Name ________________________________________ Date ___________________ Class __________________ Review for Mastery LESSON 6-x 6-1 Integer Exponents Remember that 23 means 2 × 2 × 2 = 8. The base is 2, the exponent is positive 3. Exponents can also be 0 or negative. Zero Exponents Negative Exponents Negative Exponents in the Denominator For any nonzero For any nonzero number x For any nonzero number 1 x and any integer n, number x, and any integer n, x−n = n . 1 x0 = 1. x = xn. x −n Definition 0 Examples 60 = 1 ⎛ 1⎞ ⎜2⎟ = 1 ⎝ ⎠ 5−3 = 1 53 2−4 = 1 24 1 = 82 8−2 1 = 24 2−4 00 and 0−n are undefined. Simplify 4−2. 4−2 Simplify x2y−3z0. x2y−3z0 1 42 x 2 z0 y3 Write without negative exponents. Write without negative exponents. 2 1 4•4 Write in expanded form. x (1) y3 z0 = 1. 1 16 Simplify. x2 y3 Simplify. Fill in the blanks to simplify each expression. 1. 2−5 2. 10−3 2−5 = 1 3. 10−3 = 2 1 = 25 1 10 1 = 103 1 = ____________ 1 = ____________ 1 5−4 1 = 5 5−4 5 = = ____________ Simplify. 4. 5 y −4 _____________ 5. 8 a −3 _____________ 6. 9 x 3 y −2 ____________ x3 x −1y _____________ 8. b2 a −1b3 _____________ 9. 5 x −4 y 2 _____________ 7. Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 6-6 Holt McDougal Algebra 1 Review for Mastery 1 1. 5; 2•2•2•2•2; 32 1 2. 10•10•10; 1000 5 4. 4 y 3. 4; 4; 5•5•5•5; 625 5. 8a x4 7. y 10. 4 11. 512 12. 200 13. −8 14. 324 15. 5. B 6. H 2 liters 3 Reading Strategies a 8. b 5y 2 9. x4 4. 42 7. C 9x3 6. y2 3 3. 3.142 1. 6 2. 0 3. 8 −3 4. 1 b7 5. 32 6. 1 32 7. 1 8. 1 1,000,000 9. −64 1 16 Challenge 1. 1; 1; 1; 1; 1; 1; 1; 1; 1 2. 2; 4; 8; 6; 2; 4; 8; 6; 2 3. 3; 9; 7; 1; 3; 9; 7; 1; 3 10. − 1 64 c2 d3 11. 1 t4 12. 13. 8 x5 14. 12 6-2 RATIONAL EXPONENTS 4. 4; 6; 4; 6; 4; 6; 4; 6; 4 Practice A 5. 5; 5; 5; 5; 5; 5; 5; 5; 5 6. 6; 6; 6; 6; 6; 6; 6; 6; 6 7. 7; 9; 3; 1; 7; 9; 3; 1; 7 8. 8; 4; 2; 6; 8; 4; 2; 6; 8 9. 9; 1; 9; 1; 9; 1; 9; 1; 9 10. 0; 0; 0; 0; 0; 0; 0; 0; 0 11. For all n, 1n has 1 as its units digit. 1. B 2. D 3. C 4. A 5. 7 6. 3 7. 1 8. 12 9. 8 10. 9 11. 1 12. 32 13. x 12. The pattern is 2, 4, 8, and 6, for n = 1, 2, 3, and 4 and then repeats. 8 15. m4n 14. x3y4 16. x2 17. 14 cm 13. The pattern is 3, 9, 7, and 1, for n = 1, 2, 3, and 4 and then repeats. Practice B n 14. For all n > 0, 5 has 5 as its units digit. 1. 3 2. 11 15. If you divide n by 4, then the units digit is 7, 9, 3, or 1, depending on whether the remainder is 1, 2, 3, or 0, respectively. 3. 0 4. 11 5. 4 6. 8 Problem Solving 1. 4 or 0.16 mm 2 25 2. 3 3 and oz 8 4 Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A2 Holt McDougal Algebra 1 Name ________________________________________ Date ___________________ Class __________________ Review for Mastery LESSON 6-x 6-1 Integer Exponents continued Evaluate a−3b4 for a = 5 and b = 2. a−3b4 (5−3)(24) 4 2 53 16 125 Substitute. Write without negative exponents. Simplify. When evaluating, it is important to determine whether the negative is raised to the power. Evaluate −x−2 for x = 10. Evaluate (−x)−2 for x = 10. The negative is not raised to the power. The negative is raised to the power. −x−2 −10−2 − − 1 102 1 10 • 10 − 1 100 (−x)−2 (−10)−2 Substitute. 1 ( −10)2 Write without negative exponents 1 ( −10) • ( −10) Write in expanded form. 1 100 Simplify. Substitute. Write without negative exponents Write in expanded form. Simplify. Evaluate each expression for the given value(s) of the variable(s). 10. x2y0 for x = −2 and y = 5 11. a3b3 for a = 4 and b = 2 _________________________________________ 12. z3 for z = 2 and y = 5 y −2 13. −a3b−4 for a = 2 and b = −1 _________________________________________ 14. ________________________________________ −2 n for m = 6 and n = 2 m −4 ________________________________________ 15. (−u)2v−6 for u = 2 and v = 2 _________________________________________ ________________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 6-7 Holt McDougal Algebra 1
© Copyright 2026 Paperzz