微乙小考六 (2015/12/24) 1. (7分) 求下列曲線圍成區域的面積 y = 3 sin x, y = sin 2x, − π π ≤x≤ . 2 2 sol: Z π/2 Z 0 Z |sin2x − 3sinx|dx = A= −π/2 π/2 (sin2x − 3sinx)dx + −π/2 (3sinx − sin2x)dx 0 1 1 π/2 = (− cos2x + 3cosx)|0−π/2 + (−3cosx + cos2x)|0 = 4 2 2 2. (7分) 計算由曲線 x = 4y 2 − 2, x = 2y 2 , y = 0 所圍成區域對 x 軸旋轉所得的旋轉體體積。 sol: x = 4y 2 − 2 and x = 2y 2 intersects at (x, y) = (2, ±1), and the rotating volume with respect to x axis = volume rotated by x = 4y 2 − 2 with x axis (V1) minus the volume rotated by x = 2y 2 with x axis (V2). x+2 x = 4y 2 − 2 ⇒ y 2 = 4 Z 2 x+2 V1= π( )dx = 2π 4 −2 x x = 2y 2 ⇒ y 2 = 2 Z 2 x π( )dx = π V2= 2 0 V = V 1 − V 2 = 2π − π = π 3. (6分) 求 ln(3 − 2x) 的 n-次泰勒多項式;須寫出一般項的表式。 sol: x2 x3 xn + + ... + + ...) 2 3 n 2x 2x ln(3 − 2x) = ln[3(1 − )] = ln3 + ln(1 − ) 3 3 2x 2 2x 3 2x n ( ) ( ) 2x ( ) = ln3 − ( + 3 + 3 + ... + 3 + ...) 3 2 3 n 2 ∞ ( )n xn X 3 = ln3 − n n=1 ln(1 − x) = −(x + 1
© Copyright 2025 Paperzz