Math 2263 Multivariable Calculus Homework 25: 16.3 #8, 16 July 20, 2011 16.3#8 Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f , where F (x, y) = (xy cos xy + sin xy)i + (x2 cos xy)j. ∂P = xy(− sin xy)(x) + cos xy(x) + cos xy(x) ∂y = −x2 y sin xy + 2x cos xy ∂Q = x2 (− sin xy)(y) + 2x cos xy ∂x Since ∂P = ∂Q , the field is conservative. ∂y ∂x Looking at the first term, we have ∂f = xy cos xy + sin xy ∂x and from the second term, we have ∂f = x2 cos xy ∂y From this second equation, we have f (x, y) = x sin xy + . . . . Check the partial with respect to x. ∂ (x sin xy) = x cos xy(y) + sin xy ∂x This shows that f (x, y) = x sin xy satisfies ∇f = F . 16.3#16 R (a) Find a function f such that F = ∇f and (b) use part (a) to evaluate C F · dr along the given curve C. F (x, y, z) = (2xz + y 2 )i + 2xyj + (x2 + 3z 2 )k, C : x = t2 , y = t + 1, z = 2t − 1, 0 ≤ t ≤ 1 (a) fx = 2xz + y 2 ⇒ f (x, y, z) = x2 z + xy 2 + . . . fy = 2xy ⇒ f (x, y, z) = xy 2 + . . . fz = x2 + 3z 2 ⇒ f (x, y, z) = x2 z + z 3 + . . . Together, f (x, y, z) = xy 2 + x2 z + z 3 . We may check this: ∇f (x, y, z) = hy 2 + 2xz, 2xy, x2 + 3z 2 i (b) Z Z ∇f · dr = f (r(1)) − f (r(0)) F · dr = C C = f (1, 2, 1) − f (0, 1, −1) 2 1 3 3 = 1(2) + 1 (1) + (1) − 0 + 0 + (−1) = 6 − (−1) = 7
© Copyright 2026 Paperzz