HOMEWORK #2 – SOLUTIONS Page 877 8) ⎛ 1 + y2 ⎞
⎛ 1⎞
lim ln ⎜ 2
= ln ⎜ ⎟ = 0 ⎟
( x,y )→(1,0 ) ⎝ x + xy ⎠
⎝ 1⎠
10) x 2 + sin 2 y
0
lim
⇒
indeterminate form.
( x,y )→( 0,0 ) 2x 2 + y 2
0
2
⎛ sin 2 y ⎞ ⎛ sin y ⎞
sin y
Path along x = 0 : ⎜ 2 ⎟ = ⎜
; lim
=1
⎟
⎝ y ⎠ ⎝ y ⎠ y→0 y
⎛ x2 ⎞ 1
1 1
Path along y = 0 : ⎜ 2 ⎟ = ; lim = ≠ 1
⎝ 2x ⎠ 2 x→0 2 2
14) ∴ the limit DNE.
(
)(
)
x 2 − y2 x 2 + y2
x 4 − y4
lim
= lim
=
( x,y )→( 0,0 ) x 2 + y 2
( x,y )→( 0,0 )
x 2 + y2
lim x 2 − y 2 = 0
( x,y )→( 0,0 )
16) x 2 sin 2 y
0
lim
⇒
( x,y )→( 0,0 ) x 2 + 2y 2
0
x 2 sin 2 y
By the Squeeze Theorem, 0 ≤ 2
≤ sin 2 y 2
x + 2y
x 2 sin 2 y
lim sin y = 0 ⇒ lim
=0
y→0
( x,y )→( 0,0 ) x 2 + 2y 2
2
30) F ( x, y ) =
x−y
is continuous on R 2 . 2
2
1+ x + y
34) 40) (
G ( x, y ) = tan −1 ( x + y )
( x + y )−2
)
is a rational function that is continuous on R 2
except x + y = 0. The inverse tan is continuous everywhere.
∴ G is continuous on its domain, D = {( x, y ) : y ≠ −x} .
lim
( x,y )→( 0,0 )
−2
(x
2
lim+ r 2 ln r 2
r→0
) (
)
+ y 2 ln x 2 + y 2 =
( indeterminate form )
ln r 2 H
lim
= lim+
r→0 + 1
r→0
r2
( 1r )(2r ) = lim (−r ) = 0
2
−2
2
r3
Page 889 16) f ( x, y ) = x 4 y 3 + 8x 2 y
20) 26) ∂f
= 4x 3 y 3 + 16xy
∂x
∂f
= 3x 4 y 2 + 8x 2
∂y
z = tan xy
∂z
= sec 2 xy ⋅ y = y sec 2 xy ∂x
∂z
= sec 2 xy ⋅ x = x sec 2 xy
∂y
r→0 +
( )
f ( x,t ) = arctan x t
1
⋅ t
1 + x2t
1
1 − 12
x
ft ( x,t ) =
⋅
xt
=
1 + x2t 2
2 t 1 + x2t
fx ( x,t ) =
(
28) x
)
( )
f ( x, y ) = ∫ cos t 2 dt
y
∂
fx ( x, y ) =
cos t 2 dt = cos x 2 by the Fundamental
∫
∂x y
x
( )
( )
Theorem of Calculus.
∂
fy ( x, y ) =
cos t 2 dt = − cos y 2
∫
∂y y
x
( )
( )
34) u=x
y
z
∂u y y z −1
= x
∂x z
42) y
y
∂u
1 x z
z
= x ⋅ ln x ⋅ =
ln x
∂y
z
z
y
( −y ) −yx
∂u
= x z ⋅ ln x ⋅ 2 =
∂z
z
z2
y
z
ln x
f ( x, y, z ) = sin 2 x + sin 2 y + sin 2 z
fz ( x, y, z ) =
1
2 sin 2 x + sin 2 y + sin 2 z
sin z cos z
sin 2 x + sin 2 y + sin 2 z
π⎞
⎛
fz ⎜ 0, 0, ⎟ =
⎝
4⎠
46) ⋅ 2 sin z cos z =
⇒
2
2
2⋅
2 = 2
2
2
0+0+
4
yz = ln ( x + z )
y
∂z
1 ⎛
∂z ⎞
∂z
1 ∂z
1
=
⋅ ⎜1 + ⎟ ⇒ y −
=
⇒ ∂x x + z ⎝
∂x ⎠
∂x x + z ∂x x + z
1 ⎞ ∂z
1
∂z
1
⎛
=
⇒
=
⎜⎝ y −
⎟⎠
x + z ∂x x + z
∂x y ( x + z ) − 1
y
∂z
1 ∂z
1 ⎞ ∂z
⎛
+z=
⋅ ⇒⎜y−
= −z ⇒
⎟
∂y
x + z ∂y ⎝
x + z ⎠ ∂y
−z ( x + z )
∂z
=
∂y y ( x + z ) − 1
54) v=
xy
x−y
∂v ( x − y ) ⋅ y − xy (1)
−y 2
=
=
∂x
( x − y )2
( x − y )2
∂2 v y2 ⋅ 2 ( x − y )
2y 2
=
=
∂x 2
( x − y )4
( x − y )3
(
2
−2y ( x − y ) − 2y ( x − y )
2
2
( x − y)
−2xy
=
a) Tx =
−2y ( x − y ) ⎡⎣( x − y ) + y ⎤⎦
( x − y)
4
=
∂v
also. ∂x∂y
2
60
1 + x 2 + y2
4
=
( x − y)
∂v ( x − y ) ⋅ x − xy ( −1)
x2
=
=
∂y
( x − y )2
( x − y )2
∂ 2 v −x 2 ⋅ 2 ( x − y ) ( −1)
2x 2
=
=
∂y 2
( x − y )4
( x − y )3 3
80) T ( x, y ) =
)
2
∂ 2 v ( x − y ) ( −2y ) − −y 2 ( x − y ) ( −1)
=
=
∂y∂x
( x − y )4
b) Ty =
−60 ( 2x )
(1 + x
2
+ y2
−60 ( 2y )
(1 + x
2
+ y2
)
)
2
2
−240
20 C
⇒ Tx ( 2,1) =
=−
36
3 m
−120
10 C
⇒ Ty ( 2,1) =
=−
36
3 m
© Copyright 2026 Paperzz