PC 4.7 Notes – Inverse Trig Functions 1 PC 4.7 Notes – Inverse Trig Functions y sin x 4 4 2 2 -5 -5 5 5 -2 -2 -4 -4 y sin x does NOT pass HLT for inverses, so restrict to interval D: [ No longer periodic , ] 2 2 R: 1 y 1 Take inverse: switch axes, switch D and R to 2 2 D: R: Notation: sin y x y sin 1 ( x) or y arcsin x (LOOKING FOR ANGLE MEASURE) 1 EX 1: a) arcsin( ) 2 b) sin 1 ( 3 ) 2 c) sin 1 2 y cos x 4 4 2 2 -5 -5 5 5 -2 -2 -4 -4 y cos x does NOT pass HLT for inverses, so restrict to interval 0 to D: [0, ] No longer periodic D: R: 1 y 1 R: Take inverse: switch axes, switch D and R Notation: cos y x y cos 1 ( x) or y arccosx 2 PC 4.7 Notes – Inverse Trig Functions y tan x New D: restrict D: [ 2, 2 ] R: (-∞, ∞) R: 1 EX 2: a) arccos( ) 2 b) tan 1 (1) Inverse trig functions are positive in ONLY one quadrant and negative in ONLY one quadrant due to restricted domains. cos1 (-) sin 1 (+) cos1 (+) tan 1 (+) sin 1 (-) tan 1 (-) Determining Inverse Trig Values Exactly Find the exact value of each, if possible. Draw a reference triangle and solve for the missing side. Use the chart above to remind you in which quadrants the functions are defined. EX 3: 1 1 1 a) arcsin b) cos1 c) arctan 2 3 2 Estimating Inverse Trig Values with the Calculator Check the MODE on your calculator. 1 Remember sin 1 (inverse reciprocal) sin EX 4: a) cos 1 (0.75 ) b) arcsin(0.99) 3 c) arctan(1.25) PC 4.7 Notes – Inverse Trig Functions Review Inverse Function y arcsin x sin y x y arccosx y arctan x cos y x tan y x Domain 1 x 1 Range y 2 2 0 y 1 x 1 x 2 y EX 5: Use an inverse trig function to write as a function of x . Inverse Properties 1. sin(arcsinx) x and arcsin(sin y) y if 1 x 1 and 2 y (-1.57 to 1.57) 2 2. cos(arccosx) x and arccos(cosy) y if (0 to 3.14) 1 x 1 and 0 y 3. tan(arctanx) x and arctan(tan y) y if x is any real number and 2 3 3 ) 2 2 Use the inverse property to simplify. EX 6: arcsin(sin a) tan(arctan(5)) y 2 (-1.57 to 1.57) (outside interval for y) b) arcsin(sin 5 ) 3 4 c) cos(cos1 ) 2 PC 4.7 Notes – Inverse Trig Functions Compositions of Functions –evaluate exactly (Sketch reference triangle) 1 3 ) EX 7: a) cos(arcsin b) tan(sin 1 ( )) 5 2 3 c) sin(arcsin ) 5 d) cos(tan1 5 ) 12 e) tan(arcos ½)) More challenging problems: f) sin(arccos3x) g) sin(arctan( x 1)) 5
© Copyright 2026 Paperzz