MATH 263A, SUMMER I, 2005, SOLUTION OF MIDTERM 2 1. Find derivative of each function: (a) (4 points) f (x) = cotx ¡ sinx x¡1 . SOLUTION: f 0 (x) = ¡csc2 x ¡ [ (cosx)(x¡1)¡(sinx)(1) ]. (x¡1)2 (b) (4 points) f(x) = tan(x2 + 2x ¡ 1) + ex 2 +3x . 2 SOLUTION: f 0 (x) = [sec2 (x2 + 2x ¡ 1)][2x + 2] + ex +3x (2x + 3). 2 Hence f 0 (x) = (2x + 2)sec2 (x2 + 2x ¡ 1) + (2x + 3)ex +3x : (c) (4 points) f (x) = cscx + secx ¡ ex sinx. SOLUTION: f 0 (x) = ¡cscxcotx + secxtanx ¡ [ex sinx + ex cosx]: (d) (4 points) f(x) = cot¡1 x + 3sec¡1 (2x). 1 1 p1 SOLUTION: f 0 (x) = ¡ 1+x (2) = ¡ 1+x 2 + (3) 2 + 2x 4x2 ¡1 p 3 : x 4x2 ¡1 (e) (4 points) f (x) = sin(cos(tan(x))). SOLUTION: f 0 (x) = cos(cos(tanx))):(¡sin(tanx)):(sec2 x): (f) (4 points) f (x) = ln(sin(x2 + 2x ¡ 1)). SOLUTION: f 0 (x) = 2. Find dy dx 1 :[cos(x2 sin(x2 +2x¡1) + 2x ¡ 1)]:(2x + 2): from each equation below. (a) (4 points) xy = sin(xy) + xy 2 . dy dy 2 SOLUTION: y + x dx = cos(xy):[y + x dy dx ] + (y + 2xy dx ) ) dy dy dy dy y + x dx = ycos(xy) + xcos(xy) dx + y 2 + 2xy dx : Hence [x ¡ xcos(xy) ¡ 2xy] dx = 2 y ¡ y + ycos(xy): Therefore, dy y 2 ¡ y + ycos(xy) = : dx x ¡ xcos(xy) ¡ 2xy (b) (4 points) xy 3 = 4x + y 2 ¡ xy. Hence dy dy dy dy SOLUTION: y 3 +3xy 2 dx = 4+2y dx ¡(y+x dx ) ) (3xy 2 ¡2y+x) dx = 4¡y¡y 3 . dy 4 ¡ y ¡ y3 = : dx 3xy 2 ¡ 2y + x Typeset by AMS-TEX 1 2 (c) (4 points) cos(siny) = xcoty. dy SOLUTION: ¡sin(siny)cosy:( dx ) = coty + x:(¡csc2 y):( dy dx ) ) dy coty = : 2 dx xcsc y ¡ sin(siny)cosy 3. (6 points) The altitude of a triangle is increasing at a rate of 2 ft/min while its area is increasing at a rate of 5 f t2 =min: At what rate does the base of the triangle changing when the altitude is 12 ft and the area is 120 f t2 ? SOLUTION: Let's denote by h the altitude, and x the base of the triangle. Then the area A is 1 A = hx: 2 We know that A; h and x are functions of the time t. Hence dA 1 dh 1 dx = x + h : dt 2 dt 2 dt Now for h = 12,then A = 120. Hence from the above formula we get x = dh Moreover at this situation, dA dt = 5; dt = 2. Thus (120):(2) 12 = 20. (5):(2) ¡ (20):(2) ¡30 dx = = = ¡2:5: dt 12 12 The rate of change of the base at this situation is ¡2:5 feet per minute. 4. Find the absolute maximum and absolute minimum each function on a given interval. (a) (4 points) f (x) = x3 ¡ 6x2 + 9x + 4 on [0, 4]. SOLUTION: f 0 (x) = 3x2 ¡12x+9, hence the critical numbers are x = 1; x = 3. These are in [0, 4]. Now we evaluate f (x) at x = 0; 1; 3; 4 to get the answers: f (0) = 4; f (1) = 8; f (3) = 4; f(4) = 8. Answer: Absolute maximum is 8, and absolute minimum is 4 (on the interval [0, 4]). (b) (4 points) f (x) = 3x x2 +1 on [0, 3]. SOLUTION: Notice that x2 + 1 is never zero, so f (x) is continuous everywhere 2 +1)¡(3x)(2x) on (¡1; 1). f 0 (x) = (3)(x (x . Set f 0 (x) = 0 ) (3)(x2 + 1) ¡ (3x)(2x) = 0 ) 2 +1)2 ¡3x2 + 3 = 0 ) x = 1 or ¡ 1. These are critical numbers of f (x), but ¡1 is not in [0, 3], so we need to evaluate f(x) at 0, 1, and 3 to get the answers: f (0) = 0; f (1) = 3 9 2 ; f (3) = 10 . Hence on [0, 3] absolute minimum of f(x) is 0, absolute maximum is 1.5 .
© Copyright 2026 Paperzz