6.3 Binomial Radical Expressions Name: Like Radicals: Example 1

6.3 Binomial Radical Expressions
Name:
Like Radicals:
Example 1: Adding and Subtracting Radical Expressions
What is the simplified form of each expression?
A. 3 5x  2 5x
B. 6 x2 7  4 x 5
C. 12 3 7xy  8 3 7xy
D. 17 5 3x 2  15 5 3x 2
Example 2: Simplifying Before Adding or Subtracting
What is the simplest form of the expression?
12  75  3
A.
B.
Example 3: Multiplying Binomial Radical Expressions
What is the simplest form of the expression?

A. 4  2 2 5  4 2


C. 3  5 1  5
250  3 54  3 16
D. 3 3 81  2 3 54
C. 6 18  3 50

3





13  6
B. 3  7 5  7
D.

2

Example 4: Multiplying Conjugates



What is the product of 5  7 5  7 ?
Will this always be the case when multiplying binomial radical conjugates?
Example 5: Rationalizing the Denominator
How can you write the expression with a rationalized denominator?
A.
4x
3 6
C.
5 3
2 3
B.
3 2
5 2
Example 6: Using Radical Expressions
In the stained-glass window design, the side of each small square is 5
inches. Find the perimeter of the window to the nearest tenth of an
inch.
Assignment: p.378 10-48 even, 57, 62