Concepts of Higher Order Linear Differential Equations - (3.1) 1. Higher Order Linear Differential Equations: An nth-order linear differential equation: dny d n"1 y dy a n x n a n"1 x n"1 . . . a 1 x a 0 x y gx dx dx dx dny d n"1 y dy Let Ly a n x n a n"1 x n"1 . . . a 1 x a 0 x y. L is a linear operator meaning for any dx dx dx constant ) and * L)y *z )Ly *Lz . An initial-value problem for an nth-order linear differential equation: solve dny d n"1 y dy a 0 x y gx a n x n a n"1 x n"1 . . . a 1 x dx dx dx subject to ya y 0 , y U a y 1 , . . . , y n"1 a y n"1 . A boundary-value problem for a 2nd-order linear differential equation: solve d2y dy a 2 x 2 a 1 x a 0 x y gx dx dx subject to ya ), yb *. Boundary-value problems with other boundary conditions: ya ), y U b * y U a ), yb * y U a ), y U b * c 1 ya c 2 y U a ), c 3 yb c 4 y U b *. Homogeneous and nonhomogeneous differential equations: Homogeneous: gx 0, and Ly 0 Nonhomogeneous: gx p 0, and Ly gx 2. Existence of a Unique Solution of An Initial-Value Problem: Let a 0 x , a 1 x , . . . , a n x and gx be continuous on an interval I, and let a n x p 0 for every x in I. If x a is a point in I, then the initial-value problem has a unique solution in I. Example 1 Show that yx 3 C 1 x C 2 x 2 is the general solution of the differential equation x 2 y UU " 2xy U 2y 6 2 Find an interval I on which the initial-value problem x 2 y UU " 2xy U 2y 6, y1 3, y U 1 1 has a unique solution; and 3 solve the initial value problem. 1 Verify that y satisfies the differential equation: y U C 1 2C 2 x, y UU 2C 2 x 2 y UU " 2xy U 2y x 2 2C 2 " 2xC 1 2C 2 x 23 C 1 x C 2 x 2 x 2 2C 2 " 4C 2 2C 2 x"2C 1 2C 1 6 6 2 Here a 0 x 2, a 1 x "2x, a 2 x x 2 , and gx 6. Since a 2 x x 2 0, x 0, consider I 0, . . Then a 0 x , a 1 x , a 2 x , and gx 6 are continuous on I and a 2 x p 0 for every x in I. The initial value of x 1 is also in I. So, the 1 initial-value problem has a unique solution on I. 3 Solve constants C 1 and C 2 so that y satisfies the initial conditions. y1 3 C 1 C 2 3 U y 1 C 1 2C 2 1 C1 C2 ® C1 C2 0 ® C 1 2C 2 1 1 1 1 2 "1 0 1 the solution of the initial value problem: 1 1 C1 1 2 C2 0 1 "1 1 y 3 " x x2 Example 1 Show that y C 1 cos 4x C 2 sin 4x is the general solution of the differential equation y UU 16y 0. 2 Solve the boundary-value problems i y0 0, y = 2 UU y 16y 0, ii y0 0, y = 8 iii y0 0, y = 2 1 Verify that y satisfies the differntial equation: y U "4C 1 sin 4x 4C 2 cos 4x, 0; 0; 1. y UU "16C 1 cos 4x " 16C 2 sin 4x y UU 16y "16C 1 cos 4x " 16C 2 sin 4x 16C 1 cos 4x C 2 sin 4x 0 2 Solve the boundary value problems: i. y0 0, y = 0 2 y0 C 1 0, y = C 2 sin2= 0, C 2 can be any real number 2 So, the BVP has infinitely many solutions: y C 2 sin 4x. = ii. y0 0, y 0 8 y0 0, C 1 0, y = C 2 sin = C 2 0 8 2 So, the BVP has a unique solution: y 0. iii. y0 0, y = 1 2 y0 0, C 1 0, y = C 2 sin2= 0 p 1 2 So, the BVP has no solution. 3. Homogeneous Linear Differential Equations: a. The general solution of a homogeneous nth-order linear differential equation: Let y 1 , . . . , y k be solutions of the homogeneous nth-order differential equation Ly 0 on an interval I. Then the linear combination: y C 1 y 1 C 2 y 2 . . . C n y n U where C i s are arbitrary constants, is also a solution on I. It is easy to see. Since Ly i 0, for i 1, . . . , n, Ly LC 1 y 1 C 2 y 2 . . . C n y n C 1 Ly 1 . . . C n Ly n 0. b. Linear independence of solutions: 2 A set of functions: f 1 x , . . . , f n x is said to be linearly independent on an interval I if C 1 f 1 x C 2 f 2 x . . . C n f n x 0 implies C 1 C 2 . . . C n 0 for all x in I. If a set is not linearly independent on I, then it is said to be linearly dependent. Example The set of functions 1, x, x 2 , . . . , x n is linearly independent on "., . . 2 1 -4 -2 0 2 x -4 4 4 20 2 10 0 -2 -1 2 x -4 4 0 -2 -2 -10 -4 -20 2 x 4 -2 yx y1 y x2 None of them can be a linear combination of others. So, 1, x, x 2 , . . . , x n is linearly independent on "., . . Example Determine if the set of functions: 1, sin 2 x, cos 2x, is linearly independent on "., . . Since sin 2 x 12 1 " cos 2x 12 " 12 cos 2x, a linear combination of 1 and cos 2x, the set of 1, sin 2 x, cos 2x is linearly dependent on "., . . 2 1 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 -4 -2 0 2 x 4 -4 -2 -1 -2 y1 2 x 4 0 -0.2 -2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0, 1 . Since x 0, |x| x, ii. Consider x in I 2 "1, 1 . Then x C 1 x C 2 |x| 2 x x, |x| x if x u 0 "x if x 0 x, x is linearly independent on is linearly dependent on and C 1 x C 2 x xC 1 C 2 if x u 0 C 1 x " C 2 x xC 1 " C 2 if x 0 C1 C2 0 if x u 0 C1 " C2 0 if x 0 4 y cos 2x 0, 1 , I 2 "1, 1 . Determine if x, |x| i. Consider x in I 1 I1. C 1 x C 2 |x| 0 ® -4 y sin 2 x Example Let x, |x| and I 1 i. I 1 and ii. I 2 . 3 0 -0.2 ® 1 1 C1 1 "1 C2 . 0 0 C1 C2 x, |x| 1 1 "1 0 1 "1 0 0 0 is linearly independent on I 2 . 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 -1 -0.8 -0.6 -0.4 -0.2 -0.2 0.2 0.4 x 0.6 0.8 0 -1 -0.8 -0.6 -0.4 -0.2 -0.2 1 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0.2 0.4 x0.6 0.8 1 yx y |x| c. Linear independence of solutions of a linear differential equation: Definition: Wronskian: Let functions f 1 x , . . . , f n x have at least n " 1 derivatives. The determinant Wf 1 , . . . , f n det f1 f2 ... fn f U1 f U2 ... f Un : : : : f n"1 . . . f n"1 f n"1 n 1 2 is call the Wronskian of the functions: f 1 x , . . . , f n x . Criterion for linearly independent solutions: Let y 1 , y 2 , . . . , y n be n solutions of the homogeneous linear nth-order differential equation on an interval I. Then the set of solutions is linearly independent on I if and only if Wy 1 , . . . , y n p 0 for every x in I. It can be seen as follows. Let C 1 y 1 . . . C n y n 0. Solve for C Ui s. Since k C 1 y k 1 . . . C n y n 0, for k 0, 1, . . . , n " 1, y1 y2 ... yn C1 y U1 y U2 ... y Un C2 : : : : : y n"1 . . . y n"1 y n"1 n 1 2 0 0 : 0 Cn C1 Wy 1 , . . . , y n p 0 for every x in I · C2 : Cn 0 0 : 0 Example Determine if the set of solutions of a differential equation is linearly independent I, specify I. ii e )x , e *x , ) p * i 1, x, x ln x 4 y U1 0 y1 1 i. y U2 1 , y2 x y UU1 0 , y U3 ln x x 1x y 3 x ln x ln x 1 y UU2 0 y UU3 1x 1 x x ln x 0 1 ln x 1 0 0 1x W 1, x, x ln x is defined on either 0, . or "., 0 . Let I Hence, 1, x, x ln x is linearly independent on I. W 1, x, x ln x ii. y 1 e )x y 2 e *x , det 1x 0, . . W 1, x, x ln x p 0. y U1 )e )x y U2 *e *x W e )x , e *x det Since * p ) and e )* x p 0, e )x )e )x e )x , e *x e *x *e *x *e )* x " )e )* x e )* x * " ) is linearly independent on "., . . d. Fundamental set of solutions: A set y 1 , . . . , y n of an nth-order linearly independent solutions of a homogeneous differential equation: Ly 0 on I is said to be a fundamental set of solutions. Existence of a Fundamental Set of Solutions: There exists a fundamental set of solutions for a homogeneous linear nth-order differential equation Ly 0. The General Solution of a Linear nth-order Homogeneous Differential Equation: Ly 0 Let y 1 , . . . , y n be a fundamental set of solutions of Ly 0 for x in I. Then the general solution of the equation Ly 0 for x in I is y C 1 y 1 . . . C n y n U where C i s are arbitrary constants. Example i. Show that y 1 e x and y 2 e "x/2 are solutions of the differential equation 2y UU " y U " y 0 ii. Find the general solution of the equation. i. Verify y 1 and y 2 are solutions of the differential equation. y 1 e x , y U1 e x , y UU1 e x , 2y UU1 " y U1 " y 1 2e x " e x " e x 0 y 2 e "x/2 , y U2 " 1 e "x/2 , y UU2 1 e "x/2 2 4 2 1 e "x/2 " " 1 e "x/2 " e "x/2 1 e "x/2 1 e "x/2 " e "x/2 0 2 2 2 4 x "x/2 is linearly independent on "., . . y 1 e x ii. From the previous example, we know e , e "x/2 and y 2 e form a fundamental set of solutions. Hence, the general solution is y C 1 e x C 2 e "x/2 . 4. Nonhomogeneous Linear Differential Equations: 5 a. Solution of nonhomogeneous equation: Consider Ly gx . A function y p satisfy the equation Ly gx is called a particular solution of the equation: Ly gx . General solution of a nonhomogeneous equation: Ly gx Let y 1 , . . . , y n be a fundamental set of solutions of the homogeneous equation: Ly 0. Then the general solution of Ly gx for x in I is y C 1 y 1 . . . C n y n y p where C Ui s are arbitrary constants. b. If y p and y q are particular solutions of Ly gx and Ly hx , respectively, then the general solution of the equation Ly gx hx is y C 1 y 1 . . . C n y n y p y q Example 1 Show that y p 1 5 cos x " 3 sin x 5 UU U and y q "3x 2 6x " 18 are solutions of the equations 2y " y " y 2 sin x, 2y UU " y U " y 3x 2 respectively. 2 Find a particular solution of the equation 2y UU " y U " y 2 sin x 3x 2 . 1 Verify that y p satisfies the differential equation: 2y UU " y U " y 2 sin x y Up " 1 sin x " 3 cos x, y UUp " 1 cos x 3 sin x 5 5 5 5 2y UUp " y Up " y p " 2 cos x 6 sin x 1 sin x 3 cos x " 1 cos x 3 sin x 5 5 5 5 5 5 cos x " 2 3 " 1 sin x 6 1 3 2 sin x 5 5 5 5 5 5 2 UU U satisfies the differential equation: 2y Verify that y q " y " y 3x U UU y q "6x 6, y q "6 2y UU " y U " y 2"6 " "6x 6 " "3x 2 6x " 18 x 2 3 x6 " 6 "12 " 6 18 3x 2 2 Let y r y p y q 15 cos x " 35 sin x "3x 2 6x " 18 . y r is a particular solution of the differential equation: 2y UU " y U " y 2 sin x 3x 2 . 6
© Copyright 2026 Paperzz