Math 214 — Solutions to Assignment #6 11.3 20. Identify the curve r = tan θ sec θ by finding a Cartesian equation for the curve. Solution. x = r cos θ =⇒ cos θ = x/r and tan θ = y/x. So r = tan θ sec θ = y r yr · = 2 =⇒ y = x2 , x x x i.e., the curve is a parabola opening upward with vertex (0, 0). 26. Find a polar equation for the curve x 2 − y 2 = 1. Solution. Since x = r cos θ and y = r sin θ, x2 − y 2 = r 2 cos2 θ − r 2 sin2 θ = r 2 (cos2 θ − sin2 θ) = r 2 cos 2θ. Hence the polar equation is r 2 cos 2θ = 1 or r 2 = sec 2θ. For #34–44, sketch the curve with the given polar equation. 34. r = 1 − 3 cos θ Solution. r 4 1 0 π 2 π 3π 2 2π θ (4,π ) −2 1 (−2,0) 38. r = 2 cos 3θ Solution. Using symmetry about the polar axis, π 3 2π 3 r π 6 5π 6 2 0 π 6 π 3 π 2 2π 5 π 3 6 π θ −2 4π 3 44. r 2 θ = 1 Solution. r r>0 θ 0 r<0 60. Find the slope of the tangent line to the polar curve r = sin 3θ at θ = π/6. Solution. The slope of the tangent line is dy = dx dr dθ dr dθ sin θ + r cos θ 3 cos 3θ sin θ + sin 3θ cos θ = 3 cos 3θ cos θ − sin 3θ sin θ cos θ − r sin θ 3 cos dy = dx θ= π 3 cos 6 π 2 π 2 sin π6 + sin π2 cos π6 0+ π π π = cos 6 − sin 2 sin 6 0− 2 √ 3 2 1 2 √ = − 3. 11.4 18. Find the area of the region enclosed by one loop of the curve r = 4 sin 3θ. Solution. π 3 2π 3 r π 6 4 0 π 6 π 3 2π 5π 3 6 π 2 π θ Using symmetry A= Z π 3 0 1 2 (4 sin 3θ)2 dθ = 2 2 Z π 6 16 sin2 3θ dθ 0 π6 1 =8 (1 − cos 6θ) dθ = 8 θ − sin 6θ 6 0 0 π 1 4π − sin π = . =8 6 6 3 Z π 6 24. Find the area of the region that lies inside the first curve and outside the second curve: r = 1 − sin θ, r = 1. Solution. (1,0) 3 Note that the points of intersection are θ = 0, π, 2π (set 1 − sin θ = 1). Using symmetry again, Z 0 Z 1 0 2 2 [(1 − sin θ) − 1 ] dθ = A=2· (−2 sin θ + sin2 θ) dθ π 2 −π/2 −2 Z 0 1 −2 sin θ + (1 − cos 2θ) dθ = π 2 −2 0 1 1 π 1 π − = 2− = 2 cos θ + θ − sin 2θ =2+ . 2 4 2 2 4 π − 2 30. Find the area of the region that lies inside both curves: r = sin 2θ, r = sin θ. Solution. π 3 π 4 To find the points of intersection: sin 2θ = sin θ =⇒ 2 sin θ cos θ − sin θ = 0 =⇒ sin θ(2 cos θ − 1) = 0 1 π 5π =⇒ sin θ = 0 or cos θ = =⇒ θ = 0, π, , 2 3 3 and the pole. Using symmetry, then, Z π Z π 1 3 1 2 2 2 A=2 sin 2θ dθ sin θ dθ + 2 0 2 π3 Z π Z π 1 3 1 2 = (1 − cos 4θ) dθ (1 − cos 2θ) dθ + 2 0 2 π3 π3 π2 1 1 1 = θ − sin 2θ + θ − sin 4θ 2 2 4 π 0 3 1 π 1 2π π 1 π 1 4π = − sin + − sin 2π − + sin 2 3 2 3 2 4 3 4 3 √ √ √ ! √ ! 1 π 3 3 1 π 1 3 1 3 π 3 3 − = − . = + − = − 2 2 2 2 4 2 2 2 8 4 16 4 32. Same as #30 for the curves r 2 = 2 sin 2θ, r = 1. Solution. 5 π 12 π4 π 12 The points of intersection are: 2θ = π 5π 13π 17π π 5π 13π 17π , , , =⇒ θ = , , , . 6 6 6 6 12 12 12 12 Using symmetry, Z π Z π 1 12 1 4 2 A=2 2· 2 sin 2θ dθ + 2 · 1 dθ π 2 0 2 12 π 12 π4 2 π π π =2 − cos 2θ + θ = 2 − cos + cos 0 + − 2 6 4 12 π 0 12 ! √ √ ! 3 2π 6+π−3 3 π √ +1+ =2 − =2 = 2 + − 3. 2 12 6 3 40. Find all points of intersection of the curves r = cos 3θ and r = sin 3θ. Solution. 1 3π 2,4 π 3 2π 3 π 6 1 π , 2 12 1 5π , 2 12 Since cos 3θ = sin 3θ =⇒ tan 3θ = 1, 3θ = π/4 + nπ and thus θ = π/12 + (nπ)/3. So the points of intersection are 1 π √ , , 2 12 1 3π √ , 2 4 , 5 1 5π −√ , 2 12 and the pole. 46. Find the exact length of the polar curve r = e 2θ , 0 ≤ θ ≤ 2π. Solution. L= = Z Z 2π s r2 0 2π 0 + √ 5e4θ dr dθ 2 √ Z = 5 dθ = 0 2π e 0 Z 2θ 2π q e4θ + (2e2θ )2 dθ √ √ 2π 5 2θ 5 4π e = (e − 1). dθ = 2 2 0 6
© Copyright 2025 Paperzz