Self-gravitating system made of axions Juan Barranco Argelia Bernal The Invisible Universe, Paris 2009 Self-gravitating system made of axions – p. 1 Plan of the talk 1. Motivation 2. Boson stars • Generalities • Self-interaction 3. Towards a realistic axion star 4. Axion Star 5. Discussion and conclusions Self-gravitating system made of axions – p. 2 1.Motivation Gµν = 8πGTµν Self-gravitating system made of axions – p. 3 1. Motivation M. Taoso, G. Bertone and A. Masiero, arXiv:0711.4996 [astro-ph] The axion is still a good candidate!! Self-gravitating system made of axions – p. 4 1. Motivation The axion • Real scalar field • Its properties have been constrained: 1010 GeV ≤ fa ≤ 1012 GeV 10−5 eV ≤ m ≤ 10−3 eV • At late stages of the evolution of the universe it acquires an non-vanishing potential energy density φ 2 2 V (φ) = m fa 1 − cos fa Self-gravitating system made of axions – p. 5 2. Boson stars Boson stars (BS) are gravitationally bounded systems made of scalar particles. Two different approaches: • • A complex, classical scalar field D.J. Kaup, Klein-Gordon Geon Phys. Rev.172 , 1331 Quantized real scalar fields R. Ruffini and S. Bonazzola, Systems of selfgravitating particles in general relativity and the concept of an equation of state, Phys. Rev. 187, 1767 (1969). Both are equivalent (at least without self-interactions) A small review: Gµν Tµν =⇒ T̂µν =⇒ hQ|T̂µν |Qi « „ dV φ̂ = 0 , = 8πG < T̂µν > , 2− dφ̂2 ” X“ − + +iEn t −iEn t l∗ l + µlmn Rnl (r)Ym (θ, ψ)e µlmn Rnl (r)Ym (θ, ψ)e φ → φ̂ = lmn with the commutation relations − − + [µ+ lmn , µl′ m′ n′ ] = [µlmn , µl′ m′ n′ ] = 0 , − [µ+ lmn , µl′ m′ n′ ] = δll′ δmm′ δnn′ . Self-gravitating system made of axions – p. 6 2. Boson stars • |Qi = |N, 0, 0, 0i is an state for which all the N particles are in the ground state The ground state l = m = 0 (real since φ̂ = φ̂† ) −iE1 t +iE1 t φ̂ = µ+ + µ− 100 R10 (r)e 100 R10 (r)e hQ|T00 |Qi = hQ|T11 |Qi = ′′ + Rln „ B′ »„ 2 « ′2 – E1 R 1 2 2 ~ N + m2 R10 + 10 − 2m B A »„ 2 « ′2 – E1 R 1 2 2 ~ N − m2 R10 + 10 2m B A A′ 2 + − r 2B 2A « ′ +A Rnl " 2 Enl B − m2 − # l(l + 1) Rln = 0 r2 A Quantized real scalar fields yields to Boson stars and not to oscillatons Self-gravitating system made of axions – p. 7 2. Boson stars « ′2 – σ 1 + 1 σ2 + − B A « „ « »„ ′2 – 1 1 σ B′ 1 − 2 1− − 1 σ2 + − ABx x A B A « – »„ „ ′ ′ « B A 1 1 + − −1 σ σ′ + A σ ′′ + x 2B 2A B 1 A′ + A2 x x2 definitions x = rm, R10 = „ 1 1− A √1 σ, 4πG « »„ = 0, = 0, = 0 B = E12 B Boundary Conditions • • • 0.06 0.05 σ (0)=0.05 σ (x) 0.04 0.03 0.02 Flat geometry at infinity Arbitrary σ(0) » – 2 mpl 1 1 M = xmax 1 − 2 A(xmax ) m In the Newtonian limit ρ(x) = |σ(x)|2 0.01 0 0 Regular at origin 10 20 x 30 40 50 Self-gravitating system made of axions – p. 8 2. Boson stars: self-interaction M. Colpi, S. L. Shapiro and I. Wasserman, Phys. Rev. Lett. 57 (1986) 2485. Tµν = 1 1 λ (∂µ Φ∂ν Φ∗ + ∂µ Φ∗ ∂ν Φ) − gµν (g αβ ∂α Φ∂β Φ∗ + m2 |Φ|2 + |Φ|4 ) . 2 2 2 Λ= λMp2 4πm2 « ′2 – σ 1 Λ + 1 σ2 + σ4 + − B 2 A « „ « »„ ′2 – Λ σ B′ 1 1 1 − 2 1− − 1 σ2 − σ4 + − ABx x A B 2 A « « »„ „ – ′ ′ B A 1 1 + − − 1 σ − Λσ 3 σ′ + A σ ′′ + x 2B 2A B A′ 1 + A2 x x2 „ 1 1− A « »„ = 0, = 0, = 0 Self-gravitating system made of axions – p. 9 2. Boson stars: self-interaction Mmax 2 M p ≈ 0.22Λ1/2 m Inclusion of the potential can drastically change the Boson Stars characteristics Self-gravitating system made of axions – p. 10 3. Towards an axion star V (φ) = m2 fa2 1 1 V (φ) ∼ m2 φ2 − 2 4! 1 − cos m fa φ fa 1 m2 6 φ + φ − ... 4 6! fa 4 V (φ) → hQ|V (φ̂)|Qi φ̂ = µ+ R(r)e−iE1 t + µ− R(r)e+iE1 t µ|Qi = 0 hQ|φ̂2 |Qi = R2 hQ|φ̂4 |Qi = 2R4 hQ|φ̂6 |Qi = 5R6 Self-gravitating system made of axions – p. 11 4. Results x = rm , A′ 1 σ, R= √ 4πG 2 mp 1 Λ= 24π fa E2 B → 2B m 2 ′2 Λ 6 1 σ 1 1 2 2Λ 4 + 2 1− − +1 σ − σ + + σ = 0, 2 A x x A B 2 A 2 ′2 ′ 2 1 1 1 B Λ 4 σ Λ 6 2 − 2 1− − − 1 σ +2 σ + − σ = 0, ABx x A B 2 A 2 ′ ′ 3 2 5 B A 1 1 ′′ ′ 3 σ + + − σ +A − 1 σ+2Λσ − Λ σ = 0 x 2B 2A B 2 Self-gravitating system made of axions – p. 12 4.Results 2 M[mp /ma] 0.15 0.1 Λ =40 Λ =60 Λ =80 Λ =100 0.05 0 0.01 0.02 0.03 σ(0) 0.04 0.05 0.07 0.06 Mass of a boson star as a function of the central value of the scalar field. Self-gravitating system made of axions – p. 13 4. Results 150 0.014 0.012 R99 0.01 2M/R99 Λ =40 Λ=60 Λ=60 Λ=100 100 0.008 0.006 Λ =40 Λ =60 Λ =80 Λ =100 50 0.004 0.002 0 0 0.01 0.02 0.03 0.04 σ(0) 0.05 0.06 0 0.01 0.02 0.03 σ(0) 0.04 0.05 0.06 As Λ → ∞, 2M/R99 → 0: Newtonization Self-gravitating system made of axions – p. 14 4. φ4 vs φ6 » „ «– φ V (φ) = m2 fa2 1 − cos fa 0.2 4 Up to φ 6 Up to φ M[mp2/ma] 0.15 0.1 0.05 0 0 0.01 0.02 0.03 0.04 σ(0) 0.05 0.06 0.07 Self-gravitating system made of axions – p. 15 5. What about the actual axion values? 1010 GeV ≤ fa ≤ 1012 GeV 10−5 eV ≤ m ≤ 10−3 eV 1 Λ= 24π „ mp fa «2 ∼ 1013 − 1017 Self-gravitating system made of axions – p. 16 5. What about the actual axion values? 1010 GeV ≤ fa ≤ 1012 GeV 10−5 eV ≤ m ≤ 10−3 eV 1 Λ= 24π „ mp fa «2 ∼ 1013 − 1017 "„ „ «2 « 1 R′2 1 E2 m2 4 4π 2 + 2 1− +m R + + − − 2 A2 r r A mp B 4fa2 A « « »„ 2 „ 1 E R′2 m2 4 4π 1 B′ 2 2 − 2 1− −m R + R + − − 2 ABr r A mp B 4fa2 A „ « »„ 2 ′ ′ « 1 B A m2 3 E ′′ 2 ′ R + + − −m R+ 2 R − R +A r 2B 2A B fa A′ 6 R 4 72fa # = 0, m2 6 R 72fa4 – = 0, m2 5 R 24fa4 – = 0 m2 Self-gravitating system made of axions – p. 16 5. What about the actual axion values? 1010 GeV ≤ fa ≤ 1012 GeV 10−5 eV ≤ m ≤ 10−3 eV 1 Λ= 24π „ mp fa «2 ∼ 1013 − 1017 "„ „ «2 « 1 R′2 1 E2 m2 4 4π 2 + 2 1− +m R + + − − 2 A2 r r A mp B 4fa2 A « « »„ 2 „ 1 E R′2 m2 4 4π 1 B′ 2 2 − 2 1− −m R + R + − − 2 ABr r A mp B 4fa2 A „ « »„ 2 ′ ′ « 1 B A m2 3 E ′′ 2 ′ R + + − −m R+ 2 R − R +A r 2B 2A B fa A′ fa R = √ σ, m mp r= fa r m x, 4π 6 R 4 72fa # = 0, m2 6 R 72fa4 – = 0, m2 5 R 24fa4 – = 0 m2 4πfa2 α= 2 mp m Self-gravitating system made of axions – p. 16 4. Results fa R = √ σ, m mp r= fa r m x, 4π 4πfa2 α= 2 mp m A(x) = 1 − a(x) « 4 ′2 6– 1 mσ σ σ + 1 m2 σ 2 − +α + B 4 (1 − a) 72 »„ « 4 ′2 6– 1 mσ σ σ aB − (1 − a)Bx − 1 m2 σ 2 + +α − B′ + x B 4 (1 − a) 72 „ « « »„ ′ ′ 3 5– 2 B a mσ σ 1 σ ′′ + + + − 1 m2 σ + − σ ′ + (1 − a) x 2B 2(1 − a) B 3 24 a(1 + a) + (1 − a)2 x a′ + x »„ = 0, = 0, = 0 Self-gravitating system made of axions – p. 17 4. Results 0 0.00025 -5e-14 a(x) σ(x) 0.0002 0.00015 -1e-13 0.0001 -1.5e-13 5e-05 0 0 500 1000 x 1500 -2e-13 0 2000 mp r= fa r 500 1000 x 1500 2000 m x 4π for m = 10−5 eV r = 3.84−3 (meters)×x and „ 1 M = 4.83 × 1024 Kg 1 − A « → M = 2.4 × 1013 Kg ∼ 10−17 M⊙ Self-gravitating system made of axions – p. 18 Is it bad? 30 Mini MACHOS Forbidden because of dynamical instability Forbidden because of MACHO Microlensing 25 log10 t/ys Rich Larg 20 ter e Ga rf G 15 10 15 laxy Dwa 10 Clus Forbidden because of arguments on massive BHs Mo 10 12 Mo alax y 1 8 0 M o t = 13.7 Gyr Forbidden because of gravothermal instability 5 0 -8 -6 -4 -2 0 2 4 6 log10 m/Mo X. Hernandez, T. Matos, R. A. Sussman and Y. Verbin, Phys. Rev. D 70, 043537 (2004) Self-gravitating system made of axions – p. 19 5. Conclusions • We have constructed the self-gravitating system made of axion-like particles. For the present values of ma and fa , they should have very small masses and should be meter-size objects. • implications? • stability Self-gravitating system made of axions – p. 20
© Copyright 2025 Paperzz