MS3 £3.00 WELSH JOINT EDUCATION COMMITTEE CYD-BWYLLGOR ADDYSG CYMRU General Certificate of Education Advanced Subsidiary/Advanced Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch MARKING SCHEMES SUMMER 2006 MATHEMATICS M1-M3 and S1-S3 INTRODUCTION The marking schemes which follow were those used by the WJEC for the 2006 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners. It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation. The WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes. MATHEMATICS M1 1. Accelerating a = 3 Constant speed a = 0 (a) o.e. M1 A1 R = 6g – 6 × 3 = 40·8N c.a.o. A1 R = 6g = 58·8N Decelerating a = − 2 2. N2L applied to object 6g – R = 6a R= 6+6×2 = 70·8N B1 c.a.o. Use of v = u + at with u =0, a = 0·4, v = 1·5 16 = 40s t= 0⋅4 A1 M1 A1 (b) B1 B1 B1 B1 (c) 1 1 × 40 × 16 + 16T + × 20 ×16 2 2 16T + 4800 T = 2400 = = 2400 120s M1, B1 f.t.(a) c.ao. A1 A1 used B1 M1 dim. correct M1 A1 c.a.o. A1 3. (a) R = 20g F = limiting friction = μR = 0·3 × 20g = 58·8N N2L T–F a (b) = 20a 65 − 58 ⋅ 8 = 20 = 0·31 ms-2 T < limiting friction ∴F=T = 45N B1 1 4. N2L applied to A and B 3.1g – T = 3·1a M1 B1 T – 1.8g = 1·8a A1 N2L applied to B Adding 3.1g = 1.8g = 4.9a a = 2·6ms-1 T = 1·8 (2.6 + 9.8) = 22·32N 5. (a) 1 2 at with s = 0, u = 22·05, a = (±) 9·8 2 1 0 = 22·05t − × 9·8 t2 2 t = 4.5s Using s = ut + c.a.o. m1 A1 c.a.o. A1 o.e. M1 A1 A1 v = 22·05ms−1 (b) (c) B1 Using v2 = u2 + 2as with v = 0, u = 22·05, a = (±) 9·8 0 = 22·052 – 2 × 9·8s s = 24·8 (0625)m o.e. c.a.o. M1 A1 A1 Using v = u + at with u = 22·05, a = (±) 9·8, t = 3 v = 22·05 – 9·8 × 3 v = − 7·35 o.e. f.t. (a) if used M1 A1 Speed = 7·35ms-1 Direction is downwards A1 B1 6. Moments about C all forces dim. correct 4·4g × 1·5 + 2·2g × 3·4 = RD × 2·2 RD = 62·72N (6.4g) Resolve ↑ RC + RD = 4·4g × 2·2g RC = 0·2g = 1·96N 2 M1 c.a.o. A2 B1 A1 f.t. RD M1 A1 7. (a) Conservation of momentum used M1 0·1 × 10 + 0·6 × 2 = 0·1 VA + 0·6 VB VA + 6VB = 22 A1 Restitution used M1 3 VB − VA = − (2 – 10) 4 − VA + VB = 6 (b) (c) A1 Adding 7VB = 28 VB = 4 ms-1 VA = −2 ms-1 dep. on both Ms c.a.o. c.a.o. M1 A1 A1 ′ After B collide with wall, it is moving with speed VB towards A ′ 1 VB = × 4 = 1 ms-1 4 ′ ′ Since | VB | = 1 and | VA | = 2, B will not catch up with A f.t. B1 I = 0·6 (4 + 1) = 3 NS 8. B1 f.t. VB, VB Area (a) ABDE BCD Lamina dist. from AB dist. from AE 3 4 x 5 12 y 60 18 78 ′ M1 A1 B1 B1 B1 B1 (areas) Moments about AB 60 × 3 + 18 × 4 = 78x x= 43 13 f.t. cand's values M1 A1 c.a.o. A1 f.t. cand's values M1 A1 c.a.o. A1 f.t. x B1 Moments about AE 60 × 5 + 18 × 12 = 78 xy 86 y= 13 (b) AX = 43 cm 13 3 μ = 0·4 9. ⊥ to plane R = 15g cos 25º Limiting friction F μR 0·4 x 15g cos 25 º 53·2909 N = = = B1 used si M1 M1 f.t. F c.a.o. M1 A1 A1 f.t. F c.a.o. M1 A1 A1 Max T when body on point of moving up plane T T = = 15g sin α + F 115·42 N Min T when body on point of moving down plane T T = = 15g sin α − F 8·83 N 4 MATHEMATICS M2 1. sin α = P= (a) 45 × 1000 v M1 A1 N2L to whole system M1 45000 − 2000g sin α − 150 – 100 = 2000 a 25 1800 – 700 – 250 = 2000a a = 0·425 ms-2 (b) (a) (b) A2 A1 N2L applied to trailer T – 800 × 9·8 × 2. 1 28 1 − 100 = 800 × 0·425 28 T = 720N A2 A1 rA = = (i − 10k) + t (−2i – 2j − 5k) (1 − 2t)i + (− 2t)j + (− 10 – 5t)k B1 rB = = (7i + 9j − 6k) + t(i – 8j – 5k) (7 + t)i + (9 – 8t)j + (− 6 – 5t)k B1 = = (− 3 – 9)i + (− 4 + 7)j + (− 20 + 16)k − 12i + 3j – 4k M1 When t = 2 rA – rB Distance between A and B = 12 2 + 3 2 + 4 2 = 13 m1 A1 5 3. s (a) = ∫ (12t − 3t ) dt = 6t2 – t3 (+C) When t = 1, s = 0 ∴ 0 = C = ∴ m = a = Power = F.v. used F = = = ma 3 (12 – 9) 9 = = = 9 × (12 × 1·5 – 3 × 1·52) 9 × 11·25 101·25W = PE = = = Final EE = = = o.e. 6t2 – t3 – 5 m a Initial energy A1 6–1+C – 5 = Power 4. M1 s (b) (c) 2 M1 A1 dv dt 12 − 6t attempted M1 A1 M1 B1 mgh 3 × 9.8 × 1.2 35·28J f.t. F A1 used M1 si A1 1 λ (1 ⋅ 2 − 0 ⋅ 8) 2 × 2 0⋅8 1 35 ⋅ 4 × 0 ⋅ 4 2 × 2 0⋅8 3·54 J A1 35·28 M1 A1 4·6 ms-1 A1 M1 Conservation of energy 1·5v2 + 3.54 = v = 6 5. (a) Let u be initial horizontal and vertical velocities (v sin/cos 45) o.e. B1 t be time to hit target. Horizontal motion ut = 120 M1 A1 Vertical motion Using s = ut + 1 2 at with s = 41·6, u = u (c), a = (±) 9·8 2 41·6 = 120 + 1 ⎛ 120 ⎞ × (− 9·8) ⎜ ⎟ 2 ⎝ u ⎠ M1 2 m1 (subst.) u = 30 ms−1 Speed of projection = t (b) A1 2u 2 = 30 2 = 42·4264 ms-1 120 = u = 4s B1 convincing Using v = u + at with u = 30 (c), a = (±) 9·8, t = 4 v = 30 – 9·8 × 4 = − 9·2 Resultant speed = = M1 f.t. u f.t. u (−9 ⋅ 2) 2 + 30 2 (c) 31·38 ms−1 A1 A1 A1 M1 f.t. u ⎛ 9⋅2 ⎞ Direction of motion = tan−1 ⎜⎜ 30(c) ⎟⎟ ⎝ ⎠ A1 M1 [No if +9.2 used] i.e. angle above horizontal = 17·05º 7 A1 6. (a) (b) r = cos 3t i + sin 3t j v = d (r ) dt = −3 sin 3t i + 3 cos 3t j A2 = (− 3 sin 3t i + 3 cos 3 t j).(cos 3t i + sin 3t j) M1 = − 3 sin 3t cos 3t + 3 sin 3t cos 3t B1 = 0 Consider v.r used dot product ∴ v is perpendicular to r for all values of t (c) 7. Speed of P = si (−3 sin 3t ) 2 + (3 cos 3t ) 2 = = 9(sin 2 3t + cos 2 3t ) c.a.o. Resolve ↑ T cos θ = mg T = 3 × 9·8 × = 31·85N M1 M1 3 (a) (b) A1 |v| = M1 A1 M1 A1 1⋅ 3 1⋅ 2 c.a.o. A1 N2L towards C T sin θ = mrω2 ω2 = 31·85 × ω = 2·86 rads-1 M1 A1 B1 (a= rω2) 0⋅5 1 × 1⋅ 3 3 × 0 ⋅ 5 f.t. T 8 A1 8. (a) (b) At lowest point mv 2 r T – mg = T = 2 mg, v = u, r = l mg = u2 = mu 2 l gl u = gl M1 (ma) A1 m1 convincing A1 Conservation of energy 1 2 mu 2 = 1 2 mv = mgl ( 1 – cos θ) 2 M1 A1 (KE) A1 (all correct) = gl – 2gl (1 – cos θ) = 2gl cos θ – gl v2 = cos θ = 0 1 2 θ = v2 (c) (d) At max θ, πc 3 = 60 o used M1 c.a.o. A1 At general θ T – mg cos θ = mv 2 l M1(ma) ⎛ mv 2 M1 ⎜⎜ ⎝ r m m 2gl cos θ + mg cos θ – gl l l = 3 mg cos θ – mg 2 = 3 = 48·2º, 0·84º Subst. for v2 and r = l T = T = mg cos θ 9 m1 A1 ⎞ ⎟ ⎟ ⎠ MATHEMATICS M3 1. (a) dv dx ⎛ B ⎞ −2 =⎜ ⎟ − B ( x + A) ⎝ x + A⎠ a=v [ = (b) used ] M1 A1 − B2 ( x + A) 3 A1 t = 0, v = 12, x = 0 ∴ B = 12 A M1 t = 0, a = − 16, x = 0 − B2 = − 16 A3 A1 144A2 = 16 A3 A= 9 B = 108 (c) v= as required convincing dx 108 = dt x + 9 A1 M1 ∫ (x + 9)dx = 108∫ dt 2 x + 9 x = 108t + C 2 A1 t = 0, x = 0 ⇒ C = 0 f.t. minor error ∴ 216t = x2 + 18x 1 t= x( x + 18) 216 2. A1 A1 Auxiliary equation m2 + 2m + 10 = 0 − 2 ± 4 − 40 m = 2 = −1 ± 3i B1 B1 ∴ C.F. - is x = e-t (A sin 3t + B cos 3t) B1 For P.I. try x = at + b dx =a dt M1 ∴ 2a + 10 (at + b) = 5t – 14 10a = 5 1 a= 2 comp. coeff. 10 A1 M1 2a + 10b = − 14 3 b = − 2 both c.a.o. ∴ General solution is x = e-t (A sin 3 t + B cos 3t) + 1 3 t − 2 2 1 dx 1 When t = 0, x = 4 , = 3 2 dt 2 1 3 4 = B − 2 2 B=6 dx 1 = −e-t (A sin 3t + B cos 3t) + e−t (3 A cos 3t – 3 B sin 3t) + dt 2 1 1 3 = −B+3A+ 2 2 A =3 1 3 ∴x = 3e−t (sin 3t + 2 cos 3t) + t − 2 2 A1 B1 used M1 f.t. a.b. A1 B1 c.a.o. A1 3. (a) (b) − 0·01v2 – 0·4g = 0·4a dv 0·4 v = − 3·92 – 0·01 v2 dx dv × 100 40 v = − (392 + v2) dx N2L vdv ⌠ 40⎮ = − dx 2 ⌡ (392 + v ) 20 ln (392 + v2) = − x + C ∫ A1 convincing A1 sep. var. M1 A1 A1 t = 0, v = 17, x = 0 ∴ 20 ln (392 + 172) = C C = 20 ln (681) x = 20ln (681) – 20 ln (392 + v2) ⎛ 681 ⎞ = 20 ln ⎜ ⎟ 2 ⎝ 392 + v ⎠ At greatest height, v = 0 ⎛ 681 ⎞ ∴ x = 20 ln ⎜ ⎟ ⎝ 392 ⎠ = 11.05 m (c) M1 dv a=v dx m1 f.t. minor error A1 m1 c.a.o. A1 Speed of ball when it returns to O is less than 17 ms−1 B1 because energy used (lost) in overcoming air resistance. B1 11 4. (a) 2π Period = ω ω= (b) (c) =4 M1 π A1 2 Using vMAX = aω with vMAX = 3 π, ω = 3π = a× a = 6m = ω2 (a2 – x2) with ω = Using v2 v2 = v = = Let x = π π M1 2 2 c.a.o. π 2 (c), a = 6 (c), x = 4·8 π2 (36 − 4·82) 4 1·8π 5·65 ms−1 A1 M1 f.t. a, ω A1 f.t. a, ω A1 f.t. a, ω B1 distance from O, y = 0, p is at O ⎛π ⎞ 6 sin ⎜ t ⎟ ⎝2 ⎠ ⎛π ⎞ 4·8 = 6 sin ⎜ t ⎟ ⎝2 ⎠ ⎛π ⎞ 4 ⋅8 = 0⋅8 sin ⎜ t ⎟ = 6 ⎝2 ⎠ 2 t= sin −1 (0·8) x = M1 π f.t. a, ω = 0·59s (d) Max acceleration when x = a M1 ω2a π2 M1 | Max acceleration | = = = = (e) A1 ×6 4 3π 2 2 14·8 ms−1 = 12 oscillations 4 3 × (4a) = 72m Distance travelled = f.t. a, ω A1 M1 f.t. a 12 A1 5. (a) Impulse = change in momentum Apply to A I = = −I = = −8 = 40 cos α = Apply to B ∴ cos α = α = (b) 40 sin α = u = = 2v 2×4 M1 A1 − 40 cos α + 3 v − 40 cos α + 3 × 4 − 40 cos α + 12 20 1 2 60º M1 A1 M1 A1 3u 40 × 3 1 × 2 3 20 3 3 A1 2 Speed of b = = θ = = ⎛ 20 3 ⎞ ⎜ ⎟ + 42 ⎜ 3 ⎟ ⎝ ⎠ −1 12·22 ms M1 A1 ⎛ 20 3 ⎞ ⎟ tan −1 ⎜ ⎜ 3× 4 ⎟ ⎝ ⎠ 70·89º M1 A1 13 6. (a) Moments about B dim correct, attempted equation M1 37·5g × 4 cos 60º + 75g × x cos 60º = S × 8 sin 60º B1 A2 Resolve ↑ R = = 37·5 g + 75 g 112·5 g M1 Resolved → S F ∴ S = = = F μR μ. 112·5g M1 M1 Substitute S into moment equation and μ = 0·25 x (75 g cos 60º) = x = 0·25 × 112·5 g × 8 sin 60º − 37·5 g × 4 cos 60º 112 ⋅ 5 3 − 75 37 ⋅ 5 A1 3·196 A1 = (b) c.a.o. Substitute x = 8 and s = μ.112·5g (c) into moment equation M2 μ.112·5g × 8 sin 60º = 37·5g × 4 cos 60º + 75g × 8 cos 60º A1 μ. = 300 + 75 450 3 c.a.o. = 0·481 (c) m1 Person modelled as particle/ Ladder modelled as rod A1 B1 14 MATHEMATICS S1 1. (a) (b) 1 3 2 1 1 P(B eats red sweet) = × = 3 2 3 P(A eats red sweet) = B1 M1A1 [Method must be shown, award M1 for either (c) 2 1 2 1 × or × ] 3 2 3 3 2 1 1 2 × × or 1 − 3 2 1 3 1 = (no working required) 3 P(C eats red sweet) = M1 A1 [FT on answers to (a) and (b) - Special case – award 3/5 for writing down the correct answers with no working] 2. (a) (b) P(A ∩B) = P(A) + P(B) – P(A∪B) = 0.05 M1A1 P(A).P(B) = 0 ·12 or P(A⎢B) = 1/12 or P(B⎢A) = 1/4 A and B are not independent B1 B1 P(exactly one of A,B) = P( A ∩ B ′) + P( A′ ∩ B) M1 [Award M0 if independence assumed having stated not independent in (a). If independence stated in (a), FT partially bearing in mind that the problem is now easier] = 0·2 – 0·05 + 0·6 – 0·05 = 0·7 A1A1 A1 OR 3. P(exactly one of A,B) = P(A∪B) – P(A∩B) = 075 – 0·5 = 07 M1A1 A1 A1 (a) Var(X) = 4 E(Y) = 2 × 4 + 8 = 16 Var(Y) = 4 × 4 = 16 B1 M1A1 M1A1 (b) Because Y can only take the values 8,10,12 etc B1 15 4. (a) (b) (i) P(X > 10) = 0·6528 (or 1 – 0·3472) M1A1 (ii) P(X = 15) = 0·8444 – 0·7720 or 0·2280 – 0·1556 = 0·0724 (cao) 6 ⋅ 35 P(Y = 5) = e −6.3 . = 0 ⋅ 152 5! ⎛ 6 ⋅ 32 ⎞ ⎟ P(Y < 3) = e - 6.3 ⎜⎜1 + 6 ⋅ 3 + 2 ⎟⎠ ⎝ = 0·0498 (cao) B1B1 B1 (i) (ii) 5. (a) (b) (a) M1A1 A1 P(DY) = 0 ⋅ 4 × 0 ⋅ 04 + 0 ⋅ 35 × 0 ⋅ 05 + 0 ⋅ 25 × 0 ⋅ 06 = 0·0485 0 ⋅ 4 × 0 ⋅ 04 (i) P(A⏐DY) = 0 ⋅ 0485 = 0·330 B1 0 ⋅ 35 × 0 ⋅ 05 0 ⋅ 0485 = 0·361 P(C⏐DY) = 1 – 0·691 = 0·309 So most likely to have come from Farm B. B1 B1 B1 (ii) 6. M1A1 M1A1 A1 B1B1 P(B⏐DY) = (si) (i) B(50,0.2) B1 (ii) Mean = 50 × 0·2 = 10 Var = 50 × 0·2 × 0·8 SD = 2·83 (2√2) M1A1 M1 A1 (iii) P(8 ≤ X ≤ 12) = 0·8139 – 0·1904 or 0·8096 – 0·1861 = 0·6235 (cao) B1B1 B1 [For candidates summing probs award M1A1 for an expression involving binomial probs and A1 for the answer] 7. (b) X is approx Po(10). P(X < 10) = 0·4579 (or 1 – 0·5421) M1A1 M1A1 (a) Sum of probabilities = 15k B1 1 15k = 1 so k = 15 B1 (b) E(X) = 1 × = 1 2 5 + 2 × + ... + 5 × 15 15 15 M1 11 3 A1 1 2 5 + 4 × + ... + 25 × 15 15 15 (= 15) E(X2) = 1 × ⎛ 11 ⎞ Var(X) = 15 − ⎜ ⎟ ⎝3⎠ = 1.56 M1A1 2 M1 A1 16 (c) 8. (a) The possibilities are (1,5), (2,4),(3,3). 2 1 5 2 4 ⎛3⎞ P(Y = 6) = 2 × × + 2 × × + ⎜ ⎟ 15 15 15 15 ⎝ 15 ⎠ 7 = 45 (i) P(0·25 ≤ X ≤ 0·5) = F(0·5) – F(0·25) 1 1 = 0 ⋅ 5 2 + 0 ⋅ 5 − (0 ⋅ 25 2 + 0 ⋅ 25) 2 2 ( = (ii) ) 7 (0·219) 32 B1 M1 A1 A1 The median satisfies 1 2 1 m +m = 2 2 2 m + m −1 = 0 −1+ 5 m= 2 = 0·618 ( B1B1B1 ) M1 A1 M1 A1 [Special case for candidates integrating F(x):For obtaining 2m 3 + 3m 2 − 6 = 0 M1A1] (b) (i) f ( x) = F ′( x) 1 = (2 x + 1) 2 M1 A1 1 (ii) E(X)= 1 x(2 x + 1)dx 20 ∫ M1A1 [FT on candidate’s f(x) from (i). If candidates use F(x) instead of f(x), not having obtained an answer in (i), award M1] 1 1 ⎡ 2x3 x 2 ⎤ = ⎢ + ⎥ 2⎣ 3 2 ⎦0 7 (0·583) = 12 A1 A1 17 MATHEMATICS S2 62 ⋅ 6 (= 6·26) 10 0 ⋅1 SE of x = (= 0·0316) 10 95% conf limits are 6·26 ± 1.96 × 0·0316 M1A1 [M1 correct form, A1 1·96] giving [6·20,6·32] Yes because 6·3 is within the interval. A1 B1 x= 1. Variance = 2. Mean = B1 B1 (b − a ) 2 =3 12 (b − a ) 2 = 36 b–a=6 a+b = 10 2 b + a = 20 M1A1 A1 AG M1 A1 Solving, a = 7, b = 13. 3. (a) (i) (ii) (b) 4. M1A1 34 − 30 28 − 30 = 2 ; z2 = = −1 2 2 Prob = 0·97725 – 0·15866 or 0·8413 – 0·02275 = 0·819 (cao) z1 = Reqd weight = 25 + 2·326 × 1·8 = 29·2 [M1 for 25 ± zσ] M1A1 B1B1 B1 M1A1 A1 X - Y is N(5,7·24) We require P(X - Y > 0) 5 = ( ±)1.86 z= 7 ⋅ 24 Prob = 0.969 (cao) B1B1 A1 M1A1 (a) Prob of 1 crash on a computer = 0 ⋅ 8 × e −0.8 = 0·3595 Prob of 1 crash on each of 5 computers = 0·35955 = 0·006 M1 A1 M1 A1 (b) Distribution of Total is Po(4). 45 P(Total = 5) = e − 4 . 5! = 0·156 (cao) B1 M1A1 A1 18 5. (a) H 0 : μ = 2 ⋅ 4 versus H 1 : μ > 2 ⋅ 4 (Accept μ = 12] In 5 days, number of passengers Y is Poi(12) under H0. [M1A0 for normal approx] B1 si p-value = P( Y ≥ 18 ) = 0·0630 We cannot conclude that the mean has increased. (b) B1 M1 A1 B1 Under H0 the number of passengers in 100 days is Po(240) ≈ N(240,240) B1B1 z= 279 ⋅ 5 − 240 M1A1 240 6. (a) = 2·55 Either p-value = 0·00539 or CV = 2·326 [No cc gives z = 2·58, p = 0·00494, wrong cc gives z = 2·61, p = 0·00453] We conclude at the 1% level that the mean has increased. A1 A1 (i) B1 M1 A1 (ii) (b) 7. (a) (b) X is B(50,p) (si) Sig level = P(X ≤ 14⏐p = 0·4) = 0·0540 (cao) We require P(X ≥ 15⏐p = 0·3) = 0·5532 B1 M1A1 Under H0, X is now B(500,0·4) ≈ N(200,120) 185 ⋅ 5 − 200 z= 120 = −1·32 p-value = 0·0934 A1 A1 [No cc gives z = −1·37, p = 0·0853, wrong cc gives z = −1·41, p = 0·0793] Insufficient evidence to support the agent’s belief. (oe). B1 H 0 : μ A = μ B versus H 1 : μ A ≠ μ B B1 501 = 83 ⋅ 5 6 489 xB = = 81 ⋅ 5 6 The appropriate test statistic is x−y TS = 1 1 + σ m n 83 ⋅ 5 − 81 ⋅ 5 = 1 1 1.5 + 6 6 = 2.31 (cao) Prob from tables = 0·01044 p-value = 0·021 (i) Accept H 0 (or the fuel consumptions are the same) at 1% SL xA = (ii) Accept H 1 (or the fuel consumptions are not the same) at 5% SL 19 B1B1 M1A1 B1 B1 M1 1A1 A1 A1 B1 B1 B1 8. (a) (b) The mean of a large (random) sample from any distribution is (approximately) normally distributed. E( X ) = 3.5, Var ( X ) = z= 3 − 3⋅5 35 600 (si) = −2 ⋅ 07 B1 B1B1 M1A1 35 / 600 Prob = 0·981 A1 20 MATHEMATICS S3 1. (a) The possible combinations are given in the following table. Combination 112 113 114 123 124 134 234 [Accept a table with 123, 124 and 134 repeated] M1A1 The sampling distribution of the mean is Mean Prob 4/3 0·1 5/3 0·1 2 0·3 7/3 0·2 8/3 0·2 3 0·1 (correct means) (correct probs) B1 B2 (correct medians) (correct probs) B1 B2 [Award B1 for 4 correct probs] The sampling distribution of the median is Median Prob 1 0.3 2 0.4 3 0.3 [For each table award B1 for correct probs with replacement] 2. 498 = 0 ⋅ 415 1200 (a) pˆ = (b) SE ≈ (c) (d) B1 0 ⋅ 415 × 0 ⋅ 585 1200 = 0·0142... M1 A1 Approx 90% confidence limits are 0·415 ± 1·645 × 0·0142 giving [0·392, 0·438]. M1A1 A1 We are using a normal approximation to a binomial situation. The standard error and/or p are estimated and are not exact. B1 B1 21 3. x A = 1 ⋅ 034; x B = 1 ⋅ 016 B1B1 s A2 = 3 ⋅ 474747... × 10 −4 M1A1 s B2 = 1 ⋅ 449664... × 10 −4 A1 [Accept division by n giving 3·44.. and 1·44..] 3 ⋅ 474747... × 10 −4 1 ⋅ 449664... × 10 −4 + (= 0·002107) 100 150 95% conf lims are 1·034 – 1·016 ± 1·96 × 0·002107 giving [0·014,0·022] (cao) M1A1 A1 UE of μ = 8 ⋅ 54 B1 ∑x B1 SE = 4. (a) 2 = 734 ⋅ 2 , 734 ⋅ 2 85 ⋅ 4 2 − 9 9 × 10 = 0·542(666..) UE of σ 2 = (b) 5. (a) (b) (c) B1 M1 A1 H 0 : μ = 9 versus H1 : μ ≠ 9 8 ⋅ 54 − 9 Test statistic = 0 ⋅ 542666.. / 10 = − 1·97 DF = 9 Crit value = 2·26 B1 M1A1 A1 B1 B1 Insufficient evidence to reject the farmer’s claim at the 5% level. [Award the final B1 only if t used] B1 Σx = 75, Σy = 89·2, Σxy = 1270·5, Σx 2 = 1375 [B1 1 error] B2 6 × 1270 ⋅ 5 − 75 × 89 ⋅ 2 6 × 1375 − 75 2 = 0·355 89 ⋅ 2 − 75 × 0 ⋅ 355 a= 6 = 10·4 [Note S xx = 437 ⋅ 5, S xy = 155 ⋅ 5] b= (i) M1A1 A1 M1A1 A1 Est resist = 10·4 + 0·355 × 20 = 17·5 1 (20 − 12 ⋅ 5) + 6 1375 − 75 2 / 6 = 0·217(343…) M1 A1 2 SE = 0.4 (ii) M1 A1 95% confidence limits are 17·5 ± 1·96 × 0·217 giving [17·1,18·0] [Accept 17·9 as the upper limit] M1 A1 22 (d) Test stat = = 6. b−β M1 σ / ( Σx 2 − ( Σx ) 2 / n ) 0 ⋅ 355... − 0 ⋅ 4 A1A1 0.4 / (1375 − 75 2 / 6 = − 2·33 (Accept 2·34, 2·35) A1 EITHER p-value = 2 × 0·0099 = 0·0198 OR Crit value = 2·576 The value 0·4 is consistent with his prediction at the 1% level. A1 B1 (a) (b) (c) E(U) = a(μ + 2 × 2μ) 1 = μ if a = 5 E(V) = b(2 ×μ + 2μ) = μ 1 if b = 4 M1A1 A1 M1 A1 ( ) M1A1 ( ) M1A1 1 2 13 σ + 4 × 3σ 2 = σ 2 25 25 1 7 Var(V) = 4 × σ 2 + 3σ 2 = σ 2 16 16 V is the better estimator (since it has the smaller variance). Var(U) = (i) (ii) (iii) μ + k × 2μ =μ 1 + 2k [AG so must be convincing] σ 2 + k 2 × 3σ 2 (1 + 3k 2 ) 2 Var(W) = = σ (1 + 2k ) 2 (1 + 2k ) 2 E(W) = 2 2 d (Var(W ) ) = 6k (1 + 2k ) − 4(1 + 42k )(1 + 3k ) dk (1 + 2k ) B1 M1A1 M1A1 M1A1 For minimum variance, 6k (1 + 2k ) 2 = 4(1 + 2k )(1 + 3k 2 ) M1 3k (1 + 2k ) = 2(1 + 3k 2 ) k= A1 2 3 A1 [Award full marks if correct answer given with no/partial working] GCE M/S Mathematics M1-M3 & S1-S3 (June 2006)/JD 23 Welsh Joint Education Committee 245 Western Avenue Cardiff· CF5 2YX Tel· No· 029 2026 5000 Fax· 029 2057 5994 E-mail: exams@wjec·co·uk website: www·wjec·co·uk/exams·html
© Copyright 2026 Paperzz