im Lambers MAT 169 Fall Semester 2009

Jim Lambers
MAT 169
Fall Semester 2009-10
Lecture 38 Examples
These examples correspond to Sections 9.2, 9.3 and 9.4 in the text.
Example (Section 9.3, Exercise 67) Let 𝑃 be any point (except the origin) on the curve π‘Ÿ = 𝑓 (πœƒ).
If πœ“ is the angle between the tangent line at 𝑃 and the radial line 𝑂𝑃 , show that
tan πœ“ =
π‘Ÿ
π‘‘π‘Ÿ/π‘‘πœƒ
[Hint: Observe that πœ“ = πœ™ βˆ’ πœƒ in the figure on page 504 in the text.]
Solution We have
tan πœ“ = tan(πœ™ βˆ’ πœƒ) =
tan πœ™ βˆ’ tan πœƒ
.
1 + tan πœ™ tan πœƒ
Because πœ™ is the angle that the tangent line makes with the positive π‘₯-axis,
tan πœ™ =
𝑑𝑦
=
𝑑π‘₯
π‘‘π‘Ÿ
π‘‘πœƒ
π‘‘π‘Ÿ
π‘‘πœƒ
sin πœƒ + π‘Ÿ cos πœƒ
cos πœƒ βˆ’ π‘Ÿ sin πœƒ
.
It follows that if we write π‘Ÿβ€² = π‘‘π‘Ÿ/π‘‘πœƒ, then
tan πœ“ =
π‘Ÿβ€² sin πœƒ+π‘Ÿ cos πœƒ
sin πœƒ
π‘Ÿβ€² cos πœƒβˆ’π‘Ÿ sin πœƒ βˆ’ cos πœƒ
β€²
πœƒ+π‘Ÿ cos πœƒ sin πœƒ
1 + π‘Ÿπ‘Ÿβ€² sin
cos πœƒβˆ’π‘Ÿ sin πœƒ cos πœƒ
,
we can simplify by putting all fractions over a common denominator. Because the common denominators are both equal to cos πœƒ(π‘Ÿβ€² cos πœƒ βˆ’ π‘Ÿ sin πœƒ), they cancel, and we obtain
tan πœ“ =
(π‘Ÿβ€² sin πœƒ + π‘Ÿ cos πœƒ) cos πœƒ βˆ’ (π‘Ÿβ€² cos πœƒ βˆ’ π‘Ÿ sin πœƒ) sin πœƒ
.
(π‘Ÿβ€² cos πœƒ βˆ’ π‘Ÿ sin πœƒ) cos πœƒ + (π‘Ÿβ€² sin πœƒ + π‘Ÿ cos πœƒ) sin πœƒ
Expanding, and using sin2 πœƒ + cos2 πœƒ = 1, we obtain tan πœ“ = π‘Ÿ/π‘Ÿβ€² . β–‘
Example (Section 9.4, Exercise 15) Find the area of the region enclosed by one loop of the curve
π‘Ÿ = sin 2πœƒ.
Solution We have π‘Ÿ = 0 when πœƒ = 0 and πœƒ = πœ‹/2, so the interval 0 ≀ πœƒ ≀ πœ‹/2 corresponds to one
loop of the curve. Therefore, the area of the region enclosed by this loop is
1
2
∫
0
πœ‹/2
1
sin 2πœƒ π‘‘πœƒ =
2
2
∫
0
πœ‹/2
[
]
1
sin 4πœƒ πœ‹/2 πœ‹
1 βˆ’ cos 4πœƒ
π‘‘πœƒ =
πœƒβˆ’
= ,
2
4
2
8
0
1
where a double-angle identity was used to rewrite sin2 2πœƒ in such a way that it can be integrated.
β–‘
Example (Section 9.4, Exercise 21) Find the area of the region
that lies inside the curve π‘Ÿ = 3 cos πœƒ and outside the curve π‘Ÿ = 1 + cos πœƒ.
Solution These curves intersect when 3 cos πœƒ = 1 + cos πœƒ, or cos πœƒ = 1/2, which is the case when
πœƒ = ±πœ‹/3. Therefore, the area 𝐴 of the region between them is given by
∫
1
2
𝐴 =
=
=
=
[3 cos πœƒ]2 βˆ’ [1 + cos πœƒ]2 π‘‘πœƒ
βˆ’πœ‹/3
∫ πœ‹/3
1
2
=
πœ‹/3
9 cos2 πœƒ βˆ’ (1 + 2 cos πœƒ + cos2 πœƒ) π‘‘πœƒ
βˆ’πœ‹/3
πœ‹/3
1
2
∫
1
2
∫
1
2
∫
8 cos2 πœƒ βˆ’ 1 βˆ’ 2 cos πœƒ π‘‘πœƒ
βˆ’πœ‹/3
πœ‹/3
8
βˆ’πœ‹/3
πœ‹/3
1 + cos 2πœƒ
βˆ’ 1 βˆ’ 2 cos πœƒ π‘‘πœƒ
2
3 + 4 cos 2πœƒ βˆ’ 2 cos πœƒ π‘‘πœƒ
βˆ’πœ‹/3
[
]πœ‹/3
1
sin 2πœƒ
=
3πœƒ + 4
βˆ’ 2 sin πœƒ 2
2
βˆ’πœ‹/3
= πœ‹.
β–‘
Example (Section 9.4, Exercise 23) Find the area of the region that lies inside both of the curves
π‘Ÿ = sin πœƒ and π‘Ÿ = cos πœƒ.
Solution These curves intersect when πœƒ = πœ‹/4. Therefore, if we divide the region that lies inside
both curves with the ray πœƒ = πœ‹/4, we can obtain its area 𝐴 by computing
𝐴 =
=
=
=
πœ‹/4
∫
1
2
[
∫
1 βˆ’ cos 2πœƒ
1 πœ‹/2 1 + cos 2πœƒ
π‘‘πœƒ +
π‘‘πœƒ
2
2 πœ‹/4
2
0
[
]
]
πœƒ sin 2πœƒ πœ‹/4
πœƒ sin 2πœƒ πœ‹/2
βˆ’
+
+
2
4
2
4
0
πœ‹/4
sin2 πœƒ π‘‘πœƒ +
0
∫
πœ‹/4
πœ‹ 1 πœ‹ 1
βˆ’ + βˆ’
8 4 8 4
2
1
2
∫
πœ‹/2
1
2
π‘π‘œπ‘ 2 πœƒ π‘‘πœƒ
πœ‹/4
=
1
(πœ‹ βˆ’ 2).
8
β–‘
3