Kuwait University Dept. of Mathematics Math 102 Second Exam April 19, 2014 Duration: 90 min Calculators are not allowed. All communication devices must be switched off. Answer all questions. Total points: 100. 1. (10 pt) Evaluate: 2x + 4 x lim x→∞ 5x − 2x 2. (10 pt) Find the value of a for which lim x→0 and evaluate the limit for this value of a. tan x + ax exists x2 3. (15 pt each) Evaluate the following: Z (a) (arcsin x)2 dx (b) Zπ/2 cos x sin2(2x) dx 0 Z 5 dx x4 + 2x3 + 5x2 Z tan (x/2) dx sin x − cos x − 1 (c) (d) 4. (20 pt) Determine whether the following integral is convergent or divergent. Find its value if it is convergent. Z∞ x+1 dx x5/2 − x1/2 2 Solution ————————————————————— x ∞ ∞ since 5x − 2x = 5x 1 − 52 → ∞(1 − 0) → ∞. L’Hospital rule can be applied but it is not useful. Instead we have 2x + 4x 0 (2/5)x + (4/5)x −→ = = 0. = x x→∞ 5x − 2x 1 1 − 25 2 ∗ 2. 00 , so L = lim tan xx+ax = lim sec 2xx+a = 1+a . 2 0 1. x→0 x→0 ∗ (a) If a = −1, then L = lim 2 sec x→0 2 x tan x 2 = 0. (exists) (b) If a 6= −1, then L = ±∞ (Does not exist) 3. (a) Z −1 (sin 2 Z x dx (sin−1 x) √ 1 − x2 √ = x(sin−1 x)2 + 2(sin−1 x) 1 − x2 − 2x + C −1 x) dx = x(sin 2 x) − 2 (b) Zπ/2 I = 4 sin2 x cos3 xdx 0 Z1 = u=sin x 4 u2 (1 − u2 )du = 8 15 0 (c) A B Cx + D 5 = + 2+ 2 + 2x + 5) x x x + 2x + 5 2 2 This implies 5 = (Ax+B)(x +2x+5)+(Cx+D)x . Now we obtain, A = −2/5, B = 1, C = 2/5, and D = −1/5. Z Z Z Z −2 1 2x − 1 5 = + + 4 3 2 2 2 x + 2x + 5x 5x x 5x + 10x + 25 −2 ln |x| 1 4 3 2 x+1 −1 = − − ln √ − tan +C 5 x 10 x2 + 2x + 5 10 2 x2 (x2 (d) If we let t = tan( x2 ), then Z Z 2t dt t dt x x I= = = t+ln |t−1|+C = tan( )+ln | tan( )−1|+C 2 2 2t − (1 − t ) − (1 + t ) t−1 2 2 4. If we let u = x1/2 , then Z 2 Z Z Z u − 1 u +1 2 x+1 1 1 +C dx = 2 du = du = − = ln x5/2 − x1/2 u4 − 1 u2 − 1 u−1 u+1 u + 1 √ √ √ Zt 2 − 1 2 − 1 t − 1 − ln √ I = lim = lim ln √ = − ln √ . t→∞ t→∞ t+1 2+1 2 + 1 2 √ Therefore, it is convergent and it converges to − ln √2−1 . 2+1
© Copyright 2026 Paperzz