Derivatives of Trig Functions Selected Problems Matthew Staley September 15, 2011 Derivatives of Trig Functions: Selected Problems 1. Find f ! (x): (a) f (x) = 4 cos x + 2 sin x d d (cos x) + 2 (sin x) dx dx = −4 sin x + 2 cos x f ! (x) = 4 (b) f (x) = 2 sin2 x = 2 (sin x)2 = 2 sin x sin x d (sin x sin x) dx d d = 2(sin x (sin x) + sin x (sin x)) dx dx = 2(sin x cos x + sin x cos x) = 2(2 sin x cos x) f ! (x) = 2 = 4 sin x cos x (c) f (x) = sec x − f ! (x) = √ 2 tan x √ d d (sec x) − 2 (tan x) dx dx = sec x tan x − √ 2 sec2 x 1 (d) f (x) = 5 − cos x 5 + sin x d d (5 − cos x) − (5 − cos x) dx (5 + sin x) (5 + sin x) dx f (x) = 2 (5 + sin x) ! = (5 + sin x)(sin x) − (5 − cos x)(cos x) (5 + sin x)2 = 5 sin x + sin2 x − 5 cos x + cos2 x (5 + sin x)2 = (sin2 x + cos2 x) + 5(sin x − cos x) (5 + sin x)2 = (e) 1+5(sin x−cos x) (5+sin x)2 f (x) = sec x tan x f ! (x) = sec x d d (tan x) + tan x (sec x) dx dx = sec x(sec2 x) + tan x(sec x tan x) = sec3 x + sec x tan2 x 2 2. Find (a) d2 y : dx2 y = x cos x dy d d = cos x (x) + x (cos x) dx dx dx = cos x − x sin x d2 y d d = (cos x) − (x sin x) dx2 dx dx d d = − sin x − (sin x (x) + x (sin x)) dx dx = − sin x − (sin x + x cos x) = − sin x − sin x − x cos x = −2 sin x − x cos x (b) y = csc x dy d = (csc x) dx dx = − csc x cot x d d2 y = − (csc x cot x) 2 dx dx d d = −(cot x (csc x) + csc x (cot x)) dx dx = −(cot x(− csc x cot x) + csc x(− csc2 x)) = cot2 x csc x + csc3 x 3 3. Find the equation of the line tangent to the graph of sin x at x = π/4: Let f (x) = sin x, then f ( π4 ) = sin ( π4 ) = √12 . Now f ! (x) = cos x, so f ! ( π4 ) = cos ( π4 ) = √12 . ! " We now have a point, π4 , √12 , and a slope, point-slope formula we obtain our line: 1 1 ! π" y− √ = √ x− 4 2 2 1 x π y−√ = √ − √ 2 2 4 2 y= √x 2 − π √ 4 2 + √1 . 2 So plugging this into the √1 2 4. Show that y = cos x and y = sin x are solutions to the equation y !! + y = 0. y = cos x y ! = − sin x y !! = − cos x y !! + y = − cos x + cos x = 0. y = sin x y ! = cos x y !! = − sin x y !! + y = − sin x + sin x = 0. 4 5. A 10-ft ladder leans against a wall at an angle θ. The of top of the ladder is x feet above the ground. If the bottom of the ladder is pushed towards the wall, find the rate at which x changes with respect to θ when θ = 60◦ . Express the answer in units of feet/degree. 10f t !! x sin θ = 10 x = 10 sin θ ! ! ! ! θ dx d = 10 (sin θ) dθ dθ = 10 cos θ # !π " dx ## 1 = 10 cos = 10( ) = 5 # dθ θ=60◦ = π 3 2 3 $ % 5f t π rad = rad 180◦ = πf t ft ≈ 0.087 ◦ 36 deg 5 ! ! x 6. An airplane is flying on a horizontal path at a height of 3800 ft. At what rate is the distance s between the airplane and the point P changing with respect to θ when θ = 30◦ ? Express the answer in units of feet/degree. 3800 sin θ = s 3800 s= = 3800 csc θ sin θ s !! ! d ds = 3800 (csc θ) dθ dθ = −3800 csc θ cot θ # !π " !π " ds ## = −3800 csc cot dθ #θ=30◦ = π 6 6 6 √ √ = −3800(2)( 3) = −7600 3 $ % √ rad π rad = −7600 3 ft 180◦ √ −380 3π f t ft = ≈ −230 9 deg deg 6 !θ P! ! ! ! 3800 7. Determine where f is differentiable. (a) f (x) = sin x sin x is differentiable for all real values of x because it is continuous for all real values of x. (b) f (x) = cot x cot x = cos x sin x is not continuous whenever sin x = 0, or x = 0, π, 2π, 3π, . . . So f (x) is differentiable for all x $= nπ, n = 0, ±1, ±2, ±3, . . . (c) f (x) = 1 1+cos x This is not continuous whenever 1 + cos x = 0 cos x = −1 x = π, 3π, 5π, . . . So f (x) is differentiable for all x $= (2n + 1)π, n = 0, ±1, ±2, ±3, . . . 7
© Copyright 2026 Paperzz