Content Standard CC-8 CC-8 Using Rational Exponents Objective N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents . . . . Solve It! PURPOSE 5PQSFTFOUTUVEFOUTXJUIBWBSJFUZPG FYQSFTTJPOTUIBUJODMVEFJOUFHFSFYQPOFOUT PROCESS 4UVEFOUTNBZ t VTFUIFSVMFTPGFYQPOFOUTUPTJNQMJGZFBDI FYQSFTTJPOUPBTJOHMFCBTFBOEFYQPOFOU t DPNQBSFBOEPSEFSTJNQMJGJFEFYQSFTTJPOT To extend operations with powers to rational exponents 22 t 2 " ! ! (2–1 )2 (22)2 t 2–2 2–1 2t 2 t FACILITATE Q 8IBUJTBOPUIFSXBZUPXSJUFBTBQPXFSXJUIBO 2 2–2 FYQPOFOU [21] Q &YQMBJOUIFEJGGFSFODFCFUXFFOUIFFYQSFTTJPOT 1 BOE (1) [To simplify the first expression, add the exponents. To simplify the second expression, multiply the exponents.] (22)2 MATHEMATICAL PRACTICES 1 Interactive Learning Not all exponents are integers. Exponents may be rational numbers, such as fractions. Essential Understanding You can use properties of exponents to simplify expressions with rational exponents. Q 8IJDIJTHSFBUFSPS 1 &YQMBJO [2 is greater because 21 2 20 , or 1.] Property Multiplying Powers With the Same Base ANSWER 4FF4PMWF*UJO"OTXFSTPOOFYUQBHF CONNECT THE MATH *OUIJTMFTTPOTUVEFOUTXJMM Words To multiply powers with rational exponents and the same base, add the exponents. Algebra am an amn , where a 0 and m and n are rational numbers 1 1 1 1 2 Examples 2 3 2 3 2 3 3 2 3 Problem 1 1 2 1 2 MFBSOUIBUUIFQSPQFSUJFTPGJOUFHFSFYQPOFOUTBMTP BQQMZUPSBUJPOBMFYQPOFOUT4UVEFOUTNVTUCF QSPGJDJFOUXJUIDPNQVUJOHXJUIJOUFHFSFYQPOFOUT BTXFMMBTQFSGPSNJOHPQFSBUJPOTPOGSBDUJPOT 4UVEFOUTXJMMDPOOFDUSBUJPOBMFYQPOFOUTUPSPPUTJO "MHFCSB 3 d5 d5 d55 d5 Multiplying Powers With Rational Exponents What is the simplified form of each expression? 3 1 3 1 A 510 510 510 10 4 What extra step is needed with fractional exponents? The denominators must be the same to perform addition. Add the exponents of powers with the same base. 2 Simplify the exponent. 5 10 5 5 B 1 2 1 2 Add the exponents of powers with the same base. 1 6 Write the fractions with like denominators. c9 c3 c93 c99 7 Take Note Simplify. c9 Got It? 2 Guided Instruction 1. What is the simplified form of each expression? 3 5 1 a. 15 7 15 7 3 b. z 5 z 10 v c. 3 v 3 7 CC-8 Using Rational Exponents 1 Problem 1 CC-8 Preparing to Teach BIG ideas Properties Equivalence ESSENTIAL UNDERSTANDINGS t&YQSFTTJPOTXJUISBUJPOBMFYQPOFOUT DBOCFTJNQMJGJFEVTJOHQSPQFSUJFTPG FYQPOFOUT Math Background *OUIJTMFTTPOTUVEFOUTDPOOFDUXIBU UIFZIBWFQSFWJPVTMZMFBSOFEBCPVUUIF QSPQFSUJFTPGJOUFHFSFYQPOFOUTUPUIF QSPQFSUJFTPGSBUJPOBMFYQPOFOUT4UVEFOUT TIPVMECFBCMFUPNVMUJQMZQPXFSTXJUI UIFTBNFCBTFSBJTFBQPXFSUPBQPXFS BOESBJTFBQSPEVDUUPBQPXFS4UVEFOUT TIPVMEBMTPCFGBNJMJBSXJUIBEEJOHBOE NVMUJQMZJOHGSBDUJPOT4UVEFOUTXJMMBQQMZ UIJTLOPXMFEHFUPEJTDPWFSBOEVTFUIF QSPQFSUJFTPGSBUJPOBMQPXFST 3FWJFXXJUITUVEFOUTUIFDPNQPOFOUTPGB QPXFSJODMVEJOHCBTFBOEFYQPOFOU5IFSVMFGPS NVMUJQMZJOHQPXFSTXJUIUIFTBNFCBTFSFRVJSFT UIBUUIFCBTFPGFBDIGBDUPSCFJEFOUJDBM5IFCBTF NBZCFBOVNCFSPSBWBSJBCMF$PNQBSFUIFSVMF GPSNVMUJQMZJOHQPXFSTXJUIUIFTBNFCBTFBOE JOUFHFSFYQPOFOUTXJUINVMUJQMZJOHQPXFSTXJUIUIF TBNFCBTFBOESBUJPOBMFYQPOFOUT Q 8IZJTBOFYUSBTUFQOFFEFEUPTPMWF# [The Mathematical Practice Look for and make use of structure. *OEJTDFSOJOHUIFQSPQFSUJFTPGSBUJPOBM FYQPOFOUTTUVEFOUTXJMMDPOOFDUUIF QSPQFSUJFTPGJOUFHFSFYQPOFOUTUPSBUJPOBM FYQPOFOUT5IFZXJMMBQQMZUIFTUSVDUVSF PGJOUFHFSFYQPOFOUTUPUIFTUSVDUVSFPG SBUJPOBMFYQPOFOUT denominators are different, so you need to rewrite the fractions with like denominators before adding.] Got It? Q 8IBUJTUIFQSPDFTTGPSNVMUJQMZJOHQPXFSTXJUI UIFTBNFCBTFJGPOFPSNPSFPGUIFFYQPOFOUTBSF OFHBUJWF [Add the exponents, accounting for negative signs, as you would when adding negative fractions.] CC-8 1 Take Note Property Raising a Power to a Power $PNQBSFUIFSVMFGPSSBJTJOHBQPXFSUPBQPXFS XJUIJOUFHFSFYQPOFOUTUPUIFSVMFGPSSBJTJOHB QPXFSUPBQPXFSXJUISBUJPOBMFYQPOFOUT'PS JOUFHFSTBOESBUJPOBMFYQPOFOUTNVMUJQMZUIF FYQPOFOUT Words To raise a power with a rational exponent to a power, multiply the exponents. Algebra (am)n amn , where a 0 and m and n are rational numbers 1 3 1 3 1 3 3 Examples 4 2 5 4 2 5 4 10 Problem 2 1 3 Problem 2 Simplifying Powers of Powers Q )PXEPFTSBJTJOHBQPXFSXJUIBSBUJPOBMFYQPOFOU UPBQPXFSEJGGFSGSPNNVMUJQMZJOHQPXFSTXJUI SBUJPOBMFYQPOFOUTBOEUIFTBNFCBTF [To raise a power to a power, multiply the exponents. To multiply two powers, add the exponents.] How do you raise a power to a power when the exponents are rational? The process is the same as for integer exponents: multiply the exponents. What is the simplified form of each expression? 1 2 1 2 A 64 7 64 7 Multiply exponents when raising a power to a power. 1 14 Simplify. 6 B 3 1 3 1 Multiply exponents when raising a power to a power. 3 Simplify. k 8 2 k 8 2 k 16 Got It? Got It? 2. What is the simplified form of each expression? Q 8IBUSVMFT DPODFSOJOHBEEJUJPOXJUIQPTJUJWF BOEOFHBUJWFJOUFHFSTBQQMZUPBEEJUJPOXJUI QPTJUJWFBOEOFHBUJWFSBUJPOBMFYQPOFOUT 2 3 3 3 3 the whole-number base as a power. For example, 164 (2 2 2 2)4 (24)4 24 4 23 8. Property Raising a Product to a Power Words To raise a product to a rational power, raise each factor to the power and multiply. Algebra (ab)n anbn , where a 0, b 0, and n is a rational number 2 2 2 2 2 2 2 2 2 Examples (27u)3 273u3 (3 3 3)3u3 (33)3u3 32u3 9u3 [The rules are the same for integers and rational exponents: positive times positive is positive; negative times negative is negative; positive times negative is negative.] Problem 3 Simplifying Powers of Products What is the simplified form of each expression? 1 A (32m)5 Raise each factor to the one-fifth power. ERROR PREVENTION Simplify the expression. 2 Common Core Answers Additional Problems Solve It! (1) 1 () () b. z 1. 8IBUJTUIFTJNQMJGJFEGPSNPGFBDI FYQSFTTJPO 1 1 a. 78 78 1 4 b. k 5 k 15 1 Got It? ANSWER a7 4 1. a.15 7 7 15 b. k 2. 8IBUJTUIFTJNQMJGJFEGPSNPG FBDIFYQSFTTJPO 1 8v c. 3 7 2. a. 10 3 PS 1 b. a 1 3 1 1 b. (t 3 6 a. 54 1 103 3 1 ANSWER a 5 8 PS 3 58 1 9 b. t 3. 8IBUJTUIFTJNQMJGJFEGPSNPGFBDI FYQSFTTJPO 1 1 b. 81z 3 4 a. 64c 3 1 ANSWER a. 4c 3 3 b. 3z 4 CC-8 4USFTTUIFJNQPSUBODFPGLOPXJOHXIFOUPBEEUIF FYQPOFOUTBOEXIFOUPNVMUJQMZ4PNFTUVEFOUT NBZNVMUJQMZUIFFYQPOFOUTXIFONVMUJQMZJOH FYQSFTTJPOTXJUISBUJPOBMFYQPOFOUTBOEUIFTBNF CBTFSBUIFSUIBOBEEJOHUIFFYQPOFOFUT 3FWJFXXJUITUVEFOUTUIFDPNQPOFOUTPGB QSPEVDUUPBQPXFSJODMVEJOHBCBTFDPNQSJTFE PGTFWFSBMGBDUPSTBOEBOFYQPOFOU5IFQSPEVDU abJTDPNQSJTFEPGUIFUXPGBDUPSTaBOEb5IF QSPEVDUuJTDPNQSJTFEPGUIFUXPGBDUPST BOEu&BDIGBDUPSNVTUCFSBJTFEUPUIFSBUJPOBM QPXFSJOEJWJEVBMMZ/PUFUIBUTPNFGBDUPSTDBOCF TJNQMJGJFEGVSUIFSCZSFXSJUJOHUIFGBDUPSBTBCBTF BOEFYQPOFOU3 1 3 b. a9 4 You may be able to simplify a power with a whole-number base and a rational exponent by rewriting 2 8IBUSVMFT DPODFSOJOHNVMUJQMJDBUJPOXJUIQPTJUJWF BOEOFHBUJWFJOUFHFSTBQQMZUPNVMUJQMJDBUJPO XJUIQPTJUJWFBOEOFHBUJWFSBUJPOBMFYQPOFOUT Take Note 5 a. 105 3 [The rules are the same for integers and rational exponents: positive plus positive is positive; negative plus negative is negative; positive plus negative may be positive or negative.] 2 1 r 3 4 r 3 4 r 4 1 B (3f 8) 4 How are the two parts of Problem 3 different? When the variable is raised to a power, you need to use the powerof-a-power property to simplify the variable part of the expression. Problem 3 Raise each factor to the one-fourth power. Q 'PS"XIBUBSFUIFGBDUPSTPGUIFCBTF [32 and m] Multiply the exponents of a power raised to a power. Simplify the expression. Q )PXDBOZPVSFXSJUFBTBQPXFSXJUIBCBTF BOEBOFYQPOFOU [25] Q 'PS#XIBUBSFUIFGBDUPSTPGUIFCBTF [3 and ƒ 8] Got It? Got It? 3. What is the simplified form of each expression? b. (9w2)2 TUVEFOUTNBZNVMUJQMZUIFGBDUPSTCZ 14 SBUIFSUIBO Lesson Check Do you know HOW? Do you UNDERSTAND? 1 10 5 12 1. 36 36 2. v 7 v10 6 9 1 7 9 4. (h6)5 1 6. (4s4)2 5 3. 10 1 5. (8j)3 3 Lesson Check Practice and Problem-Solving Exercises A GJOEJOHUIF 14 UIQPXFS"MTPTPNFTUVEFOUTNBZ POMZSBJTFPOFPGUIFGBDUPSTPGUIFCBTFUPUIF FYQPOFOU4USFTTUIBUJOPSEFSUPTJNQMJGZFBDI GBDUPSOFFETUPCFSBJTFEUPUIFFYQPOFOU MATHEMATICAL PRACTICES 7. Reasoning Explain how multiplying expressions with the same base and integer exponents is similar to multiplying expressions with the same base and rational exponents. Simplify each expression. 1 12 Practice Do you know HOW? MATHEMATICAL PRACTICES 1 1 9. 24 24 1 1 2 1 10. 83 83 1 1 11. 510 510 2 2 13. y 8 y 8 7 3 1 1 14. b2 b2 15. m12 m12 8. 96 96 12. x 5 x 5 1 1 See Problem 2. Simplify each expression. 3 2 4 5 1 1 8 8 16. 6 18. 9 2 4 7 7 8 20. p 2 1 3 2 1 3 17. 2 2 5 9 9 21. h 22. c 1 10 19. 27 9 5 23. z25 2 6 10 1 1 1 1 26. 3n2 8 25. 27x 3 27. 64x9 3 3 CC-8 Using Rational Exponents Answers Practice and Problem-Solving Exercises Got It? (continued) 8. 9 3 1 10. 83 PS 1 1 9. 1 11. 55 PS 11 4 13. y 4 1 15.m 6 PS 1 m 1 17. 64 19. 1 21. h 3 23. z 5 1 4 3. a. b b. 3w Lesson Check 2. v 3. 10 1 7 1 Do you UNDERSTAND? See Problem 3. Simplify each expression. 24. 36k 2 t*GTUVEFOUTIBWFEJGGJDVMUZLOPXJOHXIFOUPBEE BOEXIFOUPNVMUJQMZSBUJPOBMFYQPOFOUTUIFO IBWFUIFNMPPLBU1SPCMFNTBOE3FWJTJUUIF TUSVDUVSFPGBQPXFSXIJDIDPOTJTUTPGBCBTF BOEBOFYQPOFOU4UVEFOUTTIPVMECFBCMFUP EJGGFSFOUJBUFCFUXFFOBOFYQSFTTJPOJOXIJDIUXP QPXFSTBSFNVMUJQMJFEBOEBOFYQSFTTJPOJOXIJDI BQPXFSJTSBJTFEUPBQPXFS.BLFTVSFUIFZDBO BQQMZUIFBQQSPQSJBUFSVMFTUPTJNQMJGZ See Problem 1. Simplify each expression. 1. ERROR PREVENTION 4UVEFOUTXJMMOPUDPOOFDUSBUJPOBMFYQPOFOUTUP SPPUTVOUJM"MHFCSB"MMPXTUVEFOUTUPVTFB DBMDVMBUPSUPTJNQMJGZXIFOQPTTJCMF'PSBTPNF 1 1 a. (16b)4 53 PS 1 3 v5 4. h 1 PS 1h 5. j 3 6.T 7. 8IFOZPVNVMUJQMZQPXFSTXJUI JOUFHFSFYQPOFOUTBOEUIFTBNFCBTF BEEUIFFYQPOFOUT4JODFUIFSVMFT GPSBEEJOHJOUFHFSTBSFUIFTBNFBT UIPTFGPSBEEJOHSBUJPOBMOVNCFST ZPVBMTPNVMUJQMZQPXFSTXJUISBUJPOBM FYQPOFOUTBOEUIFTBNFCBTFCZ BEEJOHUIFFYQPOFOUT 12. x 5 14. 3 16. 6 10 18. 9 3 10 20. p 81 9 22. c 100 PS 24. 6k 1 1 1 26. 3 8n 4 1 1 9 c 100 Close Q *OXIBUUZQFPGFYQSFTTJPOTIPVMEZPVBEEUIF SBUJPOBMFYQPOFOUTUPTJNQMJGZBOEJOXIBU UZQFPGFYQSFTTJPOTIPVMEZPVNVMUJQMZUIF SBUJPOBMFYQPOFOUTUPTJNQMJGZ [Add rational 55 5 t*GTUVEFOUTIBWFEJGGJDVMUZDPOOFDUJOHUIFSVMFTGPS NVMUJQMZJOHXJUIJOUFHFSFYQPOFOUTUPUIFSVMFT GPSNVMUJQMZJOHXJUISBUJPOBMFYQPOFOUTUIFO IBWFUIFNMPPLBU1SPCMFN*GTUVEFOUTBSFTUJMM VODMFBSPGUIFDPOOFDUJPOTXSJUFTFWFSBMTJNQMF NVMUJQMJDBUJPOFYQSFTTJPOTXJUIUIFTBNFCBTF BOEJOUFHFSFYQPOFOUT5IFOSFXSJUFUIFTBNF NVMUJQMJDBUJPOFYQSFTTJPOTXJUISBUJPOBMFYQPOFOUT BOEDPNQBSFUIFTJNQMJGJDBUJPOQSPDFTTFT 1 6 exponents if the expression involves multiplying powers with the same base. Multiply rational exponents if the expression involves raising a power to a power.] 1 25. 3x 3 27. 4x 3 CC-8 3 B 4 Practice Apply Simplify each expression. 7 1 16 6 12 6 12 28. ; < ; < 7 7 ASSIGNMENT GUIDE 29. ; 1 2 1 30. 93 3 99 5 10 1 4 1 1 3 1 4 32. u 20 5 u6 31. m 7 m 4 7 #BTJDoPEEoo "WFSBHFoPEEo "EWBODFEoFWFOo 4UBOEBSEJ[FE5FTU1SFQo .JYFE3FWJFXo 9 h 25 h 25 < ; < 13 13 33. s2 5 6s 3 5 34. Think About a Plan How would you use the Commutative Property of Multiplication to simplify the expression in the box to the right? + , 35. Reasoning Explain how the properties of integer exponents and rational exponents are similar when raising a power to a power and when raising a product to a power. Mathematical Practices BSFTVQQPSUFECZ FYFSDJTFTXJUISFEIFBEJOHT)FSFBSFUIF1SBDUJDFT TVQQPSUFEJOUIJTMFTTPO 1 1 1 1 1 36. Error Analysis Your friend says x4 x3 x4 3 x12 . Explain the error and find the correct answer. C .1.BLF4FOTFPG1SPCMFNT&Y .13FBTPO"CTUSBDUMZ&Y .1$SJUJRVFUIF3FBTPOJOHPG0UIFST&Y .1"UUFOEUP1SFDJTJPO&Y .1"UUFOEUP1SFDJTJPO&Y Challenge 37. Reasoning What is the relationship between y and z such that xy xz 1 for all nonzero values of x? Standardized Test Prep 1 SAT/ACT 1 38. Simplify (6)3 (6)3 . HOMEWORK QUICK CHECK 0 5PDIFDLTUVEFOUTVOEFSTUBOEJOHPGLFZTLJMMTBOE DPODFQUTHPPWFS&YFSDJTFTBOE 1 =6 6 1 39. Which expression is equivalent to (6y 3)6 ? 1 y2 Short Response 1 19 1 1 66 y2 19 6 6y 6 y6 1 1 40. Explain why the expression (a 2)2 a shows that a 2 is the same as a. Mixed Review Simplify each expression. 4 2 41. ; < 9 1 3 42. ; < 5 43. 2(5)2 44. (3)2 (3)2 46. k 6 k 4 47. ( f 8g 9) ( f 4g) 48.(3uv 2)(6v4)(2u2v) 50. (2z)8z5 51. 52(3a)6 52. (x9)2 x5 Simplify each expression. 45. 35 310 Simplify each expression. 49. (n3p)7 4 Common Core Answers Practice and Problem-Solving Exercises (continued) 28. + 67 , 3 1 30. 93 11 7 h 29. + 13 , 5 31.m 7 3 1 3 5 32. u 33. 6 5s 5 PS 6 s 34. 5PSBJTFBSBUJPOBMQPXFSUPBSBUJPOBM QPXFSNVMUJQMZUIFFYQPOFOUT4P* 3 917 OFFEUPNVMUJQMZ 888 917 4 *DPVME VTFUIF$PNNVUBUJWF1SPQFSUZPG .VMUJQMJDBUJPOUPSFPSEFSUIFGBDUPST BOETJNQMJGZUIFGSBDUJPOTCFGPSF NVMUJQMZJOH 35. "OTXFSTNBZWBSZ4BNQMF BOTXFS*OUFHFSTBSFBTVCTFUPGUIF TFUPGSBUJPOBMOVNCFSTXIJDIJTB TVCTFUPGUIFTFUPGSFBMOVNCFST5IF 1SPQFSUJFTPG*OUFHFS&YQPOFOUTBSF EFSJWFEGSPNUIF1SPQFSUJFTPG3FBM /VNCFST4JODFUIFTFUPGJOUFHFSTJTB TVCTFUPGUIFTFUPGSBUJPOBMOVNCFST UIFTBNFFYQPOFOUQSPQFSUJFTBQQMZ 1 5 4 CC-8 36. 5PNVMUJQMZQPXFSTXJUIUIFTBNF CBTFZPVNVTUBEEUIFFYQPOFOUT5P BEEUIFTFFYQPOFOUTZPVNVTUGJSTU GJOEBDPNNPOEFOPNJOBUPSOPUBEE 7 UIFEFOPNJOBUPST5IFBOTXFSJTx 1 37. 'PSUIFQSPEVDUUPFRVBMUIFTVNPG UIFJOUFHFSTNVTUCF[FSP5IJTPDDVST XIFO y z Standardized Test Prep 38.# 39.( 40. + a Z 1 , a 1 a a 1 a a Mixed Review 1 41. 16 42. 15 81 43. 44. 45.15PS 46.k 10 47. f 4g 10 48. 36u 3v 7 49. n 1p 7 50. 56z 13 51. 185a 6 52.x
© Copyright 2026 Paperzz