Chemical pattern forming systems Autocatalysis k1 A X 2X •Reaction diffusion equation •Autocatalysis Constant k 1 AX ∂X ∂t •Belousov Zhabotinskii •Turing patterns X X 0 e Ak 1 t Burning Free radicals Life Offspring Chemical oscillations (0-D) (Lotka) Chemical oscillations (0-D) (Lotka) k1 A X 2X k2 X Y 2Y k3 YBED ∂X ∂t k 1 AX − k 2 XY ∂X ∂t k 1 AX − k 2 XY ∂Y ∂t k 2 XY − k 3 BY ∂Y ∂t k 2 XY − k 3 BY 10 Fox Rabbit 9 dr dt r − rf df dt −f rf 8 7 animals 6 ∂X ∂t ∂Y ∂t Steady state solutions X 0, Y 0 X k 3B k2 k 1A k2 , Y k 1 AX − k 2 XY ≃ k 1 AX k 2 XY − k 3 BY ≃ −k 3 BY Y 5 4 3 (0,0) 2 X Saddlepoint instability 1 0 0 100 200 300 400 500 time Chemical oscillations (0-D) (Lotka) ∂X ∂t k 1 AX − k 2 XY ∂Y ∂t k 2 XY − k 3 BY XX X X − ∂X ∂t ∂Y ∂t k 3B k2 Steady state solutions X 0, Y 0 , and Y YY −k 3 BY k 1 AX k 3B , k2 k 1A k 1A −Yk k 2 2 X ∂ 2 X ∂t 2 k 3B k 1A k2 −k 3 B ∂Y −k 3 Bk 1 AX ∂t Xt C 1 sint C 2 cos t Yt Y Chemical oscillations (0-D) (Lotka) Xt C 1 sin t C 2 cos t k 1 k 3 AB Yt k 3B C 2 sin t − C 1 cos t sint sint cos cos t sin C ′1 sint C ′2 cos t − cost − cos t cos sint sin − C ′1 cos t C ′2 sint Xt a sint Yt −a kB cost Y 3 k 3B k2 , k 1A k2 X k 1 k 3 AB C 2 sin t − C 1 cos t 1 Lotka: large deviations from static equilibrium ∂X ∂t k 1 AX − k 2 XY u logX ∂Y ∂t k 2 XY − k 3 BY v logY ∂e u ∂t ∂e v ∂t X eu or Y ev k 1 Ae u − k 2 e u e v k 2 e u e v − k 3 Be v ∂u ∂t ∂v ∂t ∂ loge u ∂t ∂ loge v ∂t 1 ∂e u e u ∂t k1A − k2e v 1 ∂e v e v ∂t k2e u − k3B V∈R 2.5 2 2. 04 ki 1 V 2. 2 k1A − k2ev k2e u − k 3B ∂u ∂t ∂v ∂t k 2 e u − k 3 B k 1 A − k 2 e v k 2 e u − k 3 B ∂u ∂t k 2 e u − k 3 B − k 1 A − k 2 e v k 2 e u − k 3 Bk 1 A − k 2 e v ∂v ∂t k 1 A − k 2 e v 0 k 2 e u − k 3 Bu − k 1 Av − k 2 e v V const 3 2. 01 ∂u ∂t ∂v ∂t k 2 e u − k 3 Bdu − k 1 A − k 2 e v dv 0 Lotka: large deviations from static equilibrium k 2 e u − k 3 Bu − k 1 Av − k 2 e v V const u log X k 2 X − k 3 B logX − k 1 AlogY k 2 Y V v log Y Lotka: large deviations from static equilibrium Y1.5 Belousov Zhabotinski reaction 1. Make 4 bottles with 100 ml H 2 O each and add to bottle... 2. 80 ml H 2 SO4 3. 0.28 grams of Cerium(III)sulfate octahydrate 4. 5.9 gram Potassiumbromate 5. 12.5 gram Malonic acid Take equal portions Add ferroin 1 2. 5 0.5 2. 8 0 0.5 1 1.5 X 2 2.5 3 BZ: reactions The twenty reactions taking place are (D. Edelson, R.J. Field and R.M. Noyes, Int. J. Chem. Kinetics 7 (1975) 417): R1 Br − 2 H BrO −3 → HOBr HBrO2 R2 Br − HBrO2 H → 2 HOBr R3 Br − HOBr H → Br 2 H 2 O R4 H CH 2 (COOH) 2 → (OH) 2 CCHOOH H R5 Br 2 (OH) 2 CCHOOH → H Br − BrCH(COOH) 2 R6 HOBr (OH) 2 CCHOOH → H 2 O BrCH(COOH) 2 R7 HBrO2 BrO 3− H → 2BrO 2 H 2 O R8 BrO 2 Ce(III) H → Ce(IV) HBrO2 R9 Ce(IV) BrO 2 H 2 O → BrO −3 2 H Ce(III) R10 2HBrO 2 → HOBr BrO −3 H R11 Ce(IV) CH 2 (COOH) 2 → CH(COOH) 2 Ce(III) H R12 CH 2 (COOH) 2 Ce(IV) H 2 O → HOCH(COOH) 2 Ce(III) H R13 Ce(IV) BrCH(COOH) 2 H 2 O → Br − HOC(COOH) 2 Ce(III) H R14 CH(COOH) 2 BrCH(COOH) 2 H 2 O → HOC(COOH) 2 CH 2 (COOH) 2 Br − H R15 HOC(COOH) 2 Ce(IV) → OC(COOH) 2 Ce(III) H R16 HOC(COOH) 2 BrCH(COOH) 2 H 2 O → HOCH(COOH) 2 Br − HOC(COOH) 2 H R17 Ce(IV) HOCH(COOH) 2 → HOC(COOH) 2 Ce(III) H R18 Ce(IV) OC(COOH) 2 → OC(COO)(COOH) Ce(III) H R19 OC(COO)(COOH) Ce(IV) H 2 O → HCOOH Ce(III) H 2 CO 2 R20 OC(COO)(COOH) BrCH(COOH) 2 H 2 O → HOC(COOH) 2 OC(COOH) 2 H NB The BrO 2 is a radical, sometimes written as BrO 2∙ . BZ: reactions in time BrO −3 BrO −3 2 Br − 3 MA → 3 BrMA 4 Ce(III) MA → BrMA 4 Ce(IV) BrMA Ce(IV) → Br − Ce(III) Br − stops 2nd reaction is autocatalytic: fast 3rd reaction is slow 2 BZ differential equations y A P y x x k2 y x → 2P k2 y x → 2P P Br − HBrO2 →2 HOBr (R2) k1 yA →Px k1 yA →Px x Br − BrO −3 →HOBr HBrO2 (R1) BZ differential equations k3 A x x Az → 2x 2z k3 x P z k4 k5 y z→y − k5 z→y Ce(IV) BrCHCOOH 2 → Br HOCCOOH 2 CeIII (R13) z k 3x − k 5z 2x → P A k4 2x → P A A 2 HBrO2 →HOBrBrO −3 (R10) ẏ −k 1 y − k 2 xy k 5 z x A → 2x 2z 2(R8)(R7) HBrO2 BrO −3 2 Ce(III)→2 HBrO2 2 Ce(IV) ẋ k 1 y − k 2 xy k 3 x − 2k 4 x 2 Autocatalytic “Oregonator” Nicolis & Prigogine BZ stability analysis ẋ k 1 y − k 2 xy k 3 x − 2k 4 x 2 ẏ −k 1 y − k 2 xy k 5 z z k3x − k5z stable solution ẋ ẏ z 0 k z k3 x 5 Eq1 − Eq2 − Eq3 0 2k 1 y − 2k 4 x 2 BZ stability analysis ẋ k 1 y − k 2 xy k 3 x − 2k 4 x 2 ẏ −k 1 y − k 2 xy k 5 z z k3x − k5z stable solution ẋ ẏ z 0 k z k3 x 5 Eq1 − Eq2 − Eq3 0 2k 1 y − 2k 4 x 2 2 y k 4 kx With ẋ 0 in (Eq1) 1 0 − k4x2 − k2x3 ẋ − 2k1 ẏ − 2k1 1 x0 k1 2k 2 k 4 k1 2k 2 k 4 2 y k 4 xk z k3 k5 1 x k3x BZ stability analysis BZ stability analysis k 2 0 − k4x − k2x3 k4 k3x x0 k4 k1 4 4 k2 k2 −3k 4 k 1 Bk 2 k 4 k 1 k 4k 1 4k 2 k 3 Bk 2 − 3Ak 24 k 1 3Ak 4 k 1 k 4 k 4 k 1 4k 2 k 3 2Ak 22 k 4B 4A2 k 2 k 24 k 4 k 1 Bk 2 k 4 k 1 k 4 k 1 4k 2 k 3 Bk 2 Ak 42 k 1 − Ak 4 k 1 k 4 k 4 k 1 4k 2 k 3 2Ak 2 k 4 k 3 2Ak 22 k 4 B − 2k 2 k 4 Ck 5 z k 3 A − Ck 5 This can be unstable −k 4 k 24 4k 2 k 3 k 4 /k 1 The whole set has 8 parameters and 3 conditions, so that can always be arranged (the other solution would give x0 < 0) −k 4 k 24 4k 2 k 3 k 4 /k 1 k4 k1 k3 k5 − 2kk 1 2 k − 2k1 2 1 2k 2 k 4 1 2k 2 k 4 Full analysis: Murray, J.Chem.Phys. 61 (1974) 3610 A k 24 k 21 4k 2 k 4 k 3 k 1 k 24 k 21 4k 2 k 4 k 3 k 1 2 B C In: ẋ k 1 y − k 2 xy k 3 x − 2k 4 x 2 ẏ −k 1 y − k 2 xy k 5 z z k 3x − k5 z Field & Noyes J.Chem.Phys. 60 (1974) 1877 3 BZ experimental stability BZ patterns (1-D) BZ patterns (2-D) Chemical pattern formation (2-D) Reaction diffusion systems cf. biological patterns Turing 1952 CIMA (chloride-iodine-malonic acid-starch) Liesegang bands NH4 OH Agate K 2 CrO4 +gel •Supersaturation •Precipitation Swinney •Depletion 4 20 cm 10 cm Stalactites reaction diffusion waterflow PRL 94, 018501 (2005) 5
© Copyright 2026 Paperzz