Name: ____________________ Pre- Calculus 12 Date: _____________ Chapter 8 – Logarithmic Functions Solving Logarithmic Equations work sheet Solve each of the following equations for x: 1. log(x) + log(x+9) = 1 2. log(x) – log(x + 3) = 1 3. log(x + 9) – log(x) = 1 4. log(2x + 1) – log(x – 9) = 1 5. log4(x + 3) + log4(x – 3) = 2 6. log8(x + 1) – log8(x) = log8(4) 7. log(x2 ) = (log x)2 8. (log3x)2 – log3(x2) = 3 9. log x = log x 10. log(log x) = 2 11. log5 x2 + 1 = 1 12. log x2 + log x4 = log(2–3 ) 13. log6x + log6(x + 1) = 1 14. log9(x + 1) = 2 + log9x 15. log2(x + 4) = 2 – log2(x + 1) 16. log(2x + 4) + log(x – 2) = 1 17. ln x + ln(x + 1) = ln 2 18. log(x + 3) – log(x – 2) = 2 19. log2(2x2 + 4) = 5 20. log(x – 6) + log(x + 3) = 1 21. log(x) – log(5) = log(2) – log(x – 3) 22. (ln x)3 = ln(x4) 23. log(6x + 5) – log(3) = log(2) – log(x) 24. (log x)3 = log(x4) 25. log(x2) – log(x – 1) = 1 26. log(x + 1) = log(2x2 + 3) – log(2x – 5) –1 27. (log x)2 – 3 log(x) + 2 = 0 28. 1 3 29. 3 + log2(3) + log2(x) = log2(96) 30. log(2x) – 2 log(x) = –1 31. 2 1 + x 1 + x log2 1 – x – 5 log2 1 – x + 4 = 0 32. [log(2x – 1)]2 – 3Log(2x – 1) – 10 = 0 33. 1 2 = log(x) – 1 log(x) + 1 34. log2(3 – x) + log2(1 – x) = 3 35. Log3(2 – x) + Log3(4 – x) = 1 36. Log5(2 – x) + Log5(6 – x) = 1 37. Log2(3 – x) + Log2(7 – x) = 5 38. Log3(5 – x) + Log3(3 – x) = 1 39. Log2(3 – x) + Log2(6 – x) = 2 40. Log2(7 – x) + Log2(5 – x) = 3 1 3 3 1 log(27) + log(9 – 3) = log(x) Logarithms 41. Log6(7 – x) + Log6(1 – x) = 3 42. Log4(4 – x) + Log4(1 – x) = 1 43. log3x + log9x + log27x = 5.5 44. log(x – 3) + log(x + 6) = log(2) + log(5) 45. log(x – 4) + log(x + 3) = log(5x + 4) 46. ln(x2 +1) – 2 ln(x2 – 2x + 1) = ln(5) 47. log5(x – 2) + 2 log5(x3 – 2) + log5(x – 2)–1 = 4 48. 2 log3(x – 2) + log3(x – 4)2 = 0 49. log2(x + 2)2 + log2(x + 10)2 = 4 log2(3) 50. x – 2 3x – 7 log2 = log23x – 1 x – 1 52. log3(5x – 2) – 2 log3 3x + 1 = 1 – log3(4) 53. log(3x – 2) – 2 = 2 log(x + 2) – log(50) 54. 1 51. x – 7 x – 1 2 log2 + log2x + 1 = 1 x – 1 log(10x2) log(x) = 1 55. 2 log9(x) + 9 logx(3) = 10 56. logx(125x) (log25x)2 = 1 57. Log2x + 2Logx8 = 5 58. Log3x + 2Logx9 = 5 59. Log3x – Logx27 = 2 60. Log4x + 4Logx64 = 8 61. Log 62. Log 63. log(log x) + log(log x3 – 2) = 0 64. log3x + 7(9 + 12x + 4x2) = 4 – log2x + 3(6x2 + 23x + 21) 65. x2 logx(27) log9(x) = x + 4 67. log.5xx2 – 14 log16xx3 + 40 log4x x = 0 68. 70. 1 3 x + 4Logx27 = 14 2 x + 3Logx4 = 8 7 66. logx(2) – log4(x) + 6 = 0 xlog(x) = 100x 69. x3 xlog(x) = 100 (x + 1)log(x + 1) = 100(x + 1) 71. xlog(x) = 3x 73. Solve for t: P = P0ekt 75. Solve for n: PVn = c 3 log3(x) 1 72. 2 = 64 74. Solve for t: T = T0 + (T1 – T2)ekt 1 76. Solve for Q: LogaQ = 3 Logay + b 77. Solve for x: Logax = b + Logab 78. Solve for y: Logay = Logab – a 79. Solve for p: LogbP = b – Logb(aP) 2 Logarithms Answers 3 1. 1 2. no solution 3. 1 4. 118 5. 5 6. 1 3 7. 1; 100 8. 27; 3 9. 1; 104 1 1 10. 10100 11. 2 6 12. 15. 0 16. 3 2 2 13. 2 14. 1 2 17. 1 18. 299 19. 14 20. 7 21. 5 22. 1; e2; e–2 23. 2 3 24. 1; 100; .01 25. 5 26. 5 + 131 6 27. 10; 100 28. 18 29. 4 30. 20 31. 1 15 ; 3 17 32. .0505; 2(105 + 1) 33. 103 34. –1 35. 39. 43. 1 1 27 36. 40. 44. 1 3 4 37. 41. 45. 1 –11 8 38. 42. 46. 2 0 2; 3 47. 3 48. 3+ 2,3 49. –1 50. no solution 51. –17 52. 1 53. 2 54. 1 ; 10 55. 3; 39 56. 5; 625 1 57. 8, 4 58. 81, 3 59. 3, 27 60. 64, 4096 61. 8, 2 62. 729, 3 63. 10; 64. –4 65. 2 66. 8; 15 1 3 67. 1; 4; 71. .1223 10 1 2 68. 72. 5 1 1 100; 10 69. 10; 100 70. 10 1 3 4 9 99; – 10 1 3 3 Logarithms
© Copyright 2026 Paperzz