Take the derivtive of the expression below with respect to x.
1
In[31]:=
DB-
2
ArcTanB
F + C, xF
2
2
-4 + x
x
Out[31]=
2 32
I- 4 + x M
I1 +
4
-4+x2
M
Feed the result to Wolfram Alpha and ask them to simplify it. Depressing the “=” keyboard key, two consecutive
times, creates a link to WolframAlpha.com site from a Mathematica notebook page.
Simplify x/((-4 + x^2)^(3/2) (1 + 4/(-4 + x^2)))
In[32]:=
Input interpretation:
x
simplify
32
I-4 + x2 M
I1 +
4
-4+x2
M
Results:
1
x x2 - 4
Hx - 2L Hx + 2L
32
x Ix2 - 4M
Plots:
2
1
x
-3
-2
1
-1
2
3
-1
real part
imaginary part
-2
min
max
0.015
0.010
0.005
x
-20
-10
-0.005
10
20
-0.010
real part
imaginary part
-0.015
min
Differential geometric curves:
max
2
Untitled-1
Differential geometric curves:
1
—
—
x2 -4
x
normals
Horizontal plot range:
x min
x max
symmetric
More controls
1
In[9]:=
âx
á
x
2
x +4
Log@xD
1
2
4 + x2 F
LogB2 +
-
Out[9]=
2
8
8
In[12]:=
\arctan {\left (\frac {x} {2} + \sqrt {\frac {x^2} {4} - 1} \r ight)} + C = \arctan {
\frac {x + \sqrt {x^2 - 4}} {2}} + C
frac 8x + sqrt 8x^2 - 4<<
Result
8FractionalPart@x + Sqrt@- 4 + x ^ 2DD<
Out[12]=
- 4 + x2 F>
:FractionalPartBx +
2
ArcTanB
F
x+
2
-4 + x
Untitled-1
x+
I- 4 + x2 M
TraditionalFormBArcTanB
FF
2
x+
In[20]:=
I- 4 + x2 M
TraditionalFormB
F
2
Out[20]//TraditionalForm=
1
x2 - 4 + x
2
In[18]:=
-1
à tan
1
x2 - 4 + x
1
Out[18]=
âx
2
x ArcTanB
x+
- 4 + x2
F - LogBx +
- 4 + x2 F
x+
- 4 + x2
F - LogBx +
- 4 + x2 F
x+
- 4 + x2
F - LogBx +
- 4 + x2 F
2
1
In[17]:=
x ArcTanB
2
1
Out[17]=
x ArcTanB
2
3
© Copyright 2026 Paperzz