Name: ___________________________ Multiplying Binomials Date: ________________ Many teachers like to use FOIL (First, Outer, Inner, Last) to teach multiplying binomials, but we find this method can be confusing and really only works when you are multiplying two binomials. What happens when you have to multiply three or more? Instead of FOIL, we use a Punnett Square and this method also engenders some crossover between math and science! Example #1: (π₯ + 6)(π₯ + 3) x +6 π₯2 +6π₯ +3π₯ +18 x +3 Thus, π₯ 2 + 6π₯ + 3π₯ + 18 ππ + ππ + ππ When multiplying three (or more) binomials, multiply two binomials at a time. Example #2: (π₯ + 5)(π₯ β 3)(π₯ + 2) π₯ +5 π₯2 +5π₯ β3π₯ β15 π₯ β3 Thus, π₯ 2 + 5π₯ β 3π₯ β 15 π₯ 2 + 2π₯ β 15 Next, take the resulting trinomial and multiply it by the remaining binomial. π₯2 π₯ +2 Kopp & Rossi² +2π₯ β15 π₯3 +2π₯ 2 β15π₯ +2π₯ 2 +4π₯ β30 Thus, π₯ 3 + 2π₯ 2 β 15π₯ + 2π₯ 2 + 4π₯ β 30 ππ + πππ β πππ β ππ 1 Multiplying Three Binomials Simplify each expression. 1. (t + 3)(t + 2)(t + 5) 2. (z β 2)(z β 5)(z + 2) 3. (d β 4)(d + 2)(d β 3) 4. (y β 2)(y β 1)(y + 3) 5. (c + 6)(c β 4)(c + 2) Kopp & Rossi² 2 Multiplying Three Binomials Simplify each expression. 6. (t + 4)(t + 2)(t β 1) 7. (z β 4)(z β 3)(z + 2) 8. (d β 9)(d + 1)(d β 4) 9. (y + 2)(y β 2)(y + 2) 10. (c + 6)(c β 3)(c + 1) Kopp & Rossi² 3 Multiplying Three Binomials Simplify each expression. 11. (t β 3)(t + 6)(t β 5) 12. (z β 1)(z β 6)(z + 2) 13. (d β 2)(d + 2)(d β 3) 14. (y β 4)(y β 4)(y + 3) 15. (c β 6)(c β 6)(c β 6) Kopp & Rossi² 4 Multiplying Three Binomials Simplify each expression. 16. (t + 4)(2t + 2)(2t β 1) 17. (z β 4)(z β 3)(2z + 2) 18. (2d β 4)(2d + 1)(d β 4) 19. (3y + 2)(y β 2)(2y + 2) 20. (β3c + 6)(c β 3)(2c + 1) Kopp & Rossi² 5 Name: ___________________________ Multiplying Binomials Date: ________________ 1). Which of these is equivalent to (π₯ β 3)2 ? A. π₯ 2 β 6π₯ + 9 B. π₯ 2 + 6π₯ + 9 C. π₯ 2 β 3 D. π₯ 2 + 3 2). Which of these is equivalent to (π₯ β 2)2 ? F. π₯ 2 + 4 G. π₯ 2 β 4 H. π₯ 2 + 4π₯ + 4 J. π₯ 2 β 4π₯ + 4 3). Which of these is equivalent to (π₯ + 5)2 ? A. π₯ 2 + 10π₯ β 25 B. π₯ 2 + 10π₯ + 25 C. π₯ 2 β 5 D. π₯ 2 + 5 4). What is (π₯ + 9)(π₯ + 4)(π₯ + 2)? F. π₯ 3 β 15π₯ 2 β 62π₯ β 72 G. π₯ 3 + 15π₯ 2 + 62π₯ β 72 H. π₯ 3 + 15π₯ 2 + 62π₯ + 72 J. π₯ 3 + 15π₯ + 62π₯ + 72 5). What is (π₯ + 2)(π₯ β 1)(π₯ + 3)? A. π₯ 3 + 4π₯ 2 + π₯ + 6 B. π₯ 3 + 4π₯ 2 + π₯ β 6 C. π₯ 3 β 4π₯ 2 β π₯ + 6 D. π₯ 3 β 4π₯ 2 β π₯ β 6 6). What is the coefficient of the term with the highest degree in the polynomial expression 13π₯ β 6π₯ 2 β 7π₯ 4 + 5π₯ 3 + 12? F. β6 G. β7 H. 13 J. 5 7). What is the coefficient of the term with the highest degree in the polynomial expression β4π₯ 2 + 6π₯ β 3π₯ 3 + 2π₯ 4 β 23? A. β4 B. 2 C. β3 D. β23 Kopp & Rossi² Name: ___________________________ Multiplying Binomials Date: ________________ 8). A developer makes a blueprint using the rectangle shown below. (π΄ = ππ€) (π₯ + 3) (π₯ β 3) What is an equivalent expression for the area of this rectangle? F. π₯ 2 β 9 G. π₯ 2 β 3π₯ H. π₯ 2 β 6π₯ β 9 J. π₯ 2 + 6π₯ β 9 1 9). A developer makes a blueprint using the triangle shown below. (π΄ = 2 πβ) (π₯ β 5) 5π₯ What is an equivalent expression for the area of this triangle? 1 A. 2 π₯ 2 + 5 B. 5π₯ 2 β 25π₯ C. D. π₯ 2 β5 2 5π₯ 2 β25π₯ 2 10). What is the volume of the cube? (π₯ + 3) F. π₯ 3 β 2π₯ 2 β 11π₯ β 12 G. π₯ 3 + 2π₯ 2 + 11π₯ + 12 H. π₯ 3 β 2π₯ 2 β 11π₯ + 12 J. π₯ 3 β 2π₯ 2 β 11π₯ β 12 Kopp & Rossi² (π₯ β 1) (π₯ β 4) Name: ___________________________ ANSWER KEY 1) A 2) J 3) B 4) H 5) B 6) G 7) B 8) F 9) D 10) H Kopp & Rossi² Multiplying Binomials Date: ________________
© Copyright 2026 Paperzz