MATHIV–Chapter9.2 PolarGraphs NAME:____________________________ Directions:UseDesmosforallgraphsunlessotherwisestated.ToproperlyuseDesmos,clickthewrench toolintheupperrighthandcornerandchangethegridoptionfromCartesiantoPolar(fromthesquare gridtothecirculargrid).Whenwritingequations,usetheformr=(risfoundundertheABCoption), sin/cos(foundunderfunctions)andtheta(foundabovethebackspaceinABC).Youmayfindithelpfulto removethestaplefromthispacketwhileworking.Thepagesarenumberedtoavoidtroubleputtingthe packetbacktogether. PARTONE:CIRCLES Thestandardformforacircleis: 𝑟 = 𝑎 sin 𝜃 𝑟 = 𝑎 cos 𝜃 Beginbygraphingthefunction𝑟 = sin 𝜃,thenattempttransformingthegraphbychangingtheavalue. Forexample,graph𝑟 = 2 sin 𝜃and𝑟 = 3 sin 𝜃.Howdoesaaffectthegraph? Nowgraphthefunction𝑟 = cos 𝜃.Howisthisdifferentfromthesinefunction? Adjusttheavalue.Doesitbehavethesamewayforcosineasitdoesforsine? Intheemptyspacebelowthestandardformequations,sketchagraphofeachfunction,labelingwherea appearsinthecircle. Then,maketwoflashcards,oneforeachequation.Writethestandardformononeside,andsketcha graphontheotherside. ClearyourDesmosgraphsbeforemovingon. 1 PARTTWO:LIMACONS(LIM-a-son) Standardformforalimaconis: 𝑟 = 𝑎 + 𝑏 sin 𝜃 𝑟 = 𝑎 − 𝑏 sin 𝜃 𝑟 = 𝑎 + 𝑏 cos 𝜃 𝑟 = 𝑎 − 𝑏 cos 𝜃 Limaconsarethepolargraphsthathavethemostvariation.Let’sbeginbyfirstdeterminingjustthe locationofeachlimacongraph,andthendiscusshowaandbaffectthegraph.Limaconswilllooksimilar tocircles,whichshouldmakesensegivenhowclosetheequationistotheequationofacircle,theonly changeherebeingtheadditionofaconstantterm.Beginbygraphing𝑟 = 1 + sin 𝜃.Noticethatthisgraph looksalmostlikeacircle,butnotquite.Whereisthemajorityofthegraphlocated?Overthepositivexaxis,thenegativex-axis,thepositivey-axis,orthenegativey-axis? Nowgraph𝑟 = 1 − sin 𝜃.Whereisthemajorityofthisgraphlocated? Whatabout𝑟 = 1 + cos 𝜃? Whatabout𝑟 = 1 − cos 𝜃? Usethisinformationtosketchagraphofabasiclimacon(alsoreferredtoasacardioid)beloweachofthe standardformsabove. 2 Nowlet’strytodeterminewhataandbcontrol.Todeterminethis,wewillonlygraphvariationsof 𝑟 = 𝑎 + 𝑏 sin 𝜃. Let’sbeginwiththegraph𝑟 = 2 + 2 sin 𝜃.Noticethattheshapelookssimilartothe previouslimacongraphs,andinboththeseexamples,we’vekepta=b.Graph𝑟 = 3 + 3 sin 𝜃.Istheshape thesameordifferent? Inthisexampleandthepreviousexamples,howthelengthfromthepointoftheshapetotheouteredge comparetotheaandbvalues? Labelwhatyou’venoticedontheimagebelow. a=b Nowlet’smakeasmallerthanb.Graph𝑟 = 2 + 3 sin 𝜃.Howhastheshapechanged? Nowgraph𝑟 = 1 + 3 sin 𝜃.Noticethatboththesizeoftheinnerandtheouterloophavechanged.These sizesaredeterminedbyaandb.Trytodeterminethepattern.Considergraphing𝑟 = 1 + 4 sin 𝜃, 𝑟 = 2 + 4 sin 𝜃,and𝑟 = 3 + 4 sin 𝜃toclarifyorreinforceyourtheories. Labelwhatyou’venoticedontheimagebelow. a<b 3 Nowlet’smakealargerthanb.Graph𝑟 = 5 + 4 sin 𝜃.Howhastheshapechangednow? Continueadjustingthevalueofa,keepingitbiggerthanb.Noticenowthatwehavetwolengthstolook at:thelengthoftheshapeabovethex-axisandthelengthoftheshapebelowthex-axis.Thisiscontrolled byaandb.Trytodeterminethepattern. Labelwhatyou’venoticedontheimagebelow. a>b Alloftheserulesregardingaandbaretrueregardlessofwhichstandardformwebeginwith. Makefourflashcards,onewitheachstandardformsanda=bononeside,andgraphtheshapethatis createdwhena=bontheotherside.Then,maketwomoreflashcardsthatillustrateanyofthestandard formsandtheshapethatappearswhena<banda>b. ClearyourDesmosgraphsbeforemovingon. 4 PARTTHREE:ROSES Thestandardformforaroseis: 𝑟 = 𝑎 sin(𝑛𝜃) 𝑟 = 𝑎 cos(𝑛𝜃) wheren≥2andisaninteger Beginbygraphing𝑟 = sin(2𝜃).Noticethatthegraphlooksabitlikeaflower,hencethename.Eachloop ofthegraphiscalledapetal.Howmanypetalsdoesthisgraphhave?Howmanyareineachquadrant? Nowgraph𝑟 = sin(4𝜃).Howmanypetalsdoesthisgraphhave?Howmanyareineachquadrant? Consider𝑟 = sin(6𝜃).Howmanypetalsdoyouthinkthisgraphhas?Howmanywillbeineachquadrant? Graphtoconfirm. Nowlookattheplacementofallthepetalsonanyofthesegraphs.Dothesepetalseveroverlapthex-axis ory-axis? Nowgraph𝑟 = sin(3𝜃).Howmanypetalsdoesthisgraphhave?Identifythegraphthatoverlapsanaxis. Wewillcallthisthe“startingpetal.”Doesitoverlapthepositivex-axis,thenegativex-axis,thepositiveyaxis,orthenegativey-axis? Nowgraph𝑟 = sin(5𝜃).Howmanypetalsdoesthisgraphhave?Whereisthestartingpetal? Considerthegraphof𝑟 = sin(7𝜃).Howmanypetalsdoyouthinkthisgraphhas?Wheredoyouthinkthe startingpetalis?Graphtoconfirm. Graphafewmoreoddfunctions,notingthelocationofthestartingpetal.Doyounoticeapattern? Describeit. 5 Nowgraph𝑟 = cos(2𝜃).Howmanypetalsdoesthisgraphhave?Doesnbehavethesamewayincosineas itdoesinsine? Noticewherethepetalsareplacedinthisgraph.Howisthisdifferentthanthesinefunction?Consider graphing𝑟 = sin(2𝜃)atthesametimetocompare. Nowgraph𝑟 = cos(4𝜃)toconfirmyourideas. Nowlet’strytheoddcosinegraphs.Graph𝑟 = cos(3𝜃),𝑟 = cos(5𝜃),and𝑟 = cos(7𝜃).Identifythe locationofthestartingpetalforthesegraphs.Doesitoverlapthepositivex-axis,thenegativex-axis,the positivey-axis,orthenegativey-axis?Doesitchangefromgraphtographlikesine? Ifniseven,whatistrueaboutthenumberofpetals? Ifnisodd,whatistrueaboutthenumberofpetals? Nowadjusttheavalue.Considergraphing𝑟 = 5 sin(3𝜃).Graphvariationsofthisfunctionuntilyoucan determinewhatadoes.Howdoesaaffectthegraph? Intheemptyspacebelowthestandardformequations,sketchtwographsofeachfunction(oneeven,one odd),labelingwhereaappearsintherose. Then,makefourflashcards,twoforeachequation(oneeven,oneodd).Writethestandardformandifn isevenoroddononeside,andsketchagraphontheotherside. ClearyourDesmosgraphsbeforemovingon. 6 PARTFOUR:SPIRALSOFARCHIMEDES StandardformforaspiralofArchimedesis: 𝑟 = 𝑎𝜃 + 𝑏 Beginbygraphing𝑟 = 𝜃.Noticethatthisgraphcreatesaspiral.Whatdirectionisthespiralgoing? Clockwiseorcounterclockwise? Let’sbeginbyidentifyingwhataffectahas.Keepingapositive,adjustthevalue.Makeitlarger.Makeit smaller.Zoomouttogetabetterpicture.Howdoesincreasingaaffectthespiral?(Thisismuchmore generalthanyourpreviousanswers.) Nowlet’sidentifywhataffectbhas.Graph𝑟 = 𝜃 + 1.Howhasyourgraphchanged? Nowgraph𝑟 = 𝜃 + 2.Thencontinuetoadjustbuntilyoucandeterminewhatbchanges.Whatdoesb change? Intheemptyspacebelowthestandardformequations,sketchagraphofaspiralofArchimedes,labeling wherebappears. Then,makeaflashcard.Writethestandardformononesideandsketchthegraphontheother. ClearyourDesmosgraphsbeforemovingon. 7 PARTFIVE:LEMNISCATES(LEM-nis-keyts) Standardformforalemniscateis: 𝑟 ! = 𝑎! sin 2𝜃 𝑟 ! = 𝑎! cos (2𝜃) InsteadofusingDesmos,we’llbegraphingtheseinWolframAlpha.Gotowolframalpha.com.Entering equationsintoWolframAlphaisnotasuserfriendlyasDesmos,sobecarefultocopymynotationwhile graphing.Sometimes,Wolframcanbeparticular,andyoumayhavetorefreshtogetittograph. Beginbygraphing𝑟 ! = 4 sin 2𝜃 .We’lltypethisintothesearchbaras“graphr^2=4sin(2theta)”.What symboldoesthisshapelooklike?Whattwoquadrantsdoesthisgraphappearin? Adjusttheavalue.Trygraphing𝑟 ! = 9 sin 2𝜃 ,then𝑟 ! = 16 sin 2𝜃 .Howisthevalueofachangingour graph?(Ifyou’rehavingahardtimeseeingithere,revisitthisquestionafterworkingwiththecosine graphs.) Nowgraph𝑟 ! = 4cos (2𝜃).Howisthisgraphdifferentthanthesinegraph?Adjusttheavalue.Howdoes aaffectthegraph?Isthisthesameordifferentthanhowitaffectedthesinegraph? Intheemptyspacebelowthestandardformequations,sketchagraphofeachfunction,labelingwherea appearsinthelemniscate. Then,maketwoflashcards,oneforeachequation.Writethestandardformononesideandifnisevenor odd,andsketchagraphontheotherside. 8
© Copyright 2026 Paperzz