Faculty of Engineering ELECTRICAL AND ELECTRONIC ENGINEERING DEPARTMENT EENG115/INFE115 Introduction to Logic Design EENG211/INFE211 Digital Logic Design I Spring 2009-10 Instructors: M. K. Uyguroğlu H. Demirel Final EXAMINATION June 08, 2010 Duration : 120 minutes Number of Problems: 7 Good Luck STUDENT’S NUMBER NAME SOLUTIONS SURNAME GROUP NO Problem Achieved Maximum 1 10 2 10 3 10 4 10 5 20 6 20 7 20 TOTAL 100 Introduction to Logic Design/ Digital Logic Design I - Final Examination Question 1 (10 points) A. Converting (153)10 to base 8 yields which of the following results? (a) (b) (c) (d) (e) 107 132 701 231 153 B. Converting (0111011.100)2 to base 16 yields which of the following results? (a) (b) (c) (d) (e) 73.8 3C.4 3B.8 73.4 3B.4 C. 10100 is the two's complement representation of: (a) (b) (c) (d) (e) -11 +12 -12 -20 +20 D. Simplification of the Boolean expression AB + ABC + ABCD + ABCDE + ABCDEF yields which of the following results? (a) (b) (c) (d) (e) ABCDEF AB AB + CD + EF A+B+C+D+E+F A + B(C+D(E+F)) E. Given that F = (A + B'+ C)(D + E), which of the following represents the only correct expression for F'? (a) (b) (c) (d) (e) F' = A'BC'+ D'+ E' F' = AB'C + DE F' = (A'+ B + C')(D'+ E') F' = A'BC' + D'E' F' = (A + B'+ C)(D'+ E') M. K. Uyguroğlu, H. Demirel June 08, 2010 Introduction to Logic Design/ Digital Logic Design I - Final Examination Question 2 (10 points): A. Identify the function which generates the K-map shown (a) (b) (c) (d) (e) F(A,B,C)= Σ(1,3,4,7) F(A,B,C)= Σ (1,3,5,6) F(A,B,C)= Σ (3,4,5,6) F(A,B,C)= Π(1,3,4,7) F(A,B,C)= Π (1,3,5,6) AB C 00 01 11 10 0 0 0 1 0 1 1 1 0 1 B. Identify the most simple expression from the K-map shown. (a) (b) (c) (d) (e) F(A,B,C,D)=B'C + AD + CD F(A,B,C,D)=BC' + BCD' + AC'D' F(A,B,C,D)=BC' + BCD' + AB'C'D' F(A,B,C,D)=AD + BCD' + CD F(A,B,C,D)=BC' + BD' +AC'D' AB CD 01 11 10 00 1 1 1 01 1 1 1 1 00 11 10 M. K. Uyguroğlu, H. Demirel June 08, 2010 Introduction to Logic Design/ Digital Logic Design I - Final Examination C. Identify the most simple Product of Sums (POS) expression which generates the K-map shown. (a) (b) (c) (d) (e) AB F(A,B,C)=(A+C')(A+B+C) F(A,B,C)=(A+B)(A+C')(B+C') F(A,B,C)=(A'+B')(A'+C)(B'+C) F(A,B,C)=(A'+C)(A'+B'+C') F(A,B,C)=(A+B)(A'+C)(B'+C) C 00 01 11 10 0 1 0 0 0 1 1 1 0 1 D. The most reduced expression which can be obtained from the K-map illustrated is: (a) (b) (c) (d) (e) F(A,B,C,D)=A + D F(A,B,C,D)=C F(A,B,C,D)=A + B F(A,B,C,D)=A F(A,B,C,D)=A + B + D AB CD 00 01 11 10 x 1 1 01 x x 1 1 11 x x 1 1 x 1 1 10 M. K. Uyguroğlu, H. Demirel 00 June 08, 2010 Introduction to Logic Design/ Digital Logic Design I - Final Examination Question 3 (10 points): a) Construct a 16 X 1 multiplexer by using 5 4x 1 multiplexers. Use block diagrams. M. K. Uyguroğlu, H. Demirel June 08, 2010 Introduction to Logic Design/ Digital Logic Design I - Final Examination b) Construct a 2-to-4-line decoder by using a 1-to-4 Demultiplexer. Use block diagrams. Question 4 (10 points): Implement the following Boolean function with a 4 x 1 multiplexer: F(A, B, C, D) = Σ (0, 1, 3, 4, 8, 9, 15) Minterm A BCD F 0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 0 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 0 6 0 1 1 0 0 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 0 13 1 1 0 1 0 14 1 1 1 0 0 15 1 1 1 1 1 M. K. Uyguroğlu, H. Demirel I0= C’+D I1=C’D’ I2= C’ I3= CD June 08, 2010 Introduction to Logic Design/ Digital Logic Design I - Final Examination Question 5 (20 points): Design a combinational circuit that converts a 4-bit gray code to a 4-bit binary number. Implement the circuit using exclusive-OR gates. Gray Code Decimal BINARY A B C D W X Y Z 0 0000 0 0 0 0 0 0 0 0 1 0001 0 0 0 1 0 0 0 1 2 0011 0 0 1 1 0 0 1 0 3 0010 0 0 1 0 0 0 1 1 4 0110 0 1 1 0 0 1 0 0 5 0111 0 1 1 1 0 1 0 1 6 0101 0 1 0 1 0 1 1 0 7 0100 0 1 0 0 0 1 1 1 8 1100 1 1 0 0 1 0 0 0 9 1101 1 1 0 1 1 0 0 1 10 1111 1 1 1 1 1 0 1 0 11 1110 1 1 1 0 1 0 1 1 12 1010 1 0 1 0 1 1 0 0 13 1011 1 0 1 1 1 1 0 1 14 1001 1 0 0 1 1 1 1 0 15 1000 1 0 0 0 1 1 1 1 M. K. Uyguroğlu, H. Demirel W= A June 08, 2010 Introduction to Logic Design/ Digital Logic Design I - Final Examination Question 6 (20 points): Derive the state table and the state diagram of the sequential circuit shown in Fig. FQ-6. Z A X J Q K Q' J Q K Q' Y I0 2X1 A' MUX I1 S0 B B' Figure FQ-6 JA = x KA= B’x’+Bx JB= A’ KB=A+x Y=AB Z=A’B+x’ Present Input Next State State A B x A B 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 0 Output Flip-flop Input Y Z JA KA 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 M. K. Uyguroğlu, H. Demirel JB 1 1 1 1 0 0 0 0 KB 0 1 0 1 1 1 1 1 June 08, 2010 Introduction to Logic Design/ Digital Logic Design I - Final Examination Question 7 (20 points): Design the sequential circuit specified by the state diagram of Fig. FQ-7 using T flip-flops. 000 1 0 010 0 001 1 1 0 1 0 011 1 100 0 0 1 1 0 101 110 0 1 111 Figure FQ-7 Present Input Next State State A B C x A B 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 Flip-flop Inputs C TA TB 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1 M. K. Uyguroğlu, H. Demirel TC = x’ TC 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 June 08, 2010 Introduction to Logic Design/ Digital Logic Design I - Final Examination M. K. Uyguroğlu, H. Demirel June 08, 2010
© Copyright 2026 Paperzz