March 25, 2016 9:10 WSPC/S1793-0421 203-IJNT 1650058 International Journal of Number Theory Vol. 12, No. 4 (2016) 945–954 c World Scientific Publishing Company DOI: 10.1142/S1793042116500585 On the number of representations of integers by sums of mixed numbers Int. J. Number Theory 2016.12:945-954. Downloaded from www.worldscientific.com by SOUTHEAST UNIVERSITY on 09/11/16. For personal use only. Ernest X. W. Xia∗ and Y. H. Ma† Department of Mathematics Jiangsu University Zhenjiang, Jiangsu 212013, P. R. China ∗[email protected] †[email protected] L. X. Tian School of Mathematical Sciences Nanjing Normal University Nanjing 210023, P. R. China [email protected] Received 23 August 2014 Accepted 6 July 2015 Published 16 October 2015 In this paper, several explicit formulas for the number of representations of a positive integer by sums of mixed numbers are determined by employing theta function identities and the (p, k)-parametrization of theta functions due to Alaca, Alaca and Williams. It is interesting that the formulas proved in this paper are linear combinations of σ3 (n), σ3 (n/2), σ3 (n/3), σ3 (n/4), σ3 (n/6) and σ3 (n/12). Keywords: Sum of mixed numbers; squares; triangular numbers. Mathematics Subject Classification 2010: 11E25, 11E20 1. Introduction and Notation The aim of this paper is to determine explicit formulas for the number of representations of a positive integer by sums of mixed numbers by utilizing the (p, k)parametrization of theta functions due to Alaca, Alaca and Williams [1, 2, 7]. Let N0 , N and Z denote the sets of non-negative integers, positive integers and integers, respectively. For i, n ∈ N, let di , (1.1) σi (n) = d|n 945 March 25, 2016 9:10 WSPC/S1793-0421 946 203-IJNT 1650058 E. X. W. Xia, Y. H. Ma & L. X. Tian Int. J. Number Theory 2016.12:945-954. Downloaded from www.worldscientific.com by SOUTHEAST UNIVERSITY on 09/11/16. For personal use only. where d runs through the positive divisors of n. If n is not a positive integer, set σi (n) = 0. Alaca, Alaca, Williams [2], Chan and Cooper [10], Köklüce [11–13], Lomadze [14], Xia [16], and Xia, Yao and Zhao [18] established explicit formulas for the number of representations of a positive integer n by sums of the quadratic forms x21 + x1 x2 + x22 . Recently, Alaca, Alaca and Williams [4, 6, 8] proved a number of formulas for the number of representations of a positive integer n by sums of squares. In this paper, we consider the number of representations of integers by sums of mixed numbers. Let N (a1 , a2 , a3 ; b1 , b2 ; c1 , c2 , c3 , c4 ; n) denote the number of representations of n by the form a1 (wi2 + wi mi + m2i ) + 2 i=1 a2 (u2i + ui vi + vi2 ) i=1 +4 a3 (ri2 + ri si + s2i ) + i=1 +3 p2i + 3 i=1 c3 y 2 + yi i i=1 b1 2 +3 c4 b2 qi2 + i=1 c1 2 t + ti i i=1 2 + c2 (x2i + xi ) i=1 (zi2 + zi ), i=1 where wi , mi , ui , vi , ri , si , pi , qi ∈ Z and ti , xi , yi , zi ∈ N0 . Alaca, Alaca, Lemire and Williams [1] established some theta function identities and used those identities to derive formulas for N (1, 0, 0; 2, 0; 0, 0, 0, 0; n), N (0, 1, 0; 2, 0; 0, 0, 0, 0; n), N (0, 0, 1; 2, 0; 0, 0, 0, 0; n), N (1, 0, 0; 0, 2; 0, 0, 0, 0; n), N (0, 1, 0; 0, 2; 0, 0, 0, 0; n) and N (0, 0, 1; 0, 2; 0, 0, 0, 0; n). Xia and Yao [17] established some formulas for N (a1 , a2 , a3 ; b1 , b2 ; c1 , c2 , c3 , c4 ; n) for some values of ai , bi and ci , but those formulas are different from the formulas proved in this paper. In this paper, we prove several formulas for N (a1 , a2 , a3 ; b1 , b2 ; c1 , c2 , c3 , c4 ; n). It is interesting that our formulas for N (a1 , a2 , a3 ; b1 , b2 ; c1 , c2 , c3 , c4 ; n) stated in this paper are linear combinations of σ3 (n), σ3 (n/2), σ3 (n/3), σ3 (n/4), σ3 (n/6) and σ3 (n/12). The main results of this paper can be stated as follows. Theorem 1.1. For n ∈ N, we have N (0, 1, 0; 3, 3; 0, 0, 0, 0; 2n) = N (1, 1, 1; 1, 1; 0, 0, 0, 0; 2n) = 18σ3 (n) − 48σ3 (n/2) − 162σ3(n/3) + 432σ3 (n/6), (1.2) N (0, 1, 0; 2, 2; 0, 1, 0, 1; 2n − 1) = 4σ3 (n) − 4σ3 (n/2) − 36σ3 (n/3) + 36σ3 (n/6), N (0, 1, 0; 1, 1; 0, 2, 0, 2; 2n − 2) = N (0, 0, 1; 2, 0; 1, 0, 1, 2; 2n − 2) = N (0, 0, 1; 0, 2; 1, 2, 1, 0; 2n − 1) (1.3) March 25, 2016 9:10 WSPC/S1793-0421 203-IJNT 1650058 On the number of representations of integers by sums of mixed numbers 947 = N (1, 1, 0; 0, 0; 0, 2, 0, 2; 2n − 2) = σ3 (n) − σ3 (n/2) − 9σ3 (n/3) + 9σ3 (n/6), (1.4) N (1, 1, 0; 0, 0; 2, 0, 2, 0; n − 1) = σ3 (n) − σ3 (n/2) − 9σ3 (n/3) + 9σ3 (n/6), N (1, 1, 0; 0, 4; 0, 0, 0, 0; 2n) = 6σ3 (n) + 234σ3 (n/3), (1.5) (1.6) N (1, 1, 0; 2, 2; 0, 0, 0, 0; 2n) = 34σ3 (n) − 64σ3 (n/2) Int. J. Number Theory 2016.12:945-954. Downloaded from www.worldscientific.com by SOUTHEAST UNIVERSITY on 09/11/16. For personal use only. − 306σ3 (n/3) + 576σ3 (n/6), N (1, 1, 0; 4, 0; 0, 0, 0, 0; 2n) = 78σ3 (n) + 162σ3 (n/3), (1.7) (1.8) N (0, 1, 1; 2, 2; 0, 0, 0, 0; 2n) = 10σ3 (n) − 40σ3 (n/2) − 90σ3 (n/3) + 360σ3 (n/6), (1.9) N (0, 1, 1; 0, 0; 2, 0, 2, 0; 2n − 1) = 2σ3 (n) − 2σ3 (n/2) − 18σ3 (n/3) + 18σ3 (n/6), (1.10) N (0, 3, 0; 1, 1; 0, 0, 0, 0; n) = 2σ3 (n) − 18σ3 (n/3) − 32σ3 (n/4) + 288σ3 (n/12), N (3, 0, 0; 0, 0; 1, 0, 1, 0; n) = σ3 (2n + 1) − 9σ3 ((2n + 1)/3), N (0, 0, 3; 1, 1; 0, 0, 0, 0; 2n) = 24σ3 (n/2) + 216σ3 (n/6), (1.11) (1.12) (1.13) N (2, 1, 0; 1, 1; 0, 0, 0, 0; 2n) = 66σ3 (n) − 96σ3 (n/2) − 594σ3 (n/3) + 864σ3 (n/6), (1.14) N (2, 1, 0; 0, 0; 0, 1, 0, 1; 2n − 1) = 12σ3 (n) − 12σ3 (n/2) − 108σ3 (n/3) + 108σ3 (n/6), N (1, 2, 0; 1, 1; 0, 0, 0, 0; 2n) = 24σ3 (n) + 216σ3 (n/3), (1.15) (1.16) N (0, 1, 2; 1, 1; 0, 0, 0, 0; 2n) = 6σ3 (n) − 36σ3 (n/2) − 54σ3 (n/3) + 324σ3 (n/6), (1.17) N (1, 1, 1; 0, 0; 0, 1, 0, 1; 2n − 1) = 6σ3 (n) − 6σ3 (n/2) − 54σ3 (n/3) + 54σ3 (n/6). (1.18) It should be noted that all of the results in Theorem 1.1 involve weight 4 modular forms, and so 1 a1 + a2 + a3 + (b1 + b2 + c1 + c2 + c3 + c4 ) = 4. 2 From Theorem 1.1, we can obtain some interesting identities. For example, by (1.3) March 25, 2016 9:10 WSPC/S1793-0421 203-IJNT 1650058 E. X. W. Xia, Y. H. Ma & L. X. Tian 948 and (1.18), we see that for n ∈ N, 3N (0, 1, 0; 2, 2; 0, 1, 0, 1; 2n − 1) = 2N (1, 1, 1; 0, 0; 0, 1, 0, 1; 2n − 1). (1.19) In should be noted that in general, 3N (0, 1, 0; 2, 2; 0, 1, 0, 1; 2n) = 2N (1, 1, 1; 0, 0; 0, 1, 0, 1; 2n). (1.20) Int. J. Number Theory 2016.12:945-954. Downloaded from www.worldscientific.com by SOUTHEAST UNIVERSITY on 09/11/16. For personal use only. 2. The (p, k)-Parametrization of Theta Functions In this section, we recall some basic facts about the (p, k)-parametrization of Eisenstein series and theta functions due to Alaca, Alaca and Williams [1–3, 7]. In his second notebook [15], Ramanujan gave the definitions of three Eisenstein series and one of them is ∞ n3 q n . (2.1) M (q) = 1 + 240 1 − qn n=1 It is trivial to check that ∞ σ3 (n)q n . (2.2) p = p(q) = ϕ2 (q) − ϕ2 (q 3 ) , 2ϕ2 (q 3 ) (2.3) k = k(q) = ϕ3 (q 3 ) , ϕ(q) (2.4) M (q) = 1 + 240 n=1 Following [2], we set where ϕ(q) is defined by ϕ(q) = ∞ 2 qn . (2.5) n=−∞ Alaca and Williams [7] derived the representations of M (q), M (q 2 ), M (q 3 ) and M (q 6 ) in terms of p and k. Equations (3.69)–(3.72) in [7] are M (q) = (1 + 124p + 964p2 + 2788p3 + 3910p4 + 2788p5 + 964p6 + 124p7 + p8 )k 4 , (2.6) M (q 2 ) = (1 + 4p + 64p2 + 178p3 + 235p4 + 178p5 + 64p6 + 4p7 + p8 )k 4 , (2.7) M (q 3 ) = (1 + 4p + 4p2 + 28p3 + 70p4 + 28p5 + 4p6 + 4p7 + p8 )k 4 (2.8) and M (q 6 ) = (1 + 4p + 4p2 − 2p3 − 5p4 − 2p5 + 4p6 + 4p7 + p8 )k 4 , (2.9) respectively. Alaca, Alaca and Williams [3] also deduced the representations of M (q 4 ) and M (q 12 ) in terms of p and k. Equations (3.17) and (3.19) in [3] are 31 6 29 7 1 8 4 2 3 4 5 M (q ) = 1 + 4p + 4p − 2p + 10p + 28p + p − p + p k 4 (2.10) 4 4 16 March 25, 2016 9:10 WSPC/S1793-0421 203-IJNT 1650058 On the number of representations of integers by sums of mixed numbers and 1 6 1 7 1 8 2 3 4 5 M (q ) = 1 + 4p + 4p − 2p − 5p − 2p + p + p + p k 4 , 4 4 16 12 949 (2.11) respectively. Jonathan and Peter Borwein [9] introduced three 2-dimensional theta functions and one of them is ∞ ∞ 2 2 a(q) = q i +ij+j . (2.12) Int. J. Number Theory 2016.12:945-954. Downloaded from www.worldscientific.com by SOUTHEAST UNIVERSITY on 09/11/16. For personal use only. i=−∞ j=−∞ Alaca, Alaca and Williams [2] found the representations of a(q), a(q 2 ) and a(q 4 ) in terms of p and k. From [2, Theorems 1, 2 and 4], we have a(q) = (1 + 4p + p2 )k, 2 2 a(q ) = (1 + p + p )k, 1 a(q 4 ) = 1 + p − p2 k. 2 (2.13) (2.14) (2.15) Alaca, Alaca, Lemire and Williams [1] gave the representations of ϕ(q) and ϕ(q 3 ) in terms of p and k. From [1, (2.3)], we obtain 3 1 1 1 ϕ(q) = (1 + 2p) 4 k 2 (2.16) and ϕ(q 3 ) = (1 + 2p) 4 k 2 . (2.17) 3. Several Theta Function Identities In order to prove the main results of this paper, we establish several theta function identities in this section. Define ∞ ∞ (1 − q 4n )6 (1 − q 6n )4 h(n)q n = q , (3.1) H(q) = (1 − q 12n )2 n=0 n=1 G(q) = ∞ g(n)q n = q 3 n=0 ∞ (1 − q 2n )4 (1 − q 12n )6 (1 − q 4n )2 n=1 (3.2) and ψ(q) = ∞ q n2 +n 2 . n=0 Theorem 3.1. The following identities hold: f = k1 M (q) + k2 M (q 2 ) + k3 M (q 3 ) + k4 M (q 4 ) + k6 M (q 6 ) + k12 M (q 12 ) + kG G(q) + kH H(q), where (3.3) March 25, 2016 9:10 WSPC/S1793-0421 950 1650058 E. X. W. Xia, Y. H. Ma & L. X. Tian f 2 k1 3 3 3 a(q )ϕ (q)ϕ (q ) 2 2 2 3 2 6 qa(q )ϕ (q)ϕ (q )ψ(q )ψ(q ) q 2 a(q 2 )ϕ(q)ϕ(q 3 )ψ 2 (q 2 )ψ 2 (q 6 ) 2 4 2 3 2 6 q a(q )ϕ (q)ψ(q)ψ(q )ψ (q ) 4 2 3 2 2 3 qa(q )ϕ (q )ψ(q)ψ (q )ψ(q ) 2 4 3 a(q)a(q )ϕ (q ) a(q)a(q 2 )ϕ2 (q)ϕ2 (q 3 ) Int. J. Number Theory 2016.12:945-954. Downloaded from www.worldscientific.com by SOUTHEAST UNIVERSITY on 09/11/16. For personal use only. 203-IJNT a(q)a(q 2 )ϕ4 (q) qa(q)a(q 2 )ψ 2 (q)ψ 2 (q 3 ) 2 2 2 2 2 6 q a(q)a(q )ψ (q )ψ (q ) a(q 2 )a(q 4 )ϕ2 (q)ϕ2 (q 3 ) 2 4 2 2 3 qa(q )a(q )ψ (q)ψ (q ) a3 (q 2 )ϕ(q)ϕ(q 3 ) 3 2 3 4 2 6 qa (q )ψ(q )ψ(q ) 3 a (q )ϕ(q)ϕ(q ) a2 (q)a(q 2 )ϕ(q)ϕ(q 3 ) 1 120 1 480 1 1920 1 1920 1 1920 1 300 1 60 13 300 1 240 1 640 1 240 1 960 1 120 1 240 1 1200 1 30 k2 k3 k4 2 − 15 3 − 80 3 − 400 1 − 40 3 − 40 3 − 160 3 − 640 3 − 640 3 − 640 13 100 3 − 20 9 100 3 − 80 9 − 640 3 − 80 3 − 320 3 − 40 3 − 80 3 400 3 − 10 1 30 8 75 2 − 15 27 80 27 − 400 9 40 6 5 3 − 10 24 25 6 5 0 1 − 480 1 − 1920 1 − 1920 1 − 1920 1 − 200 1 − 120 13 − 200 1 − 240 19 − 1920 1 240 1 − 960 0 0 0 0 0 2 75 2 − 15 26 75 0 1 120 2 − 15 0 2 − 15 k6 k12 kG kH 0 6 5 12 4 3 2 − 38 21 8 − 38 − 18 5 1 2 − 81 − 81 7 8 26 5 3 160 3 640 3 640 3 640 39 − 200 3 40 27 − 200 3 80 57 640 3 − 80 3 320 0 0 0 0 0 26 25 6 5 18 25 18 6 − 234 5 18 5 0 0 0 3 − 40 6 5 − 98 − 83 9 3 9 4 3 4 0 0 0 0 − 27 5 9 5 18 6 0 qa2 (q)a(q 2 )ψ(q 2 )ψ(q 6 ) 1 96 7 − 160 3 − 32 1 30 63 160 3 − 10 − 92 − 23 a(q)a2 (q 2 )ϕ(q)ϕ(q 3 ) 1 75 1 − 50 3 25 8 75 9 − 50 24 25 − 72 5 24 5 a(q 2 )a2 (q 4 )ϕ(q)ϕ(q 3 ) 1 480 1 160 3 2 9 − 160 − 15 − 160 6 5 9 2 3 2 a(q)a(q 2 )a(q 4 )ϕ(q)ϕ(q 3 ) 1 120 0 3 − 40 0 6 5 18 6 qa(q)a(q 2 )a(q 4 )ψ(q 2 )ψ(q 6 ) 1 960 1 64 3 1 − 320 − 60 9 − 64 3 20 9 4 3 4 2 − 15 Proof. We just prove the last identity, that is, qa(q)a(q 2 )a(q 4 )ψ(q 2 )ψ(q 6 ) = 1 1 3 1 M (q) + M (q 2 ) − M (q 3 ) − M (q 4 ) 960 64 320 60 9 9 3 3 − M (q 6 ) + M (q 12 ) + H(q) + G(q). (3.4) 64 20 4 4 The rest can be proved similarly. By the well-known Jacobi triple product identity, ψ(q) = where ψ(q) is defined by (3.3). ∞ (1 − q 2n )2 , (1 − q n ) n=1 (3.5) March 25, 2016 9:10 WSPC/S1793-0421 203-IJNT 1650058 On the number of representations of integers by sums of mixed numbers 951 j ∞ Alaca, Alaca and Williams [5] established the representations of q 24 n=1 (1 − q nj ) (j = 1, 2, 3, 4, 6, 12) in terms of p and k. It follows from [5, (2.10)–(2.15)] that 1 q 24 ∞ 1 1 1 1 1 1 1 1 1 1 (1 − q n ) = 2− 6 p 24 (1 − p) 2 (1 + p) 6 (1 + 2p) 8 (2 + p) 8 k 2 , (3.6) n=1 1 q 12 ∞ 1 1 1 1 (1 − q 2n ) = 2− 3 p 12 (1 − p) 4 (1 + p) 12 (1 + 2p) 4 (2 + p) 4 k 2 , (3.7) n=1 1 Int. J. Number Theory 2016.12:945-954. Downloaded from www.worldscientific.com by SOUTHEAST UNIVERSITY on 09/11/16. For personal use only. q8 ∞ 1 1 1 1 1 1 1 (1 − q 3n ) = 2− 6 p 8 (1 − p) 6 (1 + p) 2 (1 + 2p) 24 (2 + p) 24 k 2 , (3.8) n=1 1 q6 ∞ 1 1 1 1 1 1 1 1 (1 − q 4n ) = 2−2/3 p 6 (1 − p) 8 (1 + p) 24 (1 + 2p) 8 (2 + p) 2 k 2 , (3.9) n=1 1 q4 ∞ 1 1 1 1 1 (1 − q 6n ) = 2− 3 p 4 (1 − p) 12 (1 + p) 4 (1 + 2p) 12 (2 + p) 12 k 2 , (3.10) n=1 q 1 2 ∞ 1 1 1 1 1 1 (1 − q 12n ) = 2−2/3 p 2 (1 − p) 24 (1 + p) 8 (1 + 2p) 24 (2 + p) 6 k 2 . (3.11) n=1 In view of (3.7) and (3.9)–(3.11), H(q) = p(1 − p)(1 + p)(1 + 2p)(2 + p)3 4 k 16 (3.12) G(q) = p3 (1 − p)(1 + p)(1 + 2p)(2 + p) 4 k , 16 (3.13) and where H(q) and G(q) are defined by (3.1) and (3.2), respectively. Thanks to (2.13)– (2.15), (3.5), (3.7) and (3.9)–(3.11), qa(q)a(q 2 )a(q 4 )ψ(q 2 )ψ(q 6 ) 1 13 2 27 3 55 4 29 5 5 7 1 8 p + p + p + p + p − p − p k4 . = 2 4 4 8 8 8 8 (3.14) By (2.6)–(2.11), (3.12) and (3.13), 1 1 3 1 9 M (q) + M (q 2 ) − M (q 3 ) − M (q 4 ) − M (q 6 ) 960 64 320 60 64 9 3 3 + M (q 12 ) + H(q) + G(q) 20 4 4 1 13 2 27 3 55 4 29 5 5 7 1 8 = p + p + p + p + p − p − p k4 . 2 4 4 8 8 8 8 Identity (3.4) follows from (3.14) and (3.15). This completes the proof. (3.15) March 25, 2016 9:10 WSPC/S1793-0421 952 203-IJNT 1650058 E. X. W. Xia, Y. H. Ma & L. X. Tian 4. Proof of Theorem 1.1 In this section, we present a proof of Theorem 1.1 by utilizing Theorem 3.1. We deduce (1.18) from (3.4). The rest can be proved similarly. It is easy to see that 1+ ∞ N (a1 , a2 , a3 ; b1 , b2 ; c1 , c2 , c3 , c4 ; n)q n n=1 = aa1 (q)aa2 (q 2 )aa3 (q 4 )ϕb1 (q)ϕb2 (q 3 )ψ c1 (q)ψ c2 (q 2 )ψ c3 (q 3 )ψ c4 (q 6 ). (4.1) Int. J. Number Theory 2016.12:945-954. Downloaded from www.worldscientific.com by SOUTHEAST UNIVERSITY on 09/11/16. For personal use only. Setting a1 = a2 = a3 = c2 = c4 = 1 and b1 = b2 = c1 = c3 = 0 in (4.1) and multiplying q on both sides, and then employing (2.2), (3.1), (3.2), (3.4), we get q+ ∞ N (1, 1, 1; 0, 0; 0, 1, 0, 1; n)q n+1 n=1 = qa(q)a(q 2 )a(q 4 )ψ(q 2 )ψ(q 6 ) ∞ ∞ 1 1 n 2n 1 + 240 1 + 240 σ3 (n)q σ3 (n)q + = 960 64 n=0 n=0 ∞ ∞ 3 1 − σ3 (n)q 3n − σ3 (n)q 4n 1 + 240 1 + 240 320 60 n=0 n=0 ∞ ∞ 9 3 6n 12n − 1 + 240 1 + 240 σ3 (n)q σ3 (n)q + 64 20 n=0 n=0 + = ∞ ∞ 3 9 h(n)q n + g(n)q n 4 n=1 4 n=1 ∞ ∞ ∞ ∞ 1 15 9 σ3 (n)q n + σ3 (n)q 2n − σ3 (n)q 3n − 4 σ3 (n)q 4n 4 n=0 4 n=0 4 n=0 n=0 − ∞ ∞ ∞ ∞ 135 3 9 σ3 (n)q 6n + 36 σ3 (n)q 12n + h(n)q n + g(n)q n . 4 n=0 4 4 n=0 n=1 n=1 (4.2) Equating the coefficients of q 2n on both sides of (4.2), we find that for n ∈ N, N (1, 1, 1; 0, 0; 0, 1, 0, 1; 2n − 1) = 15 9 1 σ3 (2n) + σ3 (n) − σ3 (2n/3) − 4σ3 (n/2) 4 4 4 135 9 3 − σ3 (n/3) + 36σ3 (n/6) + h(2n) + g(2n). 4 4 4 (4.3) It is easy to check that for n ∈ N, σ3 (2n) = 9σ3 (n) − 8σ3 (n/2) (4.4) March 25, 2016 9:10 WSPC/S1793-0421 203-IJNT 1650058 On the number of representations of integers by sums of mixed numbers 953 and σ3 (2n/3) = 9σ3 (n/3) − 8σ3 (n/6). (4.5) By (3.1) and (3.2), we see that for n ∈ N, h(2n) = g(2n) = 0. (4.6) Identity (1.18) follows from (4.3)–(4.6). The proof is complete. Int. J. Number Theory 2016.12:945-954. Downloaded from www.worldscientific.com by SOUTHEAST UNIVERSITY on 09/11/16. For personal use only. Acknowledgments This work was supported by the National Science Foundation of China (11571043) and CPSF (2014M551506, 2015T80499). References [1] A. Alaca, S. Alaca, M. F. Lemire and K. S. Williams, Theta function identities and representations by certain quaternary quadratic forms, Int. J. Number Theory 4 (2008) 219–239. [2] A. Alaca, S. Alaca and K. S. Williams, One the two-dimensional theta functions of Borweins, Acta Arith. 124 (2006) 177–195. [3] P A. Alaca, S. Alaca and P K. S. Williams, Evaluation of the convolution sums σ(l)σ(m) and l+12m=n 3l+4m=n σ(l)σ(m), Adv. Theor. Appl. Math. 1 (2006) 27–48. [4] A. Alaca, S. Alaca and K. S. Williams, Seven octonary quadratic forms, Acta Arith. 135 (2008) 339–350. [5] A. Alaca, S. Alaca and K. S. Williams, Some new theta function identities with applications to sextenary quadratic forms, J. Combin. Number Theory 1 (2009) 89– 98. [6] A. Alaca, S. Alaca and K. S. Williams, Fourteen octonary quadratic forms, Int. J. Number Theory 6 (2010) 37–50. P [7] S. Alaca P and K. S. Williams, Evaluation of the convolution sums l+6m=n σ(l)σ(m) and 2l+3m=n σ(l)σ(m), J. Number Theory 124 (2007) 491–510. [8] S. Alaca and K. S. Williams, The number of representations of a positive integer by certain octonary quadratic forms, Funct. Approx. Comment. Math. 43 (2010) 45–54. [9] J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi’s identity and the AGM, Trans. Amer. Math. Soc. 323 (1991) 691–701. [10] H. H. Chan and S. Cooper, Powers of theta functions, Pacific J. Math. 235 (2008) 1–14. [11] B. Köklüce, The representation numbers of three octonary quadratic forms, Int. J. Number Theory 9 (2013) 505–516. [12] B. Köklüce, The representation numbers of certain octonary quadratic forms, Int. J. Number Theory 9 (2013) 1125–1139. [13] B. Köklüce, Representation numbers of two octonary quadratic forms, Int. J. Number Theory 9 (2013) 1641–1648. [14] G. A. Lomadze, Representation of numbers by sums of the quadratic forms x21 + x1 x2 + x22 , Acta Arith. 54 (1989) 9–36. [15] S. Ramanujan, Notebooks, Vols. 1 and 2 (Tata Institute of Fundamental Research, Bombay, 1957). March 25, 2016 9:10 WSPC/S1793-0421 954 203-IJNT 1650058 E. X. W. Xia, Y. H. Ma & L. X. Tian Int. J. Number Theory 2016.12:945-954. Downloaded from www.worldscientific.com by SOUTHEAST UNIVERSITY on 09/11/16. For personal use only. [16] E. X. W. Xia, On the number of representations of a positive integer by certain quadratic forms, Colloq. Math. 135 (2014) 139–145. [17] E. X. W. Xia and O. X. M. Yao, On the representations of integers by certain quadratic forms, Int. J. Number Theory 9 (2013) 189–204. [18] E. X. W. Xia, O. X. M. Yao and A. F. Y. Zhao, Representation numbers of five sextenary quadratic forms, Colloq. Math. 138 (2015) 247–254.
© Copyright 2026 Paperzz