HW 7 Solution (1) Z (7.4 Problem 22) 3x2 + 4x + 3 dx (x2 + 1)2 2 = Ax+B + (xCx+D Solution: From partial fraction 3x(x2+4x+3 2 +1)2 , +1)2 x2 +1 we have 3x2 + 4x + 3 = (Ax + B)(x2 + 1) + (CX + D), 3x2 + 4x + 3 = Ax3 +AX +Bx2 +B +CX +D and 3x2 +4x+3 = Ax3 +Bx2 +(A+C)X +B +D which gives A = 0, B = 3, A + C = 4 and B + D = 3. ThusRwe get A = 0 2 2 B = 3, C = 4 and D = 0 and 3x(x2+4x+3 = x23+1 + (x24x . Thus 3x(x2+4x+3 dx = +1)2 +1)2 +1)2 R 3 R 4x dx + (x2 +1)2 dx = 3 arctan(x) − x22+1 + C. We use the substitution x2 +1 R R dx = 2u dx = − u2 +C = − x22+1 +C. u = x2 +1 and du = 2xdx to find (x24x +1)2 u2 (2) Z x2 4x + 3 dx + 2x + 10 Solution: Completing the square, we get x2 + 2x + 10R = (x + 1)2 + 4x+3 33 . Let x + 1 = 3u. Then dx = 3du and x = 3u − 1. 2 +2x+10 dx = x R 4x+3 R 4·(3u−1)+3 R 12u−1 R 12u−1 R 4u 3du = 9(u du − 2 +33 dx = 2 u+33 2 +1) 3du = 2 +1) du = (x+1) 3 3(u u2 +1 R 1 1 1 x+1 2 1 x+1 2 du = 2 ln |u +1|− 3 arctan(u)+C = 2 ln |( 3 ) +1|− 3 arctan( 3 )+C. 3 u2 +1 (3) Z x3 − 2x2 − 2x + 3 dx x2 (x2 + 1) 3 2 −2x+3 Solution: From the partial fraction x −2x = Ax + xB2 + Cx+D , we get x2 (x2 +1) x2 +1 3 2 2 2 2 3 2 x −2x −2x+3 = Ax(x +1)+B(x +1)+(Cx+D)x , x −2x −2x+3 = Ax3 + Ax+Bx2 +B+Cx3 +Dx2 and x3 −2x2 −2x+3 = (A+C)x3 +(B+D)x2 +Ax+B. Thus A + C = 1, B + D = −2, A = −2 and B = 3 HenceA = −2, 3 2 −2x+3 = − x2 + x32 + 3x−5 and B = 3, C = 3 and D = −5. Thus x −2x x2 (x2 +1) x2 +1 R x3 −2x2 −2x+3 3 3 dx = −2 ln |x| − x + 2 ln |x2 + 1| − 5 arctan(x) + C x2 (x2 +1) (4) (Problems from Sec 7.4) Determine whether each integral is convergentRor divergent. If the integral is convergent, compute its value. ∞ (a) 1 12 dx x3 R∞ 1 Rb 1 1 b 1 3 Solution: 1 2 dx = limb→∞ 1 2 dx = limb→∞ 3x == limb→∞ 3b 3 − 3 3 x x 1 R∞ 3 = ∞. So 1 12 dx diverges. x3 R∞ (b) e x ln1 x dx b R∞ Rb Solution: e x ln1 x dx = limb→∞ 1 x ln1 x dx = limb→∞ ln | ln x| == limb→∞ ln | ln b|− e R∞ ln | ln e| = ∞. So e xRln1 x dx diverges. We have used u = ln x and R 1 1 1 du = x dx to integrate x ln x dx = u du = ln |u| + C = ln | ln x| + C. MATH 1760 : page 1 of 2 HW 7 Solution MATH 1760 page 2 of 2 R∞ (c) e x(ln1x)2 dx Solution: We have used u = ln x and du = x1 dx to inteR R R∞ grate x(ln1x)2 dx = u12 du = − u1 + C = − ln1x + C and e x(ln1x)2 dx = 1 1 b b→∞ − ln x |e = limb→∞ − ln b + 1 = 0 + 1 = 1. Rlim ∞ (d) e lnxR2x dx Integration by partsR u = ln x, dv = Rx12 dx, du = x1 dx and vR = x12 dx = − x1 + C , weR get lnx2x dx = − lnxx − (− x1 ) · x1 dx = − lnxx + ∞ 1 dx = − lnxx − x1 +C. So e lnx2x dx = limb→∞ − lnxx − x1 |be limb→∞ − lnb b − 1b − x2 (− lnee − 1e ) = 2e . We have used ln e = 1, limb→∞ 1b = 0 and limb→∞ lnb b = 0 1 limb→∞ (lnb0b) = limb→∞ 1b = limb→∞ 1b = 0 R∞ R∞ Rb (e) −∞ x5 dx Since 0 x5 dx = limb→∞ 0 x5 dx limb→∞ diverges. b6 6 = ∞, so R∞ −∞ x5 dx
© Copyright 2026 Paperzz