic amount of N-methylglucamine, failed to modify the spirallike swimming behaviour induced by 200 μmol l−1 NMDA+1 μmol l−1 glycine (Table 2). Fig. 1A is a representative image depicting the normal cell swimming in NMDA-free solution. However, in the presence of 200 μmol l−1 NMDA and 1 μmol l−1 glycine, and in the absence of Mg2+, cells S 50 100 150 200 NMDA concentration (µmol l–1) Fig. 2. Dose-dependent effect of NMDA on partial ciliary reversal (PaCR). Percentage of Paramecium primaurelia cells showing a PaCR when exposed to NMDA in the presence (open circles) or the absence (filled circles) of glycine (1 μmol l−1). RESULTS Effects of NMDA on swimming behaviour B 40 0 electrical, chemical or mechanical stimulation, the ciliary Ca2+ channels open, giving rise to a depolarizing Ca2+ action potential and to a transient increase in intraciliary Ca2+ concentration (Dryl, 1974; Machemer, 1988; Preston and Saimi, 1990). This increase in internal Ca2+ ions triggers the ciliary reversal. Three forms of behaviour related to ciliary reversal can be observed: (1) a continuous ciliary reversal (CCR), yielding relatively long periods of fast backward swimming mediated by full ciliary reversal, (2) a periodic ciliary reversal (PCR), characterized by brief and repeated episodes of backward swimming, and (3) a partial ciliary reversal (PaCR), giving rise to a spiral-like movement and resulting from the reversal of only part of the somatic cilia of the cells (Dryl, 1974). Whereas weak stimuli cause a moderate Ca2+ influx and a short circular movement, strong stimuli can sustain backward swimming for tens of seconds or minutes. The duration of backward swimming is proportional to the duration of the action potential and the addition of drugs able to reduce the inward calcium current decreases the duration of stimulated backward swimming (Hennessey and Kung, 1984). Hence, the swimming behaviour of the cell serves as a visual correlate of the electrical state of the cell membrane. Our study indicates that the swimming behaviour of paramecia is modified by NMDA and that these changes are controlled by classic receptor antagonists, suggesting the existence of NMDA-like receptors at the cell membrane level. A 80 RESEARCH ARTICLE The Journal of Experimental Biology (2014) doi:10.1242/jeb.093914 Glycine NMDA (μmol l−1) 0 1 10 50 100 150 200 0 μmol l−1 1 μmol l−1 0% (60) 0% (60) 0% (50) 0% (48) 7% (60) 15% (100) 29% (80) 0% (80) 0% (70) 0% (60) 13% (70) 31% (75) 95% (110) 100% (140) The number of cells tested in four independent experiments is given in parentheses. channel blocker (Fig. 3, Table 3). Fig. 3 and Table 3 also show that the spiral-like swimming was largely reduced by 40 μmol l−1 CGS19755 and by 200 μmol l−1 D-AP5, two selective antagonists at the glutamate-binding site located on the GluN2 subunits, as well as by the selective glycine antagonist DCKA (1 μmol l−1). Prevention of the NMDA+glycine-induced changes in Paramecium swimming by the above NMDA receptor antagonists is predictive of the involvement of GluN2-containing NMDA receptors. Chemical agents able to discriminate between GluN2A- and GluN2Bcontaining NMDA receptors in mammals are available. In particular, ifenprodil has been found to preferentially inhibit the mammalian GluN2B-containing NMDA receptor complex (Williams et al., 1993), while nanomolar Zn2+ was shown to act as a selective GluN2A-containing NMDA receptor antagonist (Paoletti et al., 1997). We investigated the effects of ifenprodil (10 μmol l−1) and ZnCl2 (100 nmol l−1) on the 200 μmol l−1 NMDA+1 μmol l−1 glycineevoked cell spiral-like behaviour and found that both compounds were able to counteract NMDA effects (Fig. 3, Table 3). None of the antagonists administered in the absence of NMDA+glycerine were effective at the concentration used. Effects of NMDA on swimming behaviour induced by membrane depolarization When P. primaurelia membranes were depolarized using 40 mmol l−1 KCl, a CCR reaction was triggered. The average duration of the KCl-induced backward swimming amounted to 44.5±1.25 s (N=120 cells). The duration of backward swimming was dose-dependently increased by NMDA, with an augmentation of up to 20% by 200 μmol l−1 NMDA+1 μmol l−1 glycine (Fig. 4). Fig. 4 also shows that the CCR duration increment induced by NMDA was smaller in the absence of glycine. As high NMDA concentrations could induce receptor desensitization, we then used higher glycine concentrations (10 and 100 μmol l−1) to prevent NMDA desensitization. Indeed, it has been found that desensitization decreases with increasing glycine concentration in cultured hippocampal neurons as well as in oocytes injected with rat brain mRNA (Benveniste et al., 1990; Lerma et al., 1990; Mayer et al., 1989; Nahum-Levy et al., 2001; Vyklický et al., 1990). Our data indicate that in Paramecium the effects of 1–200 μmol l−1 NMDA are not modified by increasing glycine concentration from 1 to 10 or 100 μmol l−1 (Table 4). Co-administration of NMDA and D-serine, a potent agonist at the glycine-binding site (Mothet et al., 2000), resulted in a significant increase in CCR duration (Table 5). As Fig. 5 illustrates, the rise in the duration of the 40 mmol l−1 KCl-induced backward swimming behaviour brought about by 200 μmol l−1 NMDA+1 μmol l−1 glycine was counteracted by the NMDA receptor antagonists MK-801 (1 μmol l−1), CGS19755 (40 μmol l−1), D-AP5 (200 μmol l−1), DCKA (1 μmol l−1), ifenprodil (10 μmol l−1) and ZnCl2 (100 nmol l−1). Identification of NMDA receptor-like complex subunit encoding genes in the Paramecium genome We scrutinized the Paramecium genome to see whether it contains sequences encoding NMDA subunit proteins. The results suggest that an NMDA-like receptor, with the ligand-binding characteristics of an NMDA receptor-like complex purified from rat brain synaptic membranes (Hui et al., 2009) and also found in some metazoan genomes (see supplementary material Tables S1, S2), is present in Paramecium. Indeed, searches of the current Paramecium tetraurelia genome database indicate that Paramecium harbours at least 20 sequences related to a large family of proteins known as the transmembrane Bax inhibitor 1 protein family (BI1), some of which contain seven putative transmembrane helices (Fig. 6; supplementary material Table S1). In the Paramecium genome we also identified homologues of glycine-binding protein (GlyBP). The Paramecium genome carries at least two different sequences in contrast to the single sequence found in Tetrahymena and in other organisms (Fig. 7; supplementary material Table S2). DISCUSSION Some ciliates have been shown to be sensitive to a variety of neurotransmitters and neuropeptides, to which they would not usually be exposed (Le Roith et al., 1980; Nomura et al., 1998). Treatment of Paramecium with a β-adrenergic antagonist affects its behavioural responses to depolarization in a time- and dosedependent manner, and the shortening of ciliary reversal duration occurs concomitantly with impairment of phagocytic activity (Wyroba, 1989; Ucieklak et al., 1993). In Tetrahymena, the swimming pattern and the rate of phagocytosis are altered in response to nanomolar concentrations of opiate endorphins (Renaud et al., 1991; Renaud et al., 1995). We have previously reported that GABAB receptors modulate swimming behaviour in Paramecium by inhibition of dihydropyridine-sensitive calcium channels via Gproteins (Ramoino et al., 2003) and that the number of GABAB receptors at the plasma membrane is regulated by endocytosis into clathrin-coated and -uncoated vesicles and by recycling back to the cell surface (Ramoino et al., 2005; Ramoino et al., 2006). Glutamate is an important chemo-attractant for paramecia, probably because it signals the presence of bacteria that are food for this unicellular organism. This observation therefore implies that Table 2. Ion dependence of percentage of P. primaurelia cells showing a PaCR when exposed to NMDA Drugs −1 −1 200 μmol l NMDA + 1 μmol l glycine 200 μmol l−1 NMDA + 1 μmol l−1 glycine + 2 mmol l−1 MgCl2 200 μmol l−1 NMDA + 1 μmol l−1 glycine + 1 mmol l−1 EGTA + 0 mmol l−1 CaCl2 200 μmol l−1 NMDA + 1 μmol l−1 glycine + 8 mmol l−1 N-methylglucamine + 0 mmol l−1 NaCl2 %Total cells N 100 0 0 100 140 90 80 60 N, number of cells tested in three independent experiments. 465 The Journal of Experimental Biology Table 1. Percentage of Paramecium primaurelia cells showing a partial ciliary reversal (PaCR) when exposed to NMDA RESEARCH ARTICLE The Journal of Experimental Biology (2014) doi:10.1242/jeb.093914 Increase in CCR duration (%) NMDA+Gly+ZnCl2 NMDA+Gly+ifenprodil 20 NMDA+Gly+DCKA 40 NMDA+Gly+D-AP5 NMDA+Gly+CGS19755 60 NMDA+Gly+MK-801 80 NMDA+Gly Cells showing PaCR (%) 100 20 10 0 0 Fig. 3. Effects of NMDA receptor antagonists on PaCR. The 200 μmol l−1 NMDA+1 μmol l−1 glycine (Gly)-induced PaCR was prevented by 1 μmol l−1 MK-801, 40 μmol l−1 CGS19755, 200 μmol l−1 D-AP5, 1 μmol l−1 DCKA, 10 μmol l−1 ifenprodil and 100 nmol l−1 ZnCl2. 0 50 100 Fig. 4. Dose-dependent effect of NMDA on continuous ciliary reversal (CCR) duration evoked by 40 mmol l−1 KCl. An increase of 13% or 20% CCR duration was induced when 150 or 200 μmol l−1 NMDA with 1 μmol l−1 glycine was used, respectively. Data are given as means ± s.e.m. (N=60) from four separate experiments and are normalized to control (40 mmol l−1 KCl) values, taking the control CCR duration as 100 s. Filled circles, NMDA; open circles, NMDA+glycine. long-term potentiation and leads to changes in learning and memory in Aplysia (Ezzeddine and Glanzman, 2003; Murphy and Glanzman, 1997) and Lymnaea (Rosenegger and Lukowiak, 2010). In addition, an immunocytochemical study reported a specific localization of the GluN1 subunit in dissociated neurons, the nematocytes and epithelial cells of the hypostomal region, as well as in the tentacle cells of the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa), one of the first species to develop a nervous system (Scappaticci et al., 2004). Biochemical and behavioural experiments have provided strong evidence for the presence of NMDA receptors in hydra tissue and for their involvement in hydra feeding behaviour (Pierobon et al., 2001; Pierobon et al., 2004), nematocyst discharge in the tentacles (Scappaticci and Kass-Simon, 2008) and electrical tentacle activity (Kay and Kass-Simon, 2009). An NMDA-like receptor has also been described in the ciliated protozoon T. pyriformis (Fillingham et al., 2002). It was demonstrated that this NMDA receptor plays a crucial role in the perception of chemoeffectors (Nam et al., 2007) and that its stimulation induces an up to threefold increase of intracellular Ca2+ (Nam et al., 2009). It was found that 1 mmol l−1 NMDA functions as a repellent, whereas NMDA at 10 μmol l−1 and 10 nmol l−1 functions as a strong attractant, and that 10 μmol l−1 NMDA-induced chemotaxis and intracellular Ca2+ increase are suppressed by both U73122, an inhibitor of phospholipase C activity, and wortmannin, an inhibitor of phosphatidylinositol-3-kinase (Nam et al., 2009). Table 3. Percentage of P. primaurelia cells showing a PaCR when exposed to NMDA and NMDA receptor inhibitors −1 −1 200 μmol l NMDA + 1 μmol l glycine 200 μmol l−1 NMDA + 1 μmol l−1 glycine + 1 μmol l−1 MK-801 200 μmol l−1 NMDA + 1 μmol l−1 glycine + 40 μmol l−1 CGS19755 200 μmol l−1 NMDA + 1 μmol l−1 glycine + 200 μmol l−1 D-AP5 200 μmol l−1 NMDA + 1 μmol l−1 glycine + 1 μmol l−1 DCKA 200 μmol l−1 NMDA + 1 μmol l−1 glycine + 10 μmol l−1 ifenprodil 200 μmol l−1 NMDA + 1 μmol l−1 glycine + 10 nmol l−1 ZnCl2 N, number of cells tested in four independent experiments 466 200 %Total cells N 100 10 20 5 10 10 3 140 70 50 80 60 70 60 The Journal of Experimental Biology paramecia are endowed with glutamate sensors, possibly receptors. It is well known that paramecia swim smoothly and quickly in the presence of glutamate, which indicates a relatively hyperpolarized membrane potential (Preston and Usherwood, 1988). The mechanism of hyperpolarization has not been fully elucidated yet but it probably involves the activation of a hyperpolarizing K+ conductance and shares some interesting characteristics with umami taste (Van Houten et al., 2000), as a sustained hyperpolarization induced by glutamate was observed in some rat taste cells (Bigiani et al., 1997). Glutamate is a broad spectrum agonist that binds all the glutamate receptors, so that the effects caused by glutamate may be the result of several events, including the metabotropic receptormediated modification of cell metabolism and the ionotropic receptor-induced changes of cation balance (Nakanishi et al., 1994; Traynelis et al., 2010). Therefore, the respective roles that the different glutamate receptors exert in controlling Paramecium functions remain a challenging issue. As to NMDA receptors, this question can be feasibly addressed through the use of selective NMDA receptor agonists and antagonists. Evidence is accumulating to suggest the presence and functional roles of NMDA receptors in invertebrates. They have been implicated in insect and crustacean neuromuscular transmission (Ultsch et al., 1993; Feinstein et al., 1998), in insect hormone production (Chiang et al., 2002), in neuroendocrine function in Ciona (D’Aniello et al., 2003) and in synaptic activity in the leech (Grey et al., 2009). Moreover, NMDA receptors mediate learning and memory in Drosophila (Wu et al., 2007; Xia et al., 2005) and the honeybee, Apis mellifera (Si et al., 2004), while their role in synaptic plasticity in Caenorhabditis elegans is still controversial (Kano et al., 2008; Rose et al., 2005). Disrupting NMDA receptor function prevents Drugs 150 NMDA concentration (µmol l–1) RESEARCH ARTICLE The Journal of Experimental Biology (2014) doi:10.1242/jeb.093914 Table 4. Continuous ciliary reversal (CCR) duration (s) in P. primaurelia cells when exposed to NMDA and glycine Glycine NMDA (μmol l−1) 0 μmol l−1 1 μmol l−1 10 μmol l−1 100 μmol l−1 0 1 10 50 100 150 200 100.00±2.52 (120) 101.21±3.04 (45) 101.80±2.60 (45) 100.62±3.76 (60) 101.04±1.93 (60) 103.38±2.87 (60) 107.24±2.10 (120) 97.69±3.25 (45) 102.70±2.14 (45) 100.40±2.32 (45) 101.02±2.34 (45) 97.45±3.75 (60) 113.51±1.66 (60) 120.08±2.11 (120) 99.69±3.52 (45) 98.98±2.55 (45) 99.65±3.80 (45) 98.98±2.55 (45) 100.70±2.70 (45) 110.89±2.82 (45) 117.38±2.49 (45) 101.21±2.87 (45) 96.42±3.16 (45) 96.39±2.71 (45) 102.21±4.59 (45) 97.77±2.77 (45) 112.64±2.84 (45) 118.14±2.68 (45) Values (means ± s.e.m.) were normalized to controls (40 mmol l−1 KCl), taking the control CCR duration as 100 s. The number of cells tested in three to five different experiments is given in parentheses. NMDA (μmol l−1) 0 μmol l−1 200 μmol l−1 0 1 10 100 100.00±2.52 (120) 99.69±3.12 (45) 100.05±2.85 (45) 98.75±3.64 (45) 107.24±2.10 (120) 113.88±2.88 (45) 114.94±2.52 (45) 116.44±2.72 (45) Values (means ± s.e.m.) were normalized to controls (40 mmol l−1 KCl), taking the control CCR duration as 100 s. The number of cells tested in three to five different experiments is given in parentheses. *** *** NMDA+Gly+DCKA NMDA+Gly+ifenprodil ** NMDA+Gly+D-AP5 NMDA+Gly+CGS19755 NMDA+Gly+MK-801 NMDA+Gly 10 *** *** *** 0 Fig. 5. Effects of NMDA receptor antagonists on CCR. The NMDA+glycine-induced enhancement of CCR duration evoked by 40 mmol l−1 KCl in P. primaurelia was prevented by exposure to NMDA receptor antagonists (1 μmol l−1 MK-801, 40 μmol l−1 CGS19755, 200 μmol l−1 −1 −1 −1 D-AP5, 1 μmol l DCKA, 10 μmol l ifenprodil and 100 nmol l ZnCl2). Values are given as means ± s.e.m. (N=60) from four separate experiments and represent the percentage change from control (40 mmol l−1 KCl). **P<0.005, ***P<0.0005 compared with control values by Student’s t-test. 467 The Journal of Experimental Biology D-Serine 20 NMDA+Gly+ZnCl2 Table 5. CCR duration (s) in P. primaurelia cells when exposed to D-serine containing receptors are to Na+-permeable and Mg2+-insensitive ion channels (Chatterton et al., 2002). Therefore, our results with Mg2+, along with the Ca2+ dependency of the effect, indicate the presence of GluN2 receptor subunits in the Paramecium NMDA-like receptor. With regard to the GluN2 subunit, the blockade of NMDAinduced changes in swimming behaviour by Zn2+ and ifenprodil implies the co-presence of the GluN2A and GluN2B subunits (Neyton and Paoletti, 2006). This condition can be suggestive of a receptor assembled in a heterotrimeric fashion (GluN1/GluN2A/ GluN2B) although, on the basis of the present results, the presence of two different receptor populations (GluN1/GluN2A and GLUN1/GluN2B) cannot be ruled out. In apparent contrast with our hypothesis, however, searches of the available Paramecium genome database did not produce sequences with homology matches to this ionotropic glutamate receptor family, but revealed the existence of several homologous sequences of the BI1-like protein family as well as of the NMDA receptor-like complex, the GlyBP. In mammals, the BI-1 family consists of at least six members: TMBIM1/RECS1, TMBIM2/FAIM2, TMBIM3/GBP (also known as GRINA, glutamate receptor, ionotropic, N-methyl Daspartate-associated protein 1), TMBIM4/GAAP, TMBIM5/GHITM and TMBIM6/TEGT (see supplementary material Table S1). GlyBP is a receptor protein that differs, in terms of length and amino acidic sequence, from the classic GluN subunits but is able to assemble with Increase in CCR duration (%) The major novelty of the present investigation is that Paramecium is able to sense and respond to the NMDA present in the environment by modifying its swimming behaviour. Indeed, in the absence of external Mg2+, NMDA+glycine causes marked functional changes in Paramecium movements and this action is enhanced by membrane depolarization. Addition of K+ at a high concentration to the medium elicits membrane depolarization, thus causing backward swimming through the opening of voltage-dependent Ca2+ channels in the ciliary membrane (Oami and Takahashi, 2002). NMDA affects the behavioural response to membrane depolarization by increasing backward swimming duration. These changes were relieved by the selective NMDA receptor channel blocker MK801, indicative of the involvement of NMDA receptors in the observed effects. Notably, the modification of Paramecium swimming was also counteracted by DAP5 or by DCKA, selective antagonists of the glutamate-binding sites located at the GluN2 subunits and of the glycine-binding sites at the GluN1 subunits, respectively. Our findings imply that the co-presence of the two agonists is required for NMDA-induced reversal of swimming direction. Hence, NMDA alone (i.e. in the absence of glycine) or glycine alone (i.e. in the absence of NMDA) produced little or no change in Paramecium movement. D-Serine, a glialderived endogenous ligand for the glycine-binding site of NMDA receptors in mammals (Mothet et al., 2000; Oliet and Mothet, 2009; Schell et al., 1997), behaved similar to glycine thus strengthening the role of this binding site in the machinery of the NMDA-like receptors in Paramecium. The above-mentioned NMDA-induced changes were observed in the absence of external Mg2+, an ionic condition widely used to force NMDA receptor activation. Accordingly, in our experiments the introduction of Mg2+ abolished the effects of NMDA. NMDA receptors are channels permeable to both Na+ and Ca2+ (Ascher and Nowak, 1986; MacDermott et al., 1986; Mayer and Westbrook, 1987), and usually blocked by Mg2+ (Ault et al., 1980; Nowak et al., 1984). In particular, GluN2-containing receptors are Ca2+ permeant and highly sensitive to Mg2+ (Paoletti and Neyton, 2007), while GluN3- RESEARCH ARTICLE The Journal of Experimental Biology (2014) doi:10.1242/jeb.093914 TM1 TM2 TM3 TM4 Pt1 Pt2 Pt3 Pt4 Pt5 Pt6 Pt7 Pt8 Pt9 Pt10 Pt11 Pt12 Pt13 Pt14 Pt15 Pt16 Pt17 TETH1 TETH2 TETH3 TETH4 TETH5 TETH6 TETH7 TETH8 TETH9 TETH10 HsTMBIM1 HsTMBIM2 HsTMBIM3 HsTMBIM4 HsTMBIM5 HsTMBIM6 RNLFSKLFLQMIIICVY-----------------------VWIVHSIPAL--DHF--LEET-----KW------IFWLSLGICIGTATLALIYRNRITVSPTNWLVFIVF-----------TLSFASVCGCLVAFG-----------NSQIGLLLFVNFA QLLFVFVDNRLGIY--------------------------VWIVHALPDL--DHF--LENT-----KW------IFWLSLGICIGISILAFIYRNHIKTTPTNWLVFLLF-----------TLSLASVCGCLVAFG-----------NSQVGLLIFVNFA RKLYQYLLIQMIVISLF-----------------------IYWVYASPSL--DSY--LEGK-----PW------LFWLCLFISIGTATLALIFRKDVAVF PWNWVVFVTF-----------TLSVSVVCGTLVALG-----------DSVIGLLVFSSLA VKVFVLLA--LMLTTFY-----------------------VMAFIFLVKK--VQI--IKNG-----EIVQYHFIIYILSCVITILMGRWAY-FSESS RKFPLNIFCYLFF-----------TSGAAYVFGQPLSLI--LQGGYYSGQDWIILLYLSTMTL RKVFLIILFQIGFTFIT-----------------------TLIAYSQIPI--IDS--LCSR-----PL------LFWIFIVVLILVIFL LMRFQKLAKQHPYNYICYSSF-----------TLSISYLFFYTIHHYPT---------YSNHIISLITLQF LKVYIFLTMELAFTFLLVILGLYTNMQQWLVTTGQEESCYCAFGSFSQCG--CTYISHYDS-----TW------LFWVSIVFSLILHLI LFCGNQRVRQKPWNFIILGLY-----------ILFFGFLVTNLCIIIAYEF-------GVGIVWQAIGITF KKVYTLLTMELLITLGMIALGLYTGMANWLVQIELDDDVILCYYQAFGPMYCESY--HYQTIQPYPTW------LFYVSFFVALIMQCA LYCGGNLARKAPVNYIVLFLY-----------IVFFGFTLTTFCILMAMYW-------GQAIVWQAWGITF KKVFSIVGFQLLATSAVAYS--------------------AMNYNFIAEL--CEY-------------------LYIPAIIGSIVTGLWIYLSPSSA RRFPKNYILLSVF-----------TLSEAIALAITCSAI----------GDPEIIFQAFIITT RKVYSIMILQLILTVVA-----------------------CCFSYFCIPY--RDF--QNDH-----SG------WVYLAIAIAIIIELILLWIPKYSWRVPHNYLFLFVF-----------TLAESYVISQLCSYVFNK--------YRFIVLMAAALTL RKVYSIMILQLLLTVAA-----------------------CCLSYFWIPY--RDF--QNEY-----SG------WVYLAIAVAIIIEIILLWIPKYSWRVPHNYLFVFVF-----------TLAESYTISQLCSYVFNK--------YRFIVLMAAALTL RKVYAIMIIQLFITMIM-----------------------CLNSYLSLDY--RRF--QLQN-----TG------YAYLALAISIFVELLLFCIPKFAWRVPYNFILLFIF-----------TLCEGYLISSLCSYVFDKYSE----NGGFIVLMAASLSL KKVYSIMIIQLFLTMIM-----------------------CLISYLSLDY--RRF--QLDH-----SG------FAYLALGISIFIELLLFCVPKFAWRVPYNYILLFIF-----------TLCEGYLISNLCSYVFDRYSD----NGGFIVLMAASLSL KKVYSIMIIQLLITMIM-----------------------CVISYVSIDY--RMF--QLQH-----SG------YAYLALGIAIFIEVILFCIPKFAWRVPYNYLLLLIF-----------TVCEGYLISNLCSYVFDEYSQ----NGGYIVLMAASLSL RKVYSILSLQLLFTALL-----------------------TIWCITQEPV--KNF--VVQQ-----II------LFVLAAITAIVLMCVLLCCKANARKAPKNYILLSLF-----------TFCEAYVVAFICCSTATENS-----NGIEIIVIALSMTV VKVYAIMSFQLSITFLL-----------------------ILASYYFQNV--RNA--IINTSTIQYTP------LTIFCFVIALVIEVAIF CCRKVARKVPLNYILLTIF-----------TLCFSTVVAAPCIICFELLS-----NGVQLVIIAASITV VKVYSLLTIQLFVTFVM-----------------------VAIACFSKAF--RDL--LINPYSYKATP------FYWSMFAVSFVTEIAIF CFKKVARKVPNNYIALTIF-----------TVSFSFVVAGSCAVCKDAFEN-----GGTLILIAALMTF RKVYLILSFQLLFTTIF-----------------------CTFSYFSTGF--AVY--QLQN-----TW------LFYVLLIVGLICEIS LICCKNVSRKVPNNYIILGVF-----------TFCESWIVSYSCSIAYLIYPE----NGGQLVLIAAVLTL RKLYFALFMQLLIIGIF-----------------------AFFVHLYENL--RVH--LQQN-----YV------YFWVSLAGAAIIGILGLFFRQAI RKSPINYICMFLW-----------TIFFGTILVYAVSIN----------KDSIVGLMVFVLLA RKVLGIICAQLIITTLF-----------------------ILVGVFSPTY--QNF--QQNN-----KW------LTIFCLLLNIALLFALYCFRDFCRQVPKNYILLFLY-----------TFSESFLISYLCGVT-----------NPTVVLLAGALTT KKVFCIVFFQLLVTSIF-----------------------SALSMYVIHF--QSF--QVEY-----YA------LLFVALGLIIITQISVFASRNAARKVPLNYILLLLF-----------TISWAYLVSFLCGGFSINQDGTYNERNQTIIFLSVIVTF RKVLGIICTQLIITFAF-----------------------IIPSTLSQDY--RDF--QKRY-----IF------IAYLSLILNIATMITLYCFRKQCMKVPNNYILLFIF-----------TITEGYLISMITSVS-----------QPEVVLLAGGITF RK--------LAFTALM-----------------------IFMSQQSRSF--RLF--QAQN-----VW------LFTLSTVLTVAISIGMYCVPALTKKVPINYFALGLF-----------TVCEGYTVSAFTLQY-----------SKLVVLQAGFLTA RKVYLILGTQLLVTVLM-----------------------TVGAMYSPGF--TTF--QQNN-----LW------LLYTCIVIMFIVEIALFCFRNIAKTVPINYICLFIF-----------TFCMSYFVSTCCSLLNKSSED-----GQKMILVAAVMTF RKVYLILGAQLLVTVLM-----------------------TVGAMYSPGF--TTF--QQNN-----LW------LLYTCIVVMFIVEIAILCFRNVARTVPTNYICLFIF-----------TFCMSYLVSACCSVVKQQSDD-----GQKTVLIAAVMTL TKVYSILSVQIGITCAM-----------------------CFIAIENSGF--NSFLKDSSN-----LW------LFYVSIVMTLILCIMIVCYRKFAREVPTNYICLFLF-----------TLFESYIVAQICVLY-----------SPRIVIMAALLTM TKVYTILSAQMAVTVIL-----------------------CAYSMSSQKF--KNF--QLNN-----PG------LMIAALVVNIICLLVLICSRDQARKVPNNYILLGVF-----------TLCESYLVSFICSMS-----------NPKIVFLAALFTM RKVYSILLTQLLLTALV-----------------------CYAGMYNPTF--GAY--LITS-----PA------TLVLSIIVSLSILLAMF CNKNVSRIVPANYILLGLF-----------TVCESYIVSFFCALISWTESGQPDYEGRNLVLLAAFFTI RKVYSIISVQLLITVAI-----------------------IAIFTFVEPV--SAF--VRRN-----VA------VYYVSYAVFVVTYLILACCQGPRRRFPWNIILLTLF-----------TFAMGFMTGTISSMY-----------QTKAVIIAMIITA RKVYTILLIQLLVTLAV-----------------------VALFTFCDPV--KDY--VQAN-----PG------WYWASYAVFFATYLT LACCSGPRRHFPWNLILLTVF-----------TLSMAYLTGMLSSYY-----------NTTSVLLCLGITA RKVFLVLTLQLSVTLST-----------------------VSVFTFVAEV--KGF--VREN-----VW------TYYVSYAVFFISLIVLSCCGDFRRKHPWNLVALSVL-----------TASLSYMVGMIASFY-----------NTEAVIMAVGITT RKVYSILSLQVLLTTVT-----------------------STVFLYFESV--RTF--VHES-----PA------LILLFALGSLGLIFALILNRHKY---PLNLYLLFGF-----------TLLEALTVAVVVTFY-----------DVYIILQAFILTT HSTYMYLAGSIGLTALS-----------------------AIAISRTPVL--MNF--MMRG-----SWV-----TIGVTFAAMVGAGMLVRSIPYDQSPGPKHLAWLLH------------SGVMGAVVAPLTIL------------GGPLLIRAAWYTA KKVYASFALCMFV---------------------------AAAGAYVHMV--THF--IQAG---------------LLSALGSLILMIWLMATPHSHETEQKRLGLLAGF-----------AFLTGVGLGPALEFCIAV--------NPSILPTAFMGTA Pt1 Pt2 Pt3 Pt4 Pt5 Pt6 Pt7 Pt8 Pt9 Pt10 Pt11 Pt12 Pt13 Pt14 Pt15 Pt16 Pt17 TETH1 TETH2 TETH3 TETH4 TETH5 TETH6 TETH7 TETH8 TETH9 TETH10 HsTMBIM1 HsTMBIM2 HsTMBIM3 HsTMBIM4 HsTMBIM5 HsTMBIM6 SLIFFLFLYS-S--TVRRKITYSGAVLFVSASILIVFELF----TI--FT-KISL----FWIMFISLSS-FLFAFLLLYDTYTNLNCGDSYDINKA------DDVSGSVTIYWDII----LLFLKMAELIKD SLIFFLFLYS-S--TVRRKITYSGAVLFVSAGILIVFEMF----TI--FS-QISL----FWIMVISLSS-FLFAFMLLYDTYSNLNSEDSYDINTA------DDVSGSVTIYWDIV----LLFLKMTELIKD SMVFFLFMYS-L--TVKRRLTYQGSILFISASILLIFEIF----TI--FT-EVSL----FWLSSVSLFA-FLLAFLLIYDTYTNVNSGDQYDVNQA------DEVSGSVIIYWDVI----LLFLKMNELIKD GTYLCIIIFTFCRQTPQKPYIIIFSVVGVMIFLLFIFLLT----AP--YY---------LGLLVASFACHVLYGCLLVIDIKLIT--QGKFSLRTN------QYVSGALYLYLDIT----FMIFYFIGCILA GIIISLLAYS-Y--FTASEINLNKGLTFILITIALLFIFL----FL--YF-ELSL----KFLFILSFLI-ILYGVHIIIDTLLIV-NGEKHELDID------DYIIAALMTQVDIIGLISILFQKLLSQISK GFVLALTAYS-F--KTKTSFTFGIGSIFLLTPTLVLMLIL----MG--VY-SQFA----LSIFLCTLLV-VGQGFFLIWETKAII-GDGKLKLSID------DYVIGSLLLYGSII----QLLWRIMMLIIA IIVLALTLYA-C--KTKTDFSFKIGAIFILCPTILMLAIM----LC--IW-WSYA----VYILLCTLFI-VIYGFYLIWETQLIM-GKGKLKLSID------DYVIGSLLLYATII----QLFLRIIEILAI GIVISLATYA-M--TTKNDLSYHGAAIFLLSFGCLMAGLT----YF--IF-RSSF----AYQIYLIGGA-ISLGFYLVYDIQLII-GDKQLRLTVD------DYVLGSIMIYTDII----KIFIRVVKILMK AAVIGLTLYA-C--KTKKDFTTKGAFLFMASTSLFLFAIL----SG--VY-YDQA----MSLLYSLISS-LLFGVYLIYDTQLII-GGSTHKLSID------DYIIGAMFIYIDIV----YLFAHIVLIIVA AAVIGLTLYA-C--KTKKDFTTKGAFLFMASTSLFLFAIL----SG--VY-YDQA----MSLLYSLISS-MLFGIYLIYDTQLII-GGSTHKLSID------DYIIGAMFIYIDII----YLFAHIVLIIIA AAVIGLTLYT-C--KTKSDYTTKGALLFMCVTSLLLFGIM----AG--VY-YQNV----INLIYSLLCC-LLFGAYLIYDTQLIL-GGSTHKLSID------DYIIGSMIIYIDIV----YLFAHILMVLIA AAVIGLTIYA-C--KTKSDFTTKGALLFMCVTSLLLFGIM----AG--VY-YQNV----INLLYSLLCC-LLFGAYLIYDTQLIL-GGSTHKLSID------DYIIGSMIIYIDIV----YLFAHILMVLIA AAVVGLTFYA-C--KTKSDFTTKGALLFMCTTSLLLFGIM----AG--IY-YQNV----INLLYSLICS-LLFGAYLIYDTQLIL-GGSTHKLSID------DYIIGSMIIYIDIV----YLFAHILMVLIA LMTMGLTLYA-C--TTKEDFTICTGLLWSLAICLIMLFIF----SL--IY-PSRL----LSIIYSIFAI-FLYSIYIIVDTQLIV-GSKRHSLQKD------DYIIGALILYIDII----ILFLELVKLIAQ AITIMLTIYA-W--RTKTDYSAAGHFCFVLSMSVLIMCII----GL--FV-RNIW----FHLFICTLCI-IIYGGYIIFDTQLII-GNHSNYLTID------DYIIAAMLLYVDIV----ILFLRILEILMI AVTASLTVYA-C--RTKSDFTMAGGALFILSSIMFILFIF----AI--FF-FNII----LWLLLCSLSV-ILYGFYLIYDTQLII-GGKSHQLSID------DYVIGTMFIYIDII----ILFLRILQILMI AITISLTLYA-F--TTKSDITMAGGSLFIFSAVLLVLGLL----CL--IF-NSKI----IHMIYIGGLA-ILYGFYLIYDTQLLM-GNKEYSYSID------DYIVAALQLYIDII----MLFLQLLQLLLE SLMLSQFLYT-L--TVRYELTYQGTTLFVFGAQILNFHIF----TL--FT-NLSF----YQMVIISFFG-FIFAFYLIFDTQSRV-AGPDYDFNKE------EWRSGTVLVYMDVF----LLILRIGDLLRT IIVFALSIYA-C--FSKTDVTMKTSLLIYFPLAVIVILIV----AG--SY-QSYM----SQVIVSLAII-GLFSLYLVFDLQRLS-GKKSITYTMD------DYIIAALDIYIDIV----IMFKELIYLLSR SIVLSLTFLA-H--ATSIDFQFKGTVCSVLGAALAIISVL--------ICIGFPF----IYITYSLLSG-ITFGFYLVFDLHAIM-DGKYEDISLD------DYIIASMLIYVDII----MLFLRTLEVLSR AIVLFITIYA-C--TTKNDITQKVTAIFYVSMALLVIILV----AS--IF-RSYI----IQTLIGLAIV-GVFCFYLVFDIQRLQ-GNKYLSYSYD------DYIIASLDIYIDIV----VIFQTVLGLANR GATILLFLYA-C--TTKKDVTIMNSSLFMFISSLLLVSIM----NF--FF-RSEL----LVMLIQYATV-LIYSFYLIYDIQIIM-GDKTLKLDID------NYILGSLIIYIDII----KIFLKVLQLLGQ GIVVALTIYA-F--KTKTDFTILGGFLFCFVIILIIFGIF----LV--FT-YSRV----AYIVYSALGC-LLYSLYLIYDTQLII-GEKKYSLDID------DYVIGALMLYNNII----YIFFEILRIFRV GVVVALTIYA-F--KTKTDFTLLGGFLFCFVMVLIIFGIF----LA--FA-YSRT----AYIVYCALGC-LLYSLYLIYDTQLIV-GKKRYALEID------DYVIGALMLYIDII----GLFLEILRLLSS AMFIALTVYA-F--TTKTDFTVMGGLLFVCLFVFSLAGLF----LL--FT-NNNV----AHIIYCCFGV-IIFSIYIIYDTQLLM-DNKTYSYEID------DYIIASLQLYLDII----NIFLYILEILGR AIFLSLTLYA-C--TTKSDFTTMGGTLYVIGMGLFIFGFF----LI--FT-NNNV----MHLIYATACA-VLFGFYILYDTQLII-GNKSYKYSID------DYIIASLELYMDII----GLFLQLLEILQR GITISLTVYA-F--TTKQDFSFCGGLLFVMLSSFILSSIL----LV--FY-NNYV----LEIVACSITA-IIYGIYIVYDTQIVV-GGKYFELSID------DYILGALMLYIDII----RLFLRILEIIIR VVSISVTIFC-F--QTKVDFTSCTGLFCVLGIVLLVTGIVTSIVLY--FQ-YVYW----LHMLYAALGA-ICFTLFLAYDTQLVL-GNRKHTISPE------DYITGALQIYTDII----YIFTFVLQLMGD LVCLSVTVFS-F--QTKFDFTSCQGVLFVLLMTLFFSGLILAILLP--FQ-YVPW----LHAVYAALGA-GVFTLFLALDTQLLM-GNRRHSLSPE------EYIFGALNIYLDII----YIFTFFLQLFGT AVCFTVVIFS-M--QTRYDFTSCMGVLLVSMVVLFIFAIL----CI--FI-RNRI----LEIVYASLGA-LLFTCFLAVDTQLLL-GNKQLSLSPE------EYVFAALNLYTDII----NIFLYILTIIGR TVFFGLTVYT-L--QSKKDFSKFGAGLFALLWILCLSGFL----KF--FF-YSEI----MELVLAAAGA-LLFCGFIIYDTHSLM-----HKLSPE------EYVLAAISLYLDII----NLFLHLLRFLEA GIVGGLSTVAMC--APSEKFLNMGAPLGVGLGLVFVSSLG----SM--FLPPTTVAGATLYSVAMYGGL-VLFSMFLLYDTQKVI---KRAEVSPMYGVQKYDPINSMLSIYMDTL----NIFMRVATMLAT MIFTCFTLSALY--ARRRSYLFLGGILMSALSLLLLSSLG----NV--FF-GSIW----LFQANLYVGL-VVMCGFVLFDTQLII---EKAEHGDQ------DYIWHCIDLFLDFI----TVFRKLMMILAM TM4 TM5 TM6 TM7 Fig. 6. Multiple alignment of transmembrane Bax inhibitor protein 1 family. Identical and similar residues in at least 50% of the species are indicated in black and grey, respectively. The alignment includes only the transmembrane (TM) helices and loops. The black bars indicate the predicted transmembrane helices of human TMBIMs (transmembrane Bax inhibitor motifs). Abbreviations for the taxa are: Pt, Paramecium tetraurelia; TETH, Tetrahymena thermophila; Hs, Homo sapiens. MATERIALS AND METHODS Cells and culture conditions Experiments were carried out on P. primaurelia, stock 90, cultured at 25°C in lettuce medium (pH 6.9) inoculated with Enterobacter aerogenes (Sonneborn, 1970). Cells were harvested in the late log phase of growth. 468 Cell movement analysis Paramecia were transferred from culture medium into an adaptation solution containing 1 mmol l−1 CaCl2, 4 mmol l−1 KCl, 4 mmol l−1 NaCl and 1 mmol l−1 Hepes (pH 7.2) and allowed to equilibrate for 30 min. Then, they were transferred into a recording camera (internal size: 21×14×3 mm) containing the indicated concentrations of drugs in the adaptation solution. Responses to drugs were determined by acquiring cellswimming behaviour through an infrared video camera that recorded the swimming of a small sample of protozoa, i.e. one to five individuals at the same time. Protozoan movement was digitally recorded for 60 s at 4 frames s−1. Records were analysed by means of image-analysis software (IToolTrack, e-magine IT s.r.l., Genoa, Italy) to reconstruct each individual path. CCR induction Cells were transferred from culture medium into the adaptation solution for 30 min and then to a bath containing the indicated concentrations of drugs in the test solution (40 mmol l−1 KCl, 1 mmol l−1 CaCl2, 4 mmol l−1 NaCl, 1 mmol l−1 Hepes, pH 7.2). The presence of high KCl in the test solution depolarizes the cell membrane, triggering ciliary reversal and backward swimming. Responses to drugs were determined by transferring individual The Journal of Experimental Biology the glycine/TCP-BP protein, the CPP-BP, and the phencycline-binding protein in mammalian brain synaptosomal membranes to express an NMDA receptor-like complex, with binding properties similar to those of classic NMDA receptors (Kumar et al., 1998). Indeed, the NMDAlike receptors elicit Ca2+-dependent responses similar to those observed for classic NMDA receptors (Michaelis, 1998), which can be prevented by classic NMDA receptor antagonists (Kumar et al., 1998; Michaelis, 1998). In conclusion, these results provide evidence that NMDA-like receptors, functionally resembling those identified in mammals, are present in the single-celled organism Paramecium and also suggest that the glutamatergic NMDA or NMDA-like system is an early evolved, phylogenetically old mechanism. RESEARCH ARTICLE The Journal of Experimental Biology (2014) doi:10.1242/jeb.093914 HsGlyBP RnGlyBP GgGlyBP DrGlyBP TETHGlyBP PtGLYBPa PtGlyBPb --------------------------MPHKIGFVVVSSSGHEDGFSARELMIHAPTVSGWRSPRFCQFPQEIVLQMVERCRIRKLQLLAHQYMISSKIEFYISESLPEYFAPYQAERFRRLGYVSLCDNEKTGCKARELKSVYVD-AVGQFLKLIFHQNH --------------------------MPHKIGFVVVSSSGHEDGFSARELMIHAPTVSGWRSPKFCQFPQEIVLQMVERCRIRKLQLLAHQYMISSKVEFYISESLPEYLVPYQAERFRRLGYVSLCDNEKTGCKARELKSVYVD-AVGQFLKLIFHQNH --------------------------MPHKIGFIVVSSSGHEDGFSAKELMVHAPTVNGWRSPRLCQYPQEIVLQLVERCRIRKLQLLAHQYMISSKIEFFISESLPEYFAPYQSERFHRLGYVPLSDNEKTGFKARELKSVYMD-AVGQYLKLIFHKNY MRTCHSCQTVVMEMNVGNCYIWLRTGMPHKIGFSVISWSGHEGNYNAKKLMVHAPTVSGWRSTRFCPFPQEIILQLAERCRIRKLQLLAHQYFIPSKVEFHVGDMLPESNSAQQAHSLHRLGYVSLSDNEKTGFRARELKSVHVD-AVGSFLKLTFHRNH --------------------MSKQQQNMQKLAYKIKSCSSEEQTHRVSELLMQSPQSKGWQSSRFCDYPQEIVLQFHSPVRVRQIQFLSHQYKIASRIEIFVYMPDQNTPFINTEFKYKKLGYLSLDSNEKTGFKSRELKSVYVD-SPALYLKLSFHKNH ------------------------MKGVSKLKYRIVYCSGEDQDYPVTELLTQSPQSRGWQAPKYCEYPQEIAIQFVSAARVRQVQFLSHHCKISTKIELYVHMPDKNIPPQYNQIKYKKLGYLSLDSNERGGYQARELKSVYID-TPCLFMKFVFQKCF ---------------------MNQPKNTRFITFTIPYAQSQDPQFPPSNLLEISSTPLGWQSCRFCQYPQELIFQFQSAITVYKMQILSHEKKIPTKIEVFIGRLQGRMDLENASF--KKIGYFTFHSKEQSNWQARELKTVSIDESNCNYLKLLVHRNH 133 133 133 159 139 135 137 HsGlyBP RnGlyBP GgGlyBP DrGlyBP TETHGlyBP PtGLYBPa PtGlyBPb VNKYNIYNQVALVAINIIGDPADFSDESN-TASREKLIDHYLGH----NSEDPALEGTYARKS----DYISPLDDLAFDMYQDPEVAQIIRKLDERKREAVQKERYDYAKKLKQAIADLQKVGERLGRYEVEKRCAVEKEDYDLAKEKKQQMEQYRAEVY ANKYNVYNQVALVAINIIGDPADLGDESN-TTCREKLIDHYLGHSPH-NPEDPALDGTFAGRS----DYISPLDDLAFDMYQDPEVAQIIRRLDERKREAAKKERYDHAKKLKQAIADLQKVGERLGRYEVEKRRAVEKEDYDLAKEKKQQMARYRAQVY VNKYNLYSQVALVAINIIGDPADYSDDSNKYPSREKLIDHYLGS----KSDDPALDGTYLGKP----DSISPLDDLAFDMYQDPEVAQIIRRLDEKKHEAVHQERYDYAKKLKQAIADLQKVGERLGRYEVEKRYAVEKEDYDLAKKKKQQMDAYRLKVY VNQYNVYNQVALVALNILGDPIDGSDIGT-TLSRDHLIDQFLNS----SQYSSSLDGTYTGLSSYKCESISPLDDLAFDMYQDPEVAHIIRLLDQKKQVMVREERFDSAKELKQAIADLQKVGERLGRYDVEKLSAIEREDYDTAKQKKEQMDAYRLAVY NNKYNTFNQIGVIALSCFGDDLTNMK--------------------------------QNIEP-----VKEFYNQIQYQTQF DHVTLDRLRTLEMAKERAVKNDDFDEAQRLKEAIDKLKAIGIQLRQLNERKQIATENEDYDAAKIIKAEIDRLRNAVA VNKFNLFNQIGVIALSVFGEPLDSPPG-------------------------------YGQMK-----QKEFYNEIQFETQFDQNTLERLRLLEEAKDKAVSREDFMEAKRIKEAIERLKQIGVQLRTLEERKAVAIQNEDYDSASIIKQEIEKLRNAVA ENKFNPFNQVGIVAIRIYGEKAELPPPKK---------------------------ANKVQDK-----VLDELYNPQQDKLIDTKLLAHIIALEHSKDYAIKQENYQEAKKLKNRITQLRSLGVQLRDLEERKKEVLQNEDYDQAEAIKEQIHKLKIENG 284 287 285 314 262 259 265 HsGlyBP RnGlyBP GgGlyBP DrGlyBP TETHGlyBP PtGLYBPa PtGlyBPb EQLELHSLLD------AEL-MRRPFDLPLQPLARSGSPCHQKPMPS---------------------------------LPQLEERGTENQF AEPFLQEKPS-SYSLTISPQHSAVDPLLPATDP----HPKINAESLPYDERPLPAIRKHYGEAV---V EQLELHGLLQ------GEPEMQRPFALPLQPLASPSSPQHWKAVSS---------------------------------LPRTEELAAEDTC AGPILQEKPL-ASS----PRHSAVDRSPPAAGP----APRSHVEALPYDERPLPVTRKQLEEPS---A QQLQLHNLLD------AELMSRKPPELPVEPVIYDDSLQRTKATNSP-----------------------------SCENTELQTSQGELWK AESLLEEKPADPTSPEPVFRHQSTPPTLSHSTASREVFAQEEAEFLPYDERPLPAIQKHSEEAIRY-L HQLEIHNLLD------ISQIHRMSGLSDSGFLSPRVGTQKHMPHPP---------------------------------DTHRKKRQG PVKDTDEQDTSKTT---------SPKHTIPSTPFTPP---HVSKIDINSLPYDERPLPTLRNRLSDQSVSEL PEYLIQKPQPLQYNSNIPYNSNQFQPLMQDPIIPSNQPDMWSSKPVSKPS-----------------NNNFKAENDEYGNQLNKIEEA PLVEQETTEMARQHRSSVQQPQYEESKQDKIQKQKFEEQFMFNNRTNQGSNHDEMQLPAMKNKQNKKPWE-L PDSMIRRP-----DSAVILN--KLNQQYQQPVYQPQQQYQQQQQQ----------------------QQQYYQQQYQPPPVQSQMAFV PPYQAPPPMMPIQGEEMISQSQFEEQRADPSQMRQKRVAKELN------QHHEDMIVPGALRKQNNNQYP-D ---LVDEQ-----GNEYKPNIDKIRQQELGEQIDNQEDRRNSKPSIK--------------------------QIDNNKIIEDSFDRM PQDEQTYLMEQLNNNNNNITHITNNQNENANTSYQQPVSFDQQLKNDKLLNYDEMVIPALKNKQNNNTQI-L 396 396 409 423 404 383 390 HsGlyBP RnGlyBP GgGlyBP DrGlyBP TETHGlyBP PtGLYBPa PtGlyBPb EPEMSNADISDARRGGMLGEPEPLTEKALREASSAIDVLGETLVAEAYCKTWSYREDALLALSKKLMEMPVGTPKEDLKNTLRASVFLVRRAIKDIVTSVFQASLKLLKMIITQYIPKHK----LSKLETAHCVERTIPVLLTRTGDSSARLRVTAANFI EPEVREAD-SDVRRRGVSAEPEPLTEKALREASSAIDTLGEALVAGAYSKMWSCREDALLALYKRLMEMPVGTQKGFVKNMLRASVFLIRRAIKDIVTSVFQASLKLLKMIITQYIPKHK----LGKLDTTYCVERAIPLLLARTGDSSARLRVMALNFI EPERTEGDISNTPRSGITGEPEPLSEKALREASPAIEVFGEALVSGAYSKSWSYREDALLAVYKKLMEMSVSTPKEDLRNMLRAAIFLVRRAIKDIVSSVFQASLKLLKMIITQYVPKHK----LGKLETSHCVEKTLPGLLSRTGDSSSRLRIVAAKFI DEILPLADTASPRSPRASGQPEELTEKAQREASLPIEIYGESLVAGAYSKTWSYREDALLAVRKKLMEVPSGSSKAELRSMTRAAVFLCKKALTDKVSSVFLASLNLLKTILSEFIPNHQ----LGKSEISHCVEQTWNNLISRAGDSTSRLRTPAITFI DDAYANGQAPESVQQNSVGETEQLSGAAKQQAEPLIPVIGDECAAKIFSKSWQIREEGLKWLEAEAQN-PRSINGSDPQALFTAVIGVCSATIADKVAQVSQASMNLLQALCNSRSAKPTSVK----GETGSYVDNCIGLLMEQAGHHVPKVREQAEQAL DDK----------QQQQQYTTEPLTGDSLQKAEPLIPILTEEFCQKIFSKQWGAREDGLKWLEDQIGR-PTQVNSQDPSIFFLSSIASINYTLGDKVAAVSIRSLSVLQSLLAKYPKIKINKS----AEFNEHIDGILQSLMEKLGEQR---KEQAENAF EEY--------SEVDKSKQQIEELSSENQKQVEAIKPYYGIDFCKNYFSKNWARREEGIRWLIEQFNN-PTQINLSNIDGAFQATLLLIYKGIQDKADKVVYASLQLMQQTLLKLKPNKLND------ESPIILDNIVLILMEKMGDINERHKEECKKIL 552 551 565 579 559 525 535 HsGlyBP RnGlyBP GgGlyBP DrGlyBP TETHGlyBP PtGLYBPa PtGlyBPb QEMALFKEVK----SLQIIPSYLVQPLKANSSVHLAMSQMGLLARLLKDLGTG-SSGFTIDNVMKFSVSALEHRVYEVRETAVRIILDMYRQHQASILEYLPPDDS-NTRRNILYKTIFEGFAKIDGR-------ATDAEMRARRKAATEEAEKQKKEEI QEMALFKEVR----SLQLIPSYLVQPLKTNASVHLAMSQVDLLARLLRDLGTE-GSGFTVDNVMKFAVSALEHRVYEVRETAVRIILDMYRQHPALTLEHLPPDDS-TTRRNLLYKAIFEGFAKIDGR-------PTEAEGKTQKRVVTKEAEKQKKEET QEMALWSEVK----PLQIVPVHLVQLLKPNSPTHLAMSRVELVECLLKEMGTE-NSGFTISNVMKFATGALEHRVYEVRDVALRIIFGMYRKHKAAILEYLPPDDA-SIRKTVLYKTLFDGFTKIDGK-------LSEAEMRAQKKAATEEAERQKKEEI QEMALFKEVR----ALQMVPVELVRPMQSSVPARQALSRLELIEKLLEQLGTK-DSGFTLDSIMRFLTGGLEHSSASVRELSMRLIQTVYRLHGKPVLNYLPPDDS-STRKNVLYKNLFDSLAKLDGT--------TINTQKSKKGAERDEGEREK-EEI FALGSVPIIGNQTIVQSLSKGSGLKPKMQ-SSIKHIVARLNILQQFSKRFSIG-KKDVPLAPVMEYAAKQMVHANNEVRTSAINLITEAYNQVGEGQIEPYIANLP-----EQQRDILSEAFSQNGGG------------GGKNSSPQKQEKKTVVTTNI LQMADHPSVGPAICVQHLIKGFVGKSKLQ-SSTKHIVGRLAMLTELVKRYEIN-NANMPYQPIVDFAVKLQDDKNEPIRTQAILLLVEVYKFSGN-RLKQSLTNVR-----QAQLDVLEDFFNKIDGG------------GDVDDQPQTNQQRAIIQTNI LTLAETQIMGSAGVINHLVKGITTKPNLQLSSVRHIQARLMLIYNLIQKYKIN-NERVPYNPVMDVALKYLDHSAEQVRTCAIYIITEIYKNQGD-KVRESIKGIR-----PAQQQILEELFYKIDNG------------GNVQTSFEQEKK-------- 699 698 712 724 700 665 668 HsGlyBP RnGlyBP GgGlyBP DrGlyBP TETHGlyBP PtGLYBPa PtGlyBPb KALQGQLAALKEIQAEVQEKESDAVKPKNQDIQGGKAAPAEALGIPDEH-----------------------------------------YLDNLCIFCGERSESFTE-EGLDLHYWKHCLMLTRCDHCKQVVEISSLTEHLLTECDKKDGFGKCYRCSE KALQGLSAAPRETQAGVQEKENEAVKLKNQDPQGRKAAPPDTPEIPDNH-----------------------------------------YLDNLCIFCGERNESFTE-EGLDLHYWKHCLMLTRCDHCRQVVEISSLTEHLLTECDKRDGFGKCPRCSE KVLQGQLAALKEIQAEVQAGKEKESDFQKTKDQGYKSPQPAAAEIPDDHSSV------------------------------------ANYLDN LCIFCGERNESFTE-EGLDLHYWKRCPMLTRCEHCKQVVEIASLTEHLLTECDKKDSFGKCQRCSE RSLQEQLAVLKEIS---EKGKDNAKVPEKKTEKATKSGVVL-------------------------------------------------VQRS LCIFCGERDESFTE-DGLDLHYWKHCPMLQRCLQCRQVVEIASLTEHLLTECERRTDFSQCPLCSE QHQGARHDDKGPNKKGKQPSANDKSPSQKDSKKQNNSSKMQASDVME-----------------------------------------------V CEFCHVHNPTFADKKDLDIHLWRECPMLLLCPHCAQVVEVSAYNQHLLEECKKAMKFRQCPRCKE ESQGAKKGNQ--NQTQNQKPQQQQKQQQQQQYDQNNTAK-------------------------------------------------------- CDYCDRVNPSFRDPDQIDKHLWSECPMLVTCSQCGQVIEIAELTNHLLSECDHKRKFKRCPKCKE ----------------PQPKKKQQQNNPDQVFQQITQA--------------------------------------------------------- CEFCGIENKEFIQSQKLDMHLWKECVMLTTCLSCAQVVEVSQLTNHHFEECEFAKNYRQCETCGC 817 816 835 831 813 767 755 HsGlyBP RnGlyBP GgGlyBP DrGlyBP TETHGlyBP PtGLYBPa PtGlyBPb AVFKEELPRHIKHKDCNPAKPEKLANRCPLCHENFSPG-EEAWKAHLMGPAGCTMNLRKTHILQKAPALQPGKS---------SAVAASGPLGSKAGSKIPTPKGGLSKSS------SRTYAKR-------AVPKEELPRHIKTKECNPAKSEKVANRCPLCHENFAPG-EEAWKVHLMGSAGCTMNLRKTHILCKAPAPQQGKG---------PMASKSGTSAPKVGSKIPTPKGGLSKSS------SRTHTRR-------AFPKDELPKHIKSRTCNAAKPEHVANHCPLCHDNFSPG-EEAWKSHLMGMDGCAMNLRRLSTINKTIPMQPGKTGGHYLKK--ASPSRTKVRPPSIGSKIPTPRGGPNKSS------GKTYSKQ-------ALMRDKLTEHAQSTACNPPSSDENCNHCPLCHENFTSG-EEGWKSHLMGPEGCKHNSRRRAIQPSTYSYAQGKSVNTAGGKTTMVISESKARGLGGGSRIPAPASRMKRRSRNPPDKASTYRLQQA-----AISVTEYNDHVKEKSCLPHKSPSVANRCPLCHQDIEQG-PEGWRKHLV-VQGCPNNERSTG----------------------------------------------------------------------AILLSGYDKHLED---CRGRNDNTTVRCPLCHQDLKLE-KNTWKNHLI-KQGCLNNERTAG----------------------------------------------------------------------AVLESQLAEHQNK----KICNSSPGDTCPLCYKAIGLN-WKIHLAICE-QQERNKQQPAPQEKK-------------------------------------------------------------------- 925 924 950 956 872 823 813 Fig. 7. Sequence alignment of glycine-binding protein (GlyBP) from several organisms. Identical and similar residues in at least 50% of the species are indicated in black and grey, respectively. The alignment includes full-length sequences for Homo sapiens (Hs), Rattus norvegicus (Rn), Gallus gallus (Gg), Danio rerio (Dr), P. tetraurelia (Pt) and T. thermophila (TETH). Drugs used The drugs used were as follows: NMDA (1–200 μmol l−1), glycine (1–100 μmol l−1), D-serine (1–100 μmol l−1), MK-801 (1 μmol l−1), D-AP5 (10–200 μmol l−1), CGS19755 (10–40 μmol l−1), DCKA (1 μmol l−1), ZnCl2 (100 nmol l−1), ifenprodil (100 nmol l−1 to 10 μmol l−1), MgCl2 (0.5–3.0 mmol l−1), EGTA (1 mmol l−1) and N-methylglucamine (8 mmol l−1). MK-801, D-AP5, CGS19755, DCKA and ifenprodil were purchased from Tocris Bioscience (Bristol, UK). NMDA, glycine, D-serine, N-methylglucamine and all other chemicals (unless otherwise specified) were obtained from Sigma Chemical Co. (St Louis, MO, USA). Drugs were dissolved in milli-Q water. Statistical analysis Differences between means (±s.e.m.) were determined using Student’s t-test (GraphPad Prism, GraphPad, San Diego, CA, USA). Statistical tests were performed on raw data but, to emphasize any changes in the cell responses to test solutions, backward swimming durations were normalized to control (40 mmol l−1 KCl) values (taking the control as 100 s). Project, http://www.ciliate.org]. Similar searches were also performed using as queries the relative sequences of the mammalian NMDA receptor-like complex proteins. Multiple sequence alignments were performed using M-coffee (Edgar, 2004) and/or ClustalW [http://www.ebi.ac.uk/Tools/ clustalw]. All the sequences used in the sequence alignments are described in supplementary material Tables S1 and S2. The putative membranespanning alpha helices were assigned using TMHMM software (http://www.cbs.dtu.dk/services/TMHMM). Acknowledgements The authors are grateful to Mrs Maura Agate for her excellent secretarial assistance. Competing interests The authors declare no competing financial interests. Author contributions L.G., S.F., M.M. and M.F. performed the experiments. S.C. accomplished the genetical analysis. P.R., A.M.P., C.U. and G.B. analyzed and discussed the experimental results and wrote the manuscript. Funding This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Supplementary material Sequence analysis Supplementary material available online at http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.093914/-/DC1 TBlastN and BlastP searches (Altschul et al., 1997) using protein sequences of selected vertebrate, invertebrate and plant glutamate receptors were conducted on the genomic and protein databases of P. tetraurelia [Paramecium Genomics, http://paramecium.cgm.cnrs-gif.fr/] and of Tetrahymena thermophila [The TIGR Tetrahymena thermophila Genome Aistrup, G. L., Szentirmay, M., Kumar, K. N., Babcock, K. K., Schowen, R. L. and Michaelis, E. K. (1996). Ion channel properties of a protein complex with characteristics of a glutamate/N-methyl-D-aspartate receptor. FEBS Lett. 394, 141148. References 469 The Journal of Experimental Biology cells with a micropipette into the test solution. Cell responses were recorded at low power magnification (12×), and then the duration of backward swimming was scored using a stopwatch. Tests were carried out on 15–20 cells and were repeated on three to five different occasions over several weeks. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. Ascher, P. and Nowak, L. (1986). A patch-clamp study of excitatory amino acid activated channels. Adv. Exp. Med. Biol. 203, 507-511. Ault, B., Evans, R. H., Francis, A. A., Oakes, D. J. and Watkins, J. C. (1980). Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparations. J. Physiol. 307, 413-428. Benveniste, M., Clements, J. D., Vyklický, L., Jr and Mayer, M. L. (1990). A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J. Physiol. 428, 333-357. Bigiani, A., Delay, R. J., Chaudhari, N., Kinnamon, S. C. and Roper, S. D. (1997). Responses to glutamate in rat taste cells. J. Neurophysiol. 77, 3048-3059. Chatterton, J. E., Awobuluyi, M., Premkumar, L. S., Takahashi, H., Talantova, M., Shin, Y., Cui, J., Tu, S., Sevarino, K. A., Nakanishi, N. et al. (2002). Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415, 793-798. Chiang, A. S., Lin, W. Y., Liu, H. P., Pszczolkowski, M. A., Fu, T. F., Chiu, S. L. and Holbrook, G. L. (2002). Insect NMDA receptors mediate juvenile hormone biosynthesis. Proc. Natl. Acad. Sci. USA 99, 37-42. D’Aniello, A., Spinelli, P., De Simone, A., D’Aniello, S., Branno, M., Aniello, F., Fisher, G. H., Di Fiore, M. M. and Rastogi, R. K. (2003). Occurrence and neuroendocrine role of D-aspartic acid and N-methyl-D-aspartic acid in Ciona intestinalis. FEBS Lett. 552, 193-198. Dingledine, R., Borges, K., Bowie, D. and Traynelis, S. F. (1999). The glutamate receptor ion channels. Pharmacol. Rev. 51, 7-61. Dryl, S. (1974). Behaviour and motor response of Paramecium. In Paramecium: a Current Survey (ed J. W. Van Wagtendonk), pp. 165-211. Amsterdam: Elsevier Science. Eckert, R. (1972). Bioelectric control of ciliary activity. Science 176, 473-481. Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113. Ezzeddine, Y. and Glanzman, D. L. (2003). Prolonged habituation of the gillwithdrawal reflex in Aplysia depends on protein synthesis, protein phosphatase activity, and postsynaptic glutamate receptors. J. Neurosci. 23, 9585-9594. Feinstein, N., Parnas, D., Parnas, H., Dudel, J. and Parnas, I. (1998). Functional and immunocytochemical identification of glutamate autoreceptors of an NMDA type in crayfish neuromuscular junction. J. Neurophysiol. 80, 2893-2899. Fillingham, J. S., Chilcoat, N. D., Turkewitz, A. P., Orias, E., Reith, M. and Pearlman, R. E. (2002). Analysis of expressed sequence tags (ESTs) in the ciliated protozoan Tetrahymena thermophila. J. Eukaryot. Microbiol. 49, 99-107. Grey, K. B., Moss, B. L. and Burrell, B. D. (2009). Molecular identification and expression of the NMDA receptor NR1 subunit in the leech. Invert. Neurosci. 9, 1120. Hennessey, T. M. and Kung, C. (1984). An anticalmodulin drug, W-7, inhibits the voltage-dependent calcium current in Paramecium caudatum. J. Exp. Biol. 110, 169181. Hui, D., Kumar, K. N., Mach, J. R., Srinivasan, A., Pal, R., Bao, X., Agbas, A., Höfner, G., Wanner, K. T. and Michaelis, E. K. (2009). A rat brain bicistronic gene with an internal ribosome entry site codes for a phencyclidine-binding protein with cytotoxic activity. J. Biol. Chem. 284, 2245-2257. Jennings, H. S. (1906). Behavior of the Lower Organisms. Bloomington, IN: Indiana University Press. Kano, T., Brockie, P. J., Sassa, T., Fujimoto, H., Kawahara, Y., Iino, Y., Mellem, J. E., Madsen, D. M., Hosono, R. and Maricq, A. V. (2008). Memory in Caenorhabditis elegans is mediated by NMDA-type ionotropic glutamate receptors. Curr. Biol. 18, 1010-1015. Kay, J. C. and Kass-Simon, G. (2009). Glutamatergic transmission in hydra: NMDA/D-serine affects the electrical activity of the body and tentacles of Hydra vulgaris (Cnidaria, Hydrozoa). Biol. Bull. 216, 113-125. Kumar, K. N., Babcock, K. K., Johnson, P. S., Chen, X., Eggeman, K. T. and Michaelis, E. K. (1994). Purification and pharmacological and immunochemical characterization of synaptic membrane proteins with ligand-binding properties of Nmethyl-D-aspartate receptors. J. Biol. Chem. 269, 27384-27393. Kumar, K. N., Johnson, P. S., Chen, X., Pal, R., Ahmad, M., Ragland, T., Bigge, C. and Michaelis, E. K. (1998). Cloning of a brain N-methyl-D-aspartate- and D,Lepsilon-2-amino-4-propyl-5-phosphono-3-pentanoic acid (CGP 39653)-binding protein. Biochem. Biophys. Res. Commun. 253, 463-469. Le Roith, D., Shiloach, J., Roth, J. and Lesniak, M. A. (1980). Evolutionary origins of vertebrate hormones: substances similar to mammalian insulins are native to unicellular eukaryotes. Proc. Natl. Acad. Sci. USA 77, 6184-6188. Lerma, J., Zukin, R. S. and Bennett, M. V. (1990). Glycine decreases desensitization of N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses. Proc. Natl. Acad. Sci. USA 87, 2354-2358. Ly, A. M. and Michaelis, E. K. (1991). Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes. Biochemistry 30, 4307-4316. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. and Barker, J. L. (1986). NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321, 519-522. Machemer, H. (1988). Electrophysiology. In Paramecium (ed. H.-D. Görtz), pp. 186215. Berlin: Springer-Verlag. Machemer, H. and Eckert, R. (1973). Electrophysiological control of reversed ciliary beating in Paramecium. J. Gen. Physiol. 61, 572-587. 470 The Journal of Experimental Biology (2014) doi:10.1242/jeb.093914 Mayer, M. L. and Westbrook, G. L. (1987). Permeation and block of N-methyl-Daspartic acid receptor channels by divalent cations in mouse cultured central neurones. J. Physiol. 394, 501-527. Mayer, M. L., Vyklicky, L., Jr and Clements, J. (1989). Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338, 425-427. Michaelis, E. K. (1998). Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54, 369-415. Mori, H. and Mishina, M. (1995). Structure and function of the NMDA receptor channel. Neuropharmacology 34, 1219-1237. Mothet, J. P., Parent, A. T., Wolosker, H., Brady, R. O., Jr, Linden, D. J., Ferris, C. D., Rogawski, M. A. and Snyder, S. H. (2000). D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. USA 97, 4926-4931. Murphy, G. G. and Glanzman, D. L. (1997). Mediation of classical conditioning in Aplysia californica by long-term potentiation of sensorimotor synapses. Science 278, 467-471. Nahum-Levy, R., Lipinski, D., Shavit, S. and Benveniste, M. (2001). Desensitization of NMDA receptor channels is modulated by glutamate agonists. Biophys. J. 80, 2152-2166. Naitoh, Y. (1974). Bioelectric basis of behaviour in protozoa. Am. Zool. 14, 883-893. Naitoh, Y. and Eckert, R. (1973). Sensory mechanisms in Paramecium. II. Ionic basis of the hyperpolarizing mechanoreceptor potential. J. Exp. Biol. 59, 53-65. Nakanishi, S., Masu, M., Bessho, Y., Nakajima, Y., Hayashi, Y. and Shigemoto, R. (1994). Molecular diversity of glutamate receptors and their physiological functions. EXS 71, 71-80. Nam, S. W., Van Noort, D., Yang, Y. and Park, S. (2007). A biological sensor platform using a pneumatic-valve controlled microfluidic device containing Tetrahymena pyriformis. Lab Chip 7, 638-640. Nam, S. W., Kim, S. T., Lee, K. M., Kim, S. H., Kou, S., Lim, J., Hwang, H., Joo, M. K., Jeong, B., Yoo, S. H. et al. (2009). N-Methyl-D-aspartate receptor-mediated chemotaxis and Ca2+ signaling in Tetrahymena pyriformis. Protist 160, 331-342. Neyton, J. and Paoletti, P. (2006). Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J. Neurosci. 26, 1331-1333. Nomura, T., Tazawa, M., Ohtsuki, M., Sumi-Ichinose, C., Hagino, Y., Ota, A., Nakashima, A., Mori, K., Sugimoto, T., Ueno, O. et al. (1998). Enzymes related to catecholamine biosynthesis in Tetrahymena pyriformis. Presence of GTP cyclohydrolase I. Comp. Biochem. Physiol. 120B, 753-760. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462-465. Oami, K. and Takahashi, M. (2002). Identification of the Ca2+ conductance responsible for K+-induced backward swimming in Paramecium caudatum. J. Membr. Biol. 190, 159-165. Oliet, S. H. and Mothet, J. P. (2009). Regulation of N-methyl-D-aspartate receptors by astrocytic D-serine. Neuroscience 158, 275-283. Paoletti, P. and Neyton, J. (2007). NMDA receptor subunits: function and pharmacology. Curr. Opin. Pharmacol. 7, 39-47. Paoletti, P., Ascher, P. and Neyton, J. (1997). High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci. 17, 5711-5725. Pierobon, P., Minei, R., Porcu, P., Sogliano, C., Tino, A., Marino, G., Biggio, G. and Concas, A. (2001). Putative glycine receptors in Hydra: a biochemical and behavioural study. Eur. J. Neurosci. 14, 1659-1666. Pierobon, P., Sogliano, C., Minei, R., Tino, A., Porcu, P., Marino, G., Tortiglione, C. and Concas, A. (2004). Putative NMDA receptors in Hydra: a biochemical and functional study. Eur. J. Neurosci. 20, 2598-2604. Preston, R. R. and Saimi, Y. (1990). Calcium ions and regulation of motility in Paramecium. In Ciliary and Flagellary Membranes (ed. R. A. Bloodgood), pp. 173200. New York, NY: Plenum Publishing Corporation. Preston, R. R. and Usherwood, P. N. R. (1988). L-glutamate-induced membrane hyperpolarization and behavioural responses in Paramecium tetraurelia. J. Comp. Physiol. A 164, 75-82. Ramoino, P., Fronte, P., Beltrame, F., Diaspro, A., Fato, M., Raiteri, L., Stigliani, S. and Usai, C. (2003). Swimming behavior regulation by GABAB receptors in Paramecium. Exp. Cell Res. 291, 398-405. Ramoino, P., Usai, C., Beltrame, F., Fato, M., Gallus, L., Tagliafierro, G., Magrassi, R. and Diaspro, A. (2005). GABAB receptor intracellular trafficking after internalization in Paramecium. Microsc. Res. Tech. 68, 290-295. Ramoino, P., Gallus, L., Beltrame, F., Diaspro, A., Fato, M., Rubini, P., Stigliani, S., Bonanno, G. and Usai, C. (2006). Endocytosis of GABAB receptors modulates membrane excitability in the single-celled organism Paramecium. J. Cell Sci. 119, 2056-2064. Renaud, F. L., Chiesa, R., De Jesús, J. M., López, A., Miranda, J. and Tomassini, N. (1991). Hormones and signal transduction in protozoa. Comp. Biochem. Physiol. 100A, 41-45. Renaud, F. L., Colon, I., Lebron, J., Ortiz, N., Rodriguez, F. and Cadilla, C. (1995). A novel opioid mechanism seems to modulate phagocytosis in Tetrahymena. J. Eukaryot. Microbiol. 42, 205-207. Rose, J. K., Sangha, S., Rai, S., Norman, K. R. and Rankin, C. H. (2005). Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in Caenorhabditis elegans. J. Neurosci. 25, 7159-7168. The Journal of Experimental Biology RESEARCH ARTICLE Rosenegger, D. and Lukowiak, K. (2010). The participation of NMDA receptors, PKC, and MAPK in the formation of memory following operant conditioning in Lymnaea. Mol. Brain 3, 24. Scappaticci, A. A. and Kass-Simon, G. (2008). NMDA and GABAB receptors are involved in controlling nematocyst discharge in hydra. Comp. Biochem. Physiol. 150A, 415-422. Scappaticci, A. A., Jacques, R., Carroll, J. E., Hufnagel, L. A. and Kass-Simon, G. (2004). Immunocytochemical evidence for an NMDA1 receptor subunit in dissociated cells of Hydra vulgaris. Cell Tissue Res. 316, 263-270. Schell, M. J., Brady, R. O., Jr, Molliver, M. E. and Snyder, S. H. (1997). D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J. Neurosci. 17, 1604-1615. Si, A., Helliwell, P. and Maleszka, R. (2004). Effects of NMDA receptor antagonists on olfactory learning and memory in the honeybee (Apis mellifera). Pharmacol. Biochem. Behav. 77, 191-197. Sonneborn, T. M. (1970). Methods in Paramecium research. In Methods in Cell Physiology, Vol. 4 (ed. D. M. Prescott), pp. 241-339. New York, NY: Academic Press. Sonneborn, T. M. (1975). The Paramecium aurelia complex of fourteen sibling species. Trans. Am. Microscop. Soc. 94, 155-178. Tikhonov, D. B. and Magazanik, L. G. (2009). Origin and molecular evolution of ionotropic glutamate receptors. Neurosci. Behav. Physiol. 39, 763-773. Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., Hansen, K. B., Yuan, H., Myers, S. J. and Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405496. The Journal of Experimental Biology (2014) doi:10.1242/jeb.093914 Ucieklak, A., Pechè, J., Łopatowska, A. and Wyroba, E. (1993). Effect of propranolol on the duration of the reversal response in Paramecium octaurelia induced by KCl and BaCl2. Acta Protozool. 32, 27-32. Ultsch, A., Schuster, C. M., Laube, B., Betz, H. and Schmitt, B. (1993). Glutamate receptors of Drosophila melanogaster. Primary structure of a putative NMDA receptor protein expressed in the head of the adult fly. FEBS Lett. 324, 171-177. Van Houten, J. L., Yang, W. Q. and Bergeron, A. (2000). Chemosensory signal transduction in paramecium. J. Nutr. 130 Suppl., S946-S949. Vyklický, L., Jr, Benveniste, M. and Mayer, M. L. (1990). Modulation of N-methyl-Daspartic acid receptor desensitization by glycine in mouse cultured hippocampal neurones. J. Physiol. 428, 313-331. Watkins, J. and Collingridge, G. (1994). Phenylglycine derivatives as antagonists of metabotropic glutamate receptors. Trends Pharmacol. Sci. 15, 333-342. Williams, K., Russell, S. L., Shen, Y. M. and Molinoff, P. B. (1993). Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron 10, 267-278. Wu, C. L., Xia, S., Fu, T. F., Wang, H., Chen, Y. H., Leong, D., Chiang, A. S. and Tully, T. (2007). Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat. Neurosci. 10, 1578-1586. Wyroba, E. (1989). β-adrenergic stimulation of phagocytosis in the unicellular eukaryote Paramecium aurelia. Cell Biol. Int. Rep. 13, 667-678. Xia, S., Miyashita, T., Fu, T. F., Lin, W. Y., Wu, C. L., Pyzocha, L., Lin, I. R., Saitoe, M., Tully, T. and Chiang, A. S. (2005). NMDA receptors mediate olfactory learning and memory in Drosophila. Curr. Biol. 15, 603-615. Zukin, R. S. and Bennett, M. V. L. (1995). Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci. 18, 306-313. The Journal of Experimental Biology RESEARCH ARTICLE 471
© Copyright 2026 Paperzz