File

6. M. Planck. The Theory of Heat Radiarion. New york:
Dover, 1959.
7. W. Sieber. Zeitschrift
pp. 130-135.
fiir
Technische physics 22
9. Y. S. Touloukian and D. P. DeWitt. ..Nonmetallic Solids."
In Thermal Radiative Properties. Vol. 8. New york:
(lg4l),
10. Y. S. Touloukian and D. P. DeWitt. "Metallic Elements
and Alloys." In Thermal Radiative properties, Vol. 7.
8. R. Siegel and J. R. Howell. Thermal Radiation Heat
Transfer.3rd ed. Washington, DC: Hemisphere, 1992.
New York: IFI/Plenum. 1970.
Electromagnetic and Thermal Radiation
I
c
IFVPlenum, 1970.
12-12 A radio station is broadcasting radio waves at
By what properties is an electromagnetic
wave
erized? How are these properties related to each other?
a
wavelength of 200 m. Determine the frequency of these waves.
12-13 A microwave oven is designed to operare ar
a
l2-2C
frequency of 2.2 x l}e Hz. Determine the wavelensth of these
microwaves and the energy of each microwave.
12-3C How does microwave cooking differ from conven_
tional cooking?
12-14
Whatis thermal radiation? How does it differ from the
other forms of electromagnetic radiation?
other forms of electromagnetic radiation?
Consider a radio wave with a wavelength of 107 pm
y-ray with a wavelength of 10-7 pm. Determine the photon energies ofthe radio wave and the y-ray, and the photon
energy ratio of the 7-ray to the radio wave.
What is the cause of color? Why do some objects
blue to the eye while others appear red? Is the color of
a surface at room temperature related to the radiation it emits?
12-6C Why do skiers get sunburned so easily?
0.5 pm is being propagated in different mediums: air, water,
and glass. The refractive index of air, water, and glass are 1,
1.33, and 1.5 respectively. Determine the photon energy, in
eV, of the electromagnetic wave in each medium (1 eV :
l2-4C
l2-7C
What is visible light? How does
it differ from
the
How do ultraviolet and infrared radiation differ? Do
and, a
12-15 An electromagnetic wave with a
1.6022
x
l0-re
wavelength of
J).
you think your body emits any radiation in the ultraviolet
12-16
range? Explain.
and 0.76 pm is what we call visible tight. Within this spectrum,
the color violet has the shortest wavelength while the color red
l2-8C Why is radiation usually treated as a surface
phenomenon?
cordless telephone is designed to operate at a
of 8.5 X 108 Hz. Determine the wavelensth of these
waves.
Electricity is generated and transmitted in power
a frequency of 60Hz (1 Hz : I cycle per second).
ine the wavelength of the electromagnetic waves
The electromagnetic spectrum that lies between 0.40
has the longest wavelength. Determine which of these colors,
violet (z\ 0.40 pm) or red (,\ 0.76 pm), propagates more
photon energy.
:
:
Blackbody Radiation
l2-l7c
What is a blackbody? Does a blackbody actually exist?
12-18C Dehne the total and spectral blackbody emissive
generated by the passage of electricity in power lines.
powers. How are they related to each other? How do they differ?
12.
l2-19C Why did we dehne the blackbody radiation function?
What does it represent? For what is it used?
The speed of light in vacuum is given to be 3.0 x
lOE s. Determine the speed of light in air (n: 1), in water
(n : 1.33), and in glass (n : 1.5).
"Problems designated by a "C" are concept questions, ano
students are encouraged to answer them all. problems with the
rcon e? are solved using EES, and complete solutions together with
parametric studies are included on the text website. problems with
the rcon are comprehensive in nature, and are intended to be
lved with an equation solver such as ESS. problems with the icon
are Prevention through Design problems.
I
l2-20C Consider two identical bodies, one at 1000 K and
the other at 1500 K. Which body emits more radiation in the
shorter-wavelength region? Which body emits more radiation
at a wavelength of 20 pm?
12-21 Consider a surface at a uniform temperature of g00 K.
Determine the maximum rate of thermal raiiation that can be
emitted by this surface, in Wm2.
12-22 Consider a 20-cm X 20-cm X 20-cm cubical body
at 750 K suspended in the air. Assuming the body closely
approximates a blackbody, determine (a) the rate at which
the cube emits radiation energy, in W and (b) the spectral
blackbody emissive power at a wavelength of 4 pm.
elqrsr^ eql ur (r) ,{8reue rulos Jo e8eluecred eql eulurele(I
') 00gS flq8nor go ernleredtuel ec€Jrns u qll^\ ,{poq4cuyq
B eq
ol
pereprsuoc sr qJrq/y\ 'uns eql rePlsuoJ 8€-zI
'(rurl gt'O ol 0?'0) uor8er 1q31 elqrsl^ eql urqtr,n (tqSqelpuec
pue 1q311,(ep) secrnos Suqq8q qtoq ,(q peltrue (7u716 ut;
f8reue uortelper aql eulurete(I ',(lerltlcedser ') 008I pu€
)
0089;o sernlereduret eceJrns eAItceJJe eql te ,(poqqcelq u
se paleurxorddu eq feru 1q311e1pu€t pue 1l?r1[eq 29-71
) 000I (q) pue ) 00gg (z) 1u secrnos fpoq>1ce1q tuor;
1(opurn\ ssu13 tu-7 x rn-Z e q8norql peurusue4 uoll€IpuJ Jo
et?r eql ouruuele6l 'sqlSuelerte,r Jeqlo lu uoltelpeJ ro; enbedo
,(lprluesse sr pue urrl 0'€ puu €'0 : y uee/hleq uoqelper eql
;o luecred 06 sltusueJl /r\opult\ sse13 lcql-urrn-E y gtal
'zuliA ul 'uns eql
y) ,ffireue uoltulppr pere4ul
fq pellrrue sr (urrl 00I-9r'0
qcrq,& le etur eql ouIIuJeleCI
:
')
e^rtceJJe ue 1e ,(poq4celq 3 se
8ttg ;o ernle:edurel
peleel eq
uBc uns
'J.002 1u epld eqt
yo ernleredural eceFns eql deel ol speeu rel€eq eql 1uq1 renod
crqcele eql euruuetep 'ob08sI epld eq1 ol leeq reJsrr?r ol releeq
Ieculcele eql ;o fcuerclJJe eql JI ').zull& ZI sr luelclJJeoc
reJSuB4 leeq uonceluoJ Iernluu eql eJel{,ll C.gI Jo emleredurel
luerqrrre Sutpunouns € uI pelenlls sr pue Jeleuerp uI tuc 0€ sI
epld eq1 'ratueq Iecrrlcele ue fq peleeq Sureq st fpoq4celq
e se pelapotu eq uec teqt etuld clruerec ftIncrlc Y 6Z-ZI
gz-Zld lUn0ll
-F
+
)'zurllA g'9
=q
eql
.e
Jo9 luerquv
zulA{0001
-
ecepns
eql s€-zl
'(url gt'O-Ol'g : y) e8uer elqrsr,r eql ur slltue lI uollulppr Jo
uorlcp4 eql pue ecrnos 1q8r1 slql Jo ernlereduel eql euruuele6l
'(urrl tl'O : y) eEuer enlq eql ur runlulx€Iu B qcuer ecrnos
tq31 u ,(q peprure ,(3reue uorterpur erp leql perrsep sl tI t€-ZI
'ernlereduel ece3:
-rns eql snsre,t e8uer elqIsIA eql uI peprrue uo4elpeJ Jo uollte4
pue ') 000t ot ) 000I uor; ,ftu,r ernteredurel eceFns
le'I 'e8uer elqtst,t eql uI pellrue uonelpsr Jo uorlcer; eI{1
1o1d
uo ernleredruel Jo lceJJe eql ele8rlse,rul 'eJultrgos
(reqlo ro) ggg Sutsn 'ZE-ZI'qoq replsuoced EE-ZI
ruo4 uorlerpeJ Jo uolsstrue eql qclqa
's1eed lueurellJ eql
le q13ue1e,,re,r eql euruuelep'osly 'e8uer elqlst,t eqt uI slleJ leqt
tueuelrJ eq1 ,(q pellrure ,(3reue lu€lp?J etll Jo uoDce4 eql eullu
-re1ep '.{poq4celq B su tuetuelg eql Suqeerl ) 000€ sr qlnqq8rt
luecsepuucur uu Jo lueruellJ eqt Jo ernleredtuel eql 79-71
's4eed lueumlg eql tuo.g uoqurpurJo uolssrue eq1 qclqm p qfuel
-elu/rr erp euruuelep'os1y 'e8uur elqIsIA eql uI slleJ 1erp tueurelg
erp .{q peunue ,(8reue lu?rpuJ eql Jo uorlce{ eql euluuelep
'.,(poq>1ce1q € eq ol tueuelg eq1 Sununssy ') 00gZ sr qpqtqSl
luecsepu?cur u€ Jo lueuellJ eql Jo arnluredruel eqJ I€-ZI
'peleeq eq tsnu qlnqrq8ll eqt
Jo lueru€lrJ eql qcrql( o1 ernlereduel Iunrururu eqt euluueleq
'rurl 8'0 uuql Jeuorls sqlSuele,ren le .{8reue s1r;o luecred 91
lseel l€ lrrue 01 perlsop st qlnqtq8tl luecsepuecul uV 0€-ZI
c=""'t
-
'e1e1d eql Iuo4 ssol lseq Ielol eql uo reJsuBrl
lBeq uortprpeJ leu eql Jo uorlnqrnuoc eql ssncslq 'e1e1d eql
;o ernleredurel ece;-rns eql eulluJeleq ').zul1\ g'g sI eceJJns
epld eql uo uoDceluoJ lurnleu ol enp luertlJJeoc JeJsuu4 l€eq
eql 'fpoqlcelq € sB pe1eer eq uec pue {celq pezlprxo st e1eld
eql Jo eceFns eql 'J.S le Sulpunouns luelqrue o1 pesodxe
sr ePrs roqlo eql ellq,lt\ 'apls euo uo zruld! 000I Jo xnu l€eq
ruroJrun e o1 pelcefqns sr a1e1d reddoc I€rrue^ u!trtY 8Z-Zl
'selnuru I Jo uoq€rnP eql ul JoO€ ot 0z uorJ rre;o 3>1 0I teeq
ol repro ur peurclurzru eq plnoqs leqt lpq eq1;o ernleredurel
eceJJns eql eurrureleq 'rIB ur pepuedsns Suteq sI 'ruc SZ
Jo releu€rp B qtr^\ '.lleq lecrreqds {cBIq e leprsuoJ LZ-ZI
'peqsrlod-11em (q) pue 4ce1q pepoc (z) s1
reqluPqr eql Jo ecBJrns rorrelul egl Jr requeqc eql eprsut ,{poq
Ilsrus er{l Jo ecBJJns eql uo lueplcul uonelp€J eql eunurelec
') 009;o ernleredurel eceJJns luelsuoc e s€q pue Pelencs^e
qll,4\ requ€qc Ieels
sr reqrueqc
eql 'lu
€ Jo JeleuerP
s
sseluruts pcrreqds e Jo eplsur peceld st .(poq leurs
Y
9Z-Zl
'sllnser
eql ssncsrq 'turl 000I
o1
rurl 1g'g;o
eSuer eql ur q13ue1e,tu,r,r
snsJel, uns eql Jo Yq!, re.rrrod e,rrssrure ,(poq1cu1q
loyd pue elelncpc'ere,^dgos (reqto ro) ggg Sutsn
'x 08ts p ,(poq1ce1q e se pelBerl eq uBc uns
prlceds eql
eqJ
6Z-Ztd lUn9H
sz-zl
'ernteredruet sg11 1e retrod elrssnue plol eql (q) pue.{poq1ce1q
eq1;o errquredtuel eql (r) euluuelecl 'eu/ulA eOI o1 pnbe sr re,nod
e^rssrue ,(poq 4ce1q eqt 'url 1'g ;o 43ue1e^eM v tY vz-zI
'(rqSluootu pue erueg qcpur) secrnos 3uqq31 qtoq
'd
ro; remod elrssrrue ,(poq>1ce1q lerlceds >1eed eql eullurele(I
',{ye,trlcedser ') 000t ;o ernlereduret eceJrns e^IlceJJe eql
fpoqlcelq B sp pel?rulxorddu eq ,{eru lq8ryuootu ellq,!\
)tr'zur/l}l.zl = q
r _ lns,
1L
1e
') 00tI ;o ernlereduel
JogI luerquv
eceJrns e^DceJJe eql r€ fpoq{culq
€ se pelururxordde eq ,(eru qcleu E tuor; eweg Y EZ-ZI
range, (b) at wavelengths shorter than the visible range, and (c)
at wavelengths longer than the visible range.
by
A'
strikes 42 directly. What would your answer be
if
A2
were directly above A, at a distance of 80 cm?
Radiation Intensity
l2-39C What does a solid angle represent,
and how does
it
Az= 8 cmz
differ from a plane angle? What is the value of a solid angle
associated with a sphere?
1240C For a surface, how is irradiation defined? For diffusely incident radiation, how is irradiation on a surface related
to the intensity of incident radiation?
l24lc For a surface, how is radiosity dehned? For diffusely
emitting and reflecting surfaces, how is radiosity related to the
intensities of emitted and reflected radiation?
At=8cm2
7r=800K
l2-42C When the variation of
spectral radiation quantity
with wavelength is known, how is the corresponding total
quantity determined?
l2-43C How is the intensity of emitted radiation defrned?
For a diffusely emitting surface, how is the emissive power
related to the intensity of emitted radiation?
12-44 A small surface of area Ar : 3 cm2 emits radiation as a blackbody, and part of the radiation emiued by Ar
strikes another small surface of area Az : 8 cm2 oriented as
shown in the figure. If the rate at which radiation emitted by
Athat strikes A, is measured tobe 214 X l0i determine the
intensity of the radiation emitted by A,, and the temperature
of
A,.
P1247
FIGURE
A small surface of area A : 7 cm2 emits radiation as
blackbody at 1800 K. Determine the rate at which radiation
energy is emitted through a band defined by 0 < Q
= 2n and
45 < 0 s 60o, where d is the angle a radiation beam makes
with the normal of the surface and @ is the azimuth angle.
l?48
a
12-49 Consider the intensity of solar radiation incident on
earth's surface can be expressed as d l00cos0,where I has
the units of Wm2.sr. Determine the peak value for the intensity of incident solar radiation, and the solar irradiation on
earth's surface.
:
12-50 A small surface of area A, 3 cm2 emits radiation as
a blackbody with total emissive power of
5.67 x Wml
Part of the radiation emitted by A, strikes another small surface
of area
8 cm2 oriented as shown in the frgure. Determine
Az= 8 cmz
4=
Ar:
the rate at which radiation emitted by
irradiation on Ar.
Az= 8 cm2
At =3 cm2
FIGURE
P12-4
12-45 A small circular surface of area Ar : 2 cm2 located
at the center of a 2-m-diameter sphere emits radiation as a
blackbody atTl : 1000 K. Determine the rate at which radiation energy is streaming through a D2 : l-cm-diameter hole
located (a) on top of the sphere directly above A, and (b) on
the side of sphere such that the line that connects the centers of
At and, A, makes 45' with surface A,.
1246 RepeatProb. 1245 for a 4-m-diameter sphere.
1247 A small surface of area Ar : 8 cm2 emits radiation
as
blackbody at T1 : 800 K. Part of the radiation emitted by A,
strikes another small surface of area Az : 8 cm2 oriented as
shown in the figure. Determine the solid angle subtendedby A,
when viewed from A,, and the rate at which radiation emitted
a
A, strikes A,. and the
At=3cmz
FIGURE
P12-50
:
12-51 A small surface of area Ar 3 cm2 emits radiation
as a blackbody at T1
1000 K. A radiation detector (Ar) is
placed normal to the direction of viewing from surface A, at a
distance I, as shown in the figure. If the radiation detector is
measuring an irradiation of 100 Wm2, determine the distance
between the radiation detector and surface A,.
:
'pere88ul eq plnoqs uuBle Suttuu,^A eql luql releluorpel
eql uo uouelpeIll eql euurlele('qcnol o1 eJus lou sI leeqs eql
l€q] ue/r\ o1 JIo 03 [L4A uuep uB 'J.gt /Y\oleq ]ou sI eJnlEJeduJl
'eceJJns laaqs
leeqs pleu eql leql slcelep JeleuorpPr eql ueql[
Il4elu eql Jo zluc l_Jo €er€ 1e3J4 € uro4 uollerp?l se^receJ leleuro
-lp€J er{J 'eJnlPJeduel llxe eql Jolluotu o1 eceyns leeqs eql ulo{
'Jogt
ru 9'0 Jo ecuelsrp e 1€ pue ol luuuou peruld sI releuorpEl v
,roleq elnleJadurel e le qleq Jet?.44 eql uxa lsnru lI 'teeqs eql
Surpueq eldoed uo runq pureqt lua,terd ol repro uI 'pelooc eq ol
qleq rele,4 e q8norq pe,{e,Luoc Sureq sr ,{poq>1ce1q
e sE pelururxordde eq uer leql leoqs lelrlu 3uo1 y
09-71
'lCe]ep plno,{ Jelouorpej eql ]eq] UOIJeIPCTI eql eululJelec
'e1u1d eql uor; 3ur,r,rer,t Jo uollcellP eql ol Ieurrou eteld aqt
eloqu ru 1 peceld sr reteuolp?r V ')..ur716 I sr ere;rns eteld
eql uo uollJa^uoc I?Jnleu ol anp luercllleoc Je.+suBll leeq eqJ
'J.g lB Surpunorrns luerque ue o1 pesodxe sr ece;rns do1
eqt e[q,^A 'tuolloq eql uo ztull[ 000I Jo xnu l€eq luroJlun
o1 pelcefqns sr (,uc S : rY) e1e1d fpoqlcelq V 6S-ZI
u
6qrnru ,^AoI{ fq 'os ;t pue 'pelqnop sI 7 ecuulslp eql JI essercep
eqt luor; releruorput eql uo uotlulp€rll eql plnol{ '7
e1u1d
ecuelslp e 1e elu1d aql rtro{ 3ut,Lret,,r Jo uortceJlp eql ol IeuJou
peceld sr zy ecugrns ? qlr,^A releuorper y ',{poqlrelq e sE peleu
-rxordde eq uec lyecu3Jns B qll \ eleld rclnrrtc tletus V 8S-ZI
ecuulslp e 1u peceld releuoIpEJ u leprsuoJ 'slJelep ll uorlulpeul
Jo tunorue eql Surrnseeut ,{q tcefqo 1oq Surqceordde ue ;o
uorlrsod eql euluretep o1 pesn eq uuc releuolper V 9S-ZI
6plEZeq erII
;o 1sr.r ,(uu eq ereql plno,^A 'zru/l& I'0 Jo uorletperJl uu slceleP
relauorppr eql JI 'eceJtns eut8ue eql Jo zurc 1 ;o eere 1e3're:
uro4 uoll€IpeJ selreJeJ JeleuorpeJ eq1 'e:nleredtuel eJEJlns
B
eql Jolluoru ol ec€.+Jns eur8ue eql ulo{ ru I Jo ecuulslp ? le pIF
ot I€rrrrou paceld sr releuolper V 'J"08I ,r,r.o1eq tde>1 eq plnoqs
eurSue eql Jo eJnluledurel ece;rns eql 'eceJJns eur8ue eq:
uo {Eel Iro Jo tue^e eql uI plez€q eI; }ue,terd o1
"(poq1ce1t1
e su peleulxo:dde,eg uec leqt oJeJJns lalno eur8ua ue JeplsuoJ
',(lsnoeueluods eltu8r uec JI 'eJnlereduel uorltu8rolne s,lro etp
a,toqe slods loq qlr, \ lJeluoJ uI setuoc llo pe{eel eql ueqiA uell
'elqrssod sr e8u>1ee1 IIo eleq,l.r eceld e ut pelenlls st eur8ue uu 1t'
eJeJrns lelno Jql Jl JJBJIns slt uo stods loq esnPJ
uec uorteredo ur eur8ue ue ruog peludrssrp lee11
SS-U I
'eletd eql 1o e;nle:aduet at4
euruJelep 'e1u1d eqt uIoU zlulld 98 Jo uollerp€rrl uB pernseou
reteruorpur eqt JI 'tut 0g Jo ecwlslp B te eleld eql ruo4 3uv'rat-"
uortcelp eqt 01 Ieurou peceld sr releruolpur e 'ete1d eqt ruo4
Jo
uorterpur er{t eurureleP o1 'fpoqlcelq e se peleurxordde a:
uec pue uc Z Jo Jetaruelp e seq ele1d relncJlc Ileus V yS-ZI
'ru 9'I puB '0'I 'g'0 : 1/ lu lelerrolpEr eqlJo
luerueceld eqt roJ r uortrsod lcefqo Surqcuordde eqt;o uoltrunJ
e ee 0zgf'zg orlet uorlurpurrr 1o1d 'slueueJcul tu Z'0 qu,lA lu €
eg-z ld
ol 0 ruoq x 3ur,(rua. fg ',{1e,r.r1cedser '0 : r 1e pue x uotltsod le
0 r9 puu
sr lcefqo eql ueq,t JeletuolpeJ eql uo uollslpexl eql ere
'zgr e:eqm 'o'.g lr.C orleJ uorlerp€rrt eql uo lcefqo Surqceordde
eq1 1o uorysod eqt Jo treJJe eql etenlu,\e 'eJ€,l.ruos
(reqlo ro) Sgg eql Sutsn'99-71 'qord replsuoced LS-ZI
99-Z td
z,
zulA\ 09 =
lungll
zu/l6sOI x L1'a=(18
Ixu0t = LO
JOlJelep
uorlerped
ernl.redV
'Josuos eql pue erngede eql uee,lAleq ecu?lslP eql euttuJelaf
lunSll
'zu/l6 0S Jo uorlelperrt uu Sutsues sI rosues eqt 31
ur u,roqs se '8ut,trer,t 3o uollceJlp IEIuJou eql JJo llq
.I
'ern8g
"0t
P
eq--
qll
l
peuorlsod sr rosues uollerpul V 'zu/,46 sgl X l8'Z Jo re,vto;
e se pellrue sI uollerp€J qtlq't
e:nlredu ue JeplsuoJ gS-Zl
enrssrtue ue
qtlA
,(poq>1ce1q
q8no:qt releruerp tuu-gI
;o
'ecuFns eql Jo IsruJou eql qll A seluu lueel
gv Q) pue
uorterper e e13ue aqt sr 0 eraq,{\ '006
0
"9p =
0
= =
0 (D) q8norqt eceJJns eql uo lueplcut sr,(8reue uoIlEIpeI
=
qJrq,^A ]e e13J eql eulurJele( 'ereqdsnueq eJllue eql Je,\r'
rs.zruli[ gI x Z'Z: r7 flrsuelut lu€lsuoc Jo uol]€Ip€r luaprrln
ot petceiqns sI zluc I : V eerc Jo ec€Irns Ipurs V ZS-ZI
Jeleluorp€d
19-Z Id
'7 1celqo eq1;o uorlrsod eql
eurrurelep '(O : r) Jeleuolpur eql Jepun f1lce:rp lcefqo eq1 ;o
uorlrsod eqt ot Surpuodselor uoltelpeul eql Jo 699 Surrnseeru
sr retetuolpur eqt I 'tcefqo ,{poq1ce1q 11eus Surqceo:ddu ue
ol pesn sI slxe-r eql ruou u 9'0 : 11
)
zO
zu/A\ 00I =
lungll
000I = rJ
tV
e=
ZLLI1
rolcelep
uollelped
5o uorlrsod eql eJnsueu
12-61
A radiometer is employed to monitor the
temperature of manufactured parts (A r : 10 cm2)
on a conveyor. The radiometer is placed at a distance of I m
from and normal to the manufactured parts. When a part moves
to the position normal to the radiometer, the sensor measures
the radiation emitted from the part. In order to prevent thermal
burn on people handling the manufactured parts at the end of
the conveyor, the temperature of the parts should be below
45'C. An array of spray heads is programmed to discharge mist
to cool the parts when the radiometer detects a temperature of
45"C or higher on a par1. If the manufactured parts can be
approximated as blackbody, determine the irradiation on the
radiometer that should tdgger the spray heads to release cooling
mist when the temperature is not below 45'C.
it differ from a
l2-64C Define the properties emissivity and absorptivity.
When are these two properties equal to each other?
12-65C Define the properties reflectivity and transmissivity
and discus the different forms of reflection.
l2-66C What is the greenhouse effect? Why is
great concern among atmospheric scientists?
it a matter of
l2-67C We can see the inside of a microwave oven during
operation through its glass door, which indicates that visible
radiation is escaping the oven. Do you think that the harmful
microwave radiation might also be escaping?
13-cm-diameter spherical ball is known to emit radia-
tion at a rate of 160 W when its surface temperature is 530 K.
T
Determine the average emissivity of the ball ai this temperature.
i
f
Convevor
:
/
A long metal bar (c, :
450 J/kg.K,
:
12-69 A small surface of area At 5 cm2 emits radiation as
a blackbody ar T1
1000 K. A radiation sensor of area 42
3 cm2 is placed normal to the direction of viewing from surface
At at a distance L. An optical filter with the following spectral
transmissivity is placed in front of the sensor:
Manufactured Part
rrcunt P12-61
12-62
12-63C What is a graybody? How does
blackbody? What is a diffuse gray surface?
12-68 A
Radiometer
@-
Radiation Properties
_'^ _lr,
- I",
p:
7900 kg/m3) is being conveyed through a water
bath to be quenched. The metal bar has a cross section of
30 mm X 15 mm, and it enters the water bath at 700.C.
During the quenching process, 500 kW of heat is released
from the bar in the water bath. In order to prevent thermal
burn on people handling the metal bar, it must exit the water
bath at a temperature below 45'C. A radiometer is placed
normal to and at a distance of 1 m from the bar to monitor the
exit temperature. The radiometer receives radiation from a
target area of 1 cm2 of the bar surface. Irradiation signal
detected by the radiometer is used to control the speed of the
bar being conveyed through the water bath so that the exit
temperature is safe for handling. If the radiometer detects an
irradiation of 0.015 Wm2, determine the speed of the bar
being conveyed through the water bath. Assume that the metal
bar can be approximated as a blackbody.
:
0, 0<),<2pm
0.5, 2p.m',\ { o
If the distance
I:
between the radiation sensor and surface A, is
0.5 m, determine the irradiation measured by the sensor.
I 2-7
0
ffii I
iil*l Ji:::,,:f fff TJ:1,il",H,""iT ;:
tank wall, and to prevent thermal bum on individuals, the tank's
outer surface temperature should be below 45'C. The emissivity
of the tank surface is 0.85, and irradiation on the tank surface
from the surroundings is estimated to be 390
W/m2.
A radiometer is placed normal to and at a distance of 0.5 m
from the tank surface to monitor the surface temperature. The
radiometer receives radiation from a target area of 1 cm2 of the
tank surface. If the irradiation measured by the radiometer is
0.085 Wm2, determine whether or not the tank surface is safe
to touch.
72-71 A furnace that has a 40-cm X 40-cm glass window
can be considered to be a blackbody at 1200 K. If the transmissivity of the glass is 0.7 for radiation at wavelengths less
than 3 pm and zero for radiation at wavelengths greater than
3 pm, determine the fraction and the rate of radiation coming
from the furnace and transmitted through the window.
12-72 The spectral emissivity function of an opaque surface
at 1000 K is approximated as
FIGURE
P12-62
:0.4, 0<.tr<2pm
: 0.7. 2 pm <,,\ < 6 pm
{:l :0.3, 6pm=|{o
',{lr,Lrssrure puu',(lr,rrssrursue:1
'f1r,trlceger',{1ra.r1fuosqe s,tunrpetu eql euruuelep'tunrperu
eq1 q8norqt pellltusuerl sl zullA 0gI puB runrpeur eql uro{
petceuer sr uorlerperr eql Jo zrul^\ 0gI JI ',ru7L1 0zg Jo al€r
B lB sI lunlperu lue;edsuzrl-nues € uo uorlerp?xl I3-ZI
,tlnnceger e8e:ene eql euruleleq
'url
g ueql relear8 uorlurper
roJ S6'0 puz urrl g uzql ssal sqt8uele,tz,Lr tu uorterpzr roJ gg'g sl
eteJlns peel qlr^r peteoc unurunlu Jo ftr^uceger aLIL LL-T,I
08-z 1d tunctj
t00/=it
/
\J.rt
\
a
'e1e1d eq1;o ,{1r'rqdrosqe pue fl,nrssru:e ptot eql euruuele6l
'zul\\ 0005 ;o remod enrssrue uB spq pue 001 Jo e:ntered
-uel luroJrun e seq e1z1d eql 'petceuor sJ zul1\. 009 qrrqa Jo
'zull6 000€ sr e1e1d eql uo uorlurppxr erll'ecelns -re,rol aqt pue
se8pe eql uo pelelnsul 1e,n sr e1e1d ptuozuoq enbedo uV 0g-ZI
)
'eceJ:rns a1e1d eql go ,{lrsorper
eW (q) pue i(lr^rssrure lucrreqdsrueq lelol eql (r) eurruretep
'zulA\ 0099 Jo uortprperrr ue ot pelcefqns sr e1e1d eqt ;1
'g'9:zs1
co)Y>ulrl?
rurlt>y>0
't'0=r3J:'
y^
:uorlcunJ flr,rrssrue leJlJeds 3ur,,rro11o; eql pue
') 000f 1B 3re#ns sil.ll Jo ,{ll^tsslue
oEereAB eql eururelep 'oslv ') 00gZ : J le eJJnos B tuoq
seteur8rro luqt uonurper roJ ao€j:ns eqt Jo {tllllceger puu
euruuelec '9L-ZId '3rg ur uea.r8 su sr
,{tr,rr1fuosqe o8ere,re eqt
eceJins e Jo
leJlJJds eql Jo uorluuu
^tr^rlfuosqe
68 0 (q) 'tET 0 (p) :sa/Asuv
a)
00€ pue
)
^
eq;- gL-ZI
0089 le secrnos
tuo:; Sururoc uorlerpeJ JoJ eceJJns slql Jo ,(1r'uldrosqe eq1
lnoqe {Es no,{ uec leq,/y\. ') 00€ (S) pue ) 0089 (r) 1e acegrns
slql Jo /{lr^rssrue e8e:ere er{l euruJelec 'urrl g ueqt reluer8
sqlSuele^e,r te uortBrper roJ 6'0 pue rurl g ueql ssel sqlSuel
-e^e/rl le uorlerpeJ JoJ 9I'0 eq o1 peleurxordde eq uBc eprxo
eqJ- sL-zI
unurunle qlr.r peleoc eJeJJns e Jo
^lr^rssrua
IS'0 Jo f1r,r,r1fuosqe lecueqdsrrueq Ietot ? spq ') 009 le peurul
-ur€ru sr ele1d eq1 'ereJrns re^\ol eql pue se8pe eql uo palel
-nsul IIe/( sI tuql eluld Ieluozuoq enbedo ue reprsuoJ 64-ZI
nL-zld lun9ll
€
0
rud'y
8L-Ztd tun9H
ttlli'y
e'00
t
areqJosq?
'zulA\
zulM 999 9I000 0 018 0 :ea/usuv
099 Jo uollelper
J?los lueprcur JoJ ,r\opur/y\ eqt qSnorqt peurusuerl uorlerpeJ
Jelos Jo tunoup lll ouruuolep 'ostV '() 00t
- J) e:nlu:eduel
rlrooJ le sec€Jrns uror3: Suruoc uorlurp?r pue (X 00g9 : J)
uorlsrpsJ Jelos JoJ /r\opur,^ srql Jo flr^rss[usueJl eSera,te aql
eurrurele6l
ftlos 3 s3 a^Jes ol elqelrns
eJour
sr eceJrns r{rlq16 ') 000€ 1B arlnos e ruor; Sutuoc uollelpsr
roJ eJeyns qJee Jo ,{lrnrlcege: pue
e3u:e,re eql
^lr^rlfuosqe
qree Jo ,{lr,rrssllue
eurrurelep 'oslv ') 0008 : J 1€ eceJjns
e8ere,re eqt ourureleq 'gL-ZId '3rg ur uea.r8 sp eru seczJrns
o/y\l Jo ,{lr,rrssrura Ierlceds eql Jo suorlPlue! eql vL-71
'sernte:eduel qloq
1€
lueruelrJ eql
eq UEJ lueruelrJ uels8unl u ;o ,(lr,r.rssrtue eql €r-ZI
asrotcelloc lulos
uI esn JoJ elgelrns sr IerJeJeru slql {uql no,( oC 'se.rnleraduel
qloq le ece3lns srqt Jo ,Qr,tqd:osqe pue
eqt euruuetep
;o ,(1r,r.rlcegar puu ,(1r,rgfuosqe eqt euruuelep 'oslv ') 0009 (S)
pue ) 0002 (n) te tueurulrJ eql Jo ftr,r.rssnue e8ere,re eql
B Jo ,(llllssnusuerl lerlceds eqt Jo uorl€rrel
'8L-Zld'8rg ur ue,rr8 su sr ,^Aopur,^A ssu13 lcrqruc-9'g
eqJ g4-ZI
'oslv
'()
00€
uoqerpur pu€
^lr^rssrue
: J) errueredruel uoor 1€
seJelns tuo:; Sururoc
() 0089 :;) uoqepu: relos roJ ece3:ns srql Jo
eur{urete6l'urrl 1 ueqr raleer8 te uorterp?r JoJ SI'0 pue url 1
uBql ssel sqlSuale^e,{\ le uoIlBIpPr roJ g'0 eq o1 peluurxordde
'zul^\ ul 'eJeFns Oql uorJ uorssrue uorlBrpsJ
Jo eler eql pue eceJ:rns eql Jo .{lr^rssrue e8€re^€ eql euruuelec
12-82 Consider an opaque horizontal plate that is well insulated on the edges and the lower surface. The plate is uniformly irradiated from above while air at T- : 300 K flows
over the surface providing a uniform convection heat transfer
coefficient of 40 Wm2.K. Under steady state conditions the
surface has a radiosity of 4000 Wm2, and the plate temperature is maintained uniformly at 350 K. If the total absorptivity of the plate is 0.40, determine (a) the irradiation on the
plate, (b) the total reflectivity of the plate, (c) the emissive
power of the plate, and (4 the total emissivity of the plate.
.l
Air, 300 K
h=40.W/m2.K
fb/
It
\/
?"= 350 r
FIGURE
P12_82
12-83 Consider
an opaque plate that is well insulated on the
edges and it is heated at the bottom with an electric heater. The
plate has an emissivity of 0.6'7, and is situated in an ambient
surrounding temperature of 7"C where the natural convection
heat transfer coefficient is 7 Wm2.K. To maintain a surface
temperature of 80"C, the electric heater supplies 1000 Wm2 of
uniform heat flux to the plate. Determine the radiosity of the
plate under these conditions.
12-84 A horizontal plate is experiencing uniform irradiation
on the both upper and lower surfaces. The ambient air
temperature surrounding the plate is 290 K with a convection heat transfer coefficient of 30 Wm2.K. Both upper and
lower surfaces of the plate have a radiosity of 4000 Wm2, and
the plate temperature is maintained uniformly at 390 K. If the
plate is not opaque and has an absorptivity of 0.527, determine
the irradiation and emissivity of the plate.
the plate is uniform at 350 K, determine the irradiation that the
radiometer would detect.
Atmospheric and Solar Radiation
l2-86C
When the earth is closest to the sun, we have winter
in the northern hemisphere. Explain why. Also explain why
we have surlmer in the northem hemisphere when the earth is
farthest away from the sun.
12-87C Explain why surfaces usually have quite different
absorptivities for solar radiation and for radiation originating
from the surrounding bodies.
12-88C You have probably noticed warning signs on
the
highways stating that bridges may be icy even when the roads
are not. Explain how this can happen.
12-89C What changes would you notice if the sun emitted
radiation at an effective temperature of 2000 K insteadof 5162K?
l2-90C What is the solar constant? How is it used to determine the effective surface temperature of the sun? How would
the value of the solar constant change if the distance between
the earth and the sun doubled?
l2-9lc Explain why the sky is blue and the sunser
is
yellow-orange.
l2-92C
What is the effective sky temperature?
12-93
Solar radiation is incident on the outer suface of a soaceof 1260 Wm2. The surface has an absorptivity of a.
: 0.10 for solar radiation and an emissivity of e : 0.6 at room
temperature. The outer surface radiates heat into space at 0 K. If
there is no net heat transfer into the spaceship, determine the equiship at a rate
fibrium temperature of the surface. Answer: 247
K
12-94 The air temperature on a clear night is observed
to
remain at about 4'C. Yet water is reported to have frozen
that night due to radiation effect. Taking the convection heat
transfer coefficient to be l8 Wm2.K, determine the value of
the maximum effective sky temperature that night.
Air, 290 K
h = 30 Wm2.K
r"=390r
,/
Air, 290 K
J
h=30Wlm2.K
FIGURE
P12_84
12-85 A semi-transparent plate (At : 2 cm2) has an irradiation
of 500 Wm2, where 307o of the irradiation is reflected away
from the plate and 50Vo of the irradiation is transmitted rhrough
the plate. A radiometer is placed 0.5 m above the plate normal
to the direction of viewing from the plate. If the temperature of
temperature. The surface temperature is observed to be 350 K
when the direct and the diffuse components of solar radiation
arc Gp: 350 and Ga : 400 Wm2, respecrively, and the direct
radiation makes a 30o angle with the normal of the surface.
Taking the effective sky temperature to be 280 K, determine the
net rate ofradiation heat transfer to the surface at that time.
12-96 The absorber surface of a solar collector is made of
aluminum coated with black chrome (a, : 0.87 and e : 0.09).
Solar radiation is incident on the surface at a rate of 600 Wm2.
The air and the effective sky temperatures are 25oC and 15"C,
respectively, and the convection heat transfer coefficient is
10 W/m2-K. For an absorber surface temperature of 70'C,
determine the net rate of solar energy delivered by the absorber
plate to the water circulating behind it.
90t-ztd tungH
J"Z'
ureS leeq
i,^AopuL{\
sse18-.rea1c eued-e18urs ? Jo JS puu JCHS oqt Jo sanp^ eqt er?
1eq16 '(tuercrileoc Surpeqs) JS eql ruo4 sreJJIp 1l a,roq ureldxe
pue '(luercrileoc ute8 leeq rulos) f,CHS eql euIJeC JVryI-ZI
leredutoc
rulos
ssu16
Surqrosqe-lueq pue sse13 reelc Jo sJS eqt op ,^AoH t tueserdel
ecr^ep u;o (tuercrgeoc Surpeqs) JS eql seop reql( J€OI-ZI
aurets lueq
rulos eqt tceJJe eprstno Surce; ecrnep Sutpeqs e Jo eceJrns
eql Jo roloc eql seop
i,l.ropult e qSnorql ure8 leeq
^\oH
rulos eql Surcnper ur eAIlceJJe eJolu eclnep Sutpuqs IeuJelxe
ro Ieuretur ue sI 6ecl\rp Sutpeqs e sI tBI{lA
J7,01-7,1
a/y\opur/( eqt qSnorql Jeurruns ur ureS leeq (g)
pue relur.r uI ssol lueq (a) eqt uo sse13 ,tropur,tr u Jo eceJrns
reuur oql uo Surleoc e-,rol e Jo lceJJe eql sI tuq^d JI6I-ZI
'peo1 Suruorlrpuoc-Jre eq1 Surzttututtu JoJ pellns
ssal ;lalfisuy 'Jo0l
sr eJnl€Jedruel Jooptno eSera^e erll Jr porred \-vz e rc!
f.renuul ur ,{up 1ecrd,(l e uo ,ropur,r lspe ue q8norqt uns eql
uror; Surure8 sr lr upql leerl ssel Jo eJoru 8urso1 st esnoq eql
Jr eurxrele(I 'serurl IIU w J"Tz le peuretureur sl esnoq eI{J
'sreceds puu serus{ tunurrunp eleq pue eceds rte Jo ruur t'9
pue sessulS {Jrr{t-ruu-€ qlr,,vr peuud elqnop ere leql s/y\opulln
ed,(1-roop-elqnop qlr,l.l. esnoq e reprsuoJ 'erur1,(up Surrnp rueqt
q8norql ssol teaq eql ueqt erou eq uec s,l.ropul/vr eq1 q8norqt
ureS leeq ftlos eqt snql pue ',{uuns 1nq ploc sI '(epnlre1
N "6€) epe^eN 'oueg ur fep relur,tr lecrdfl V 90I-ZI
901-Z]d IUnCH
,^dopur,r
e;o
flluept st leqt
sergedord uorterper relos eqt eqlJrseq
JggI-ZI
'uorlerpsr pere4ur ro; uorlsenb erues eql Je,rsuv aqlJeo
uo le^el €es lB (q) pue ereqdsorule s,quea eql eplstno (r) e8ue:
elqrsr^ oqt ur sr f8reue relos eqt Jo uorlce{ leqA J66-ZI
:cldol lelcads
smopurM q8norql ureg leaH relos
'sllnseJ eql ssncslP
pue'0'l ot g'0 ruoq ,(re^. ,{lrnrlfuosqe eql 1e1 'e1e1d reqrosqe
aqt Jo ,{lrnrlfuosqe eql Jo uollcunJ e sB lele,{\ ol PerleJsueJl
,{3:eue JEIos Jo eleJ leu eqt lold 'eJB,^ Uos
(reqro ro) ggg Sutsn '96-ZI 'qord replsuored
86-7I
'pelelnsur sr reqrosqe eql
Jo eprs {ceq eql JI 96-z I 'qord uI ecEyns
reqrosqp eq1;o ernleredruel urnuqllrnbe eqt euruueleq Z6-ZI
96-Z1d lUn9H
ssz13
Surqrosqeleall
oortelnsul
saq$ rele^\
eteyd:eq:osqy
J.0L ='J
J"SI =
rt{tJ
is^AopullY\ eql l3 spullq ou eJe/r\ eleql JI eq Jel(su? Jnof
plno^A teql11 'pdy ur uoou rulos le s,^Aopur,4d qlnos eql q8norql
Surplnq egtJo ure8 leeq relos lelol eql eurrureleq '0€'0 : f,S
Jo luercrJJeoJ Surpuqs u qu^A spur1q u€rleue^ peroloc-lq8r1
qlri$ peddrnbe erp pue 'ed,(1 Surqrosqz-lueq eued-elqnop ere
sdAopurlr\
er{J 'lle/( qlnos slr uo eeJs
t€qr (epntlel N
"0t) )ro1
,,1(\opur^\
,{\eN ur Surplmq e
Jo zru
0€I
seq
replsuoJ S0I-ZI
12-107 Repeat Prob. 12-106 for
a south window.
12-108 Consider
a building located near 40o N latitude that
has equal window areas on all four sides. The building owner is
considering coating the south-facing windows with reflective
film to reduce the solar heat gain and thus the cooling load.
But someone suggests that the owner will reduce the cooling
load even more if she coats the west-facins windows instead.
What do you think?
12-109 Determine
the rate of net heat gain (or loss) through
a 3-m-high, 5-m-wide, fixed 3-mm single-glass window with
aluminum frames on the west wall at 3 prr.l solar time during a typical day in January at a location near 40" N latitude
when the indoor and outdoor temperatures are 20oC and -7.C,
respectively.
l2-ll0 A manufacturing facility located at 32o N latitude
has a glazing area of 60 m2 facing west that consists of
double-pane windows made of clear glass (SHGC : 0.766).
To reduce the solar heat gain in summer, a reflective film that
will reduce the SHGC to 0.35 is considered. The cooling season consists of June, July, August, and September, and the
heating season, October through April. The average daily
solar heat fluxes incident on the west side at this latitude are
2.35, 3.03, 3.62, 4.00, 4.20, 4.24, 4.16, 3.93, 3.48, 2.94, 2.33,
and2.0l kWh/day.m2 for January through December, respectively. Also, the unit costs of electricity and natural gas are
$0.09/kwh and $0.45ltherm (l therm : 105,500 kJ), respectively. If the coefficient ofperformance ofthe cooling system
is 3.2 and the efficiency of the furnace is 0.90, determine the
net annual cost savings due to installing reflective coating on
the windows. Also, determine the simple payback period if
the installation cost of reflective film is $20lm2.
l2-lll A house located in Boulder,
l2-ll5
The human skin is "selective" when it comes to the
absorption of the solar radiation that strikes it perpendicularly.
The skin absorbs only 50 percent of the incident radiation with
wavelengths between i r 0.5 17 pm and 12
0.552 pr,m. The
radiation with wavelengths shorter than ,\, and longer than 12
is fully absorbed. The solar surface may be modeled as a blackbody with effective surface temperature of 5800 K. Calculate
the fraction of the incident solar radiation that is absorbed bv
the human skin.
:
12-116 Consider a small black surface of area A 3.5 cm2
maintained at 600 K. Determine the rate at which radiation
energy is emitted by the surface through a ring-shaped opening defined by 0 Q - 2r and40
=
= I = 50", where { is the
azimuth angle and d is the angle a radiation beam makes with
the normal of the surface.
l2-ll7 A small surface of area A : 3.5 cm2 emits radiation
with an intensity ofradiation that can be expressed as I.(0, $)
: 100 d cos9, where 1, has the units of Wm2.sr. Determine
the emissive power from the surface into the hemisphere surrounding it, and the rate of radiation emission from the surface.
lLllS A radiation sensor and a small surface of area A r that
emits radiation as a blackbody are oriented as shown in the
figure. Determine the distance Z at which the sensor is measuring
two-thirds of the radiation rate emitted from surface A, corresponding to the position directly under the sensor at Z
0.
:
Colorado (40" N
latitude), has ordinary double-pane windows with 6-mm-thick
glasses and the total window areas are 8,6,6, and 4 m2 on
the south, west, east, and north walls, respectively. Determine
the total solar heat gain ofthe house at 9:00, 12:00, and 15:00
solar time in July. Also, determine the total amount of solar
heat gain per day for an average day in January.
l2-ll2
Repeat Prob.
l1-lll
H=50cm
Al
L
for double-pane windows that
FTGURE
are gray-tinted.
Review Problems
l2-ll3 A l-m-diameter
spherical cavity is maintained at a
uniform temperature of 600 K. Now a 5-mm-diameter hole
is drilled. Determine the maximum rate of radiation energy
streaming through the hole. What would your answer be if the
diameter of the cavity were 3 m?
l2-ll4
Daylight and incandescent light may be approxi-
mated as a blackbody at the effective surface temperatures of
5800 K and 2800 K, respectively. Determine the wavelength
at maximum emission of radiation for each of the lighting
sources.
:
Pl2-1 18
l2-ll9
The spectral emissivity ofan opaque surface at 1500 K
is approximated as
sr:0
ez : 0.85
e::0
for
for
for
z\<2pm
2=,\<6pm
i>6pm
Determine the total emissivity and the emissive flux of thesurface.
12-120 The spectral absorptivity of
an opaque surface is as
shown on the graph. Determine the absorptivity of the surface for radiation emitted by a source at (a) 1000 K and (b)
3000 K.
uIfl 0 8t (p)
url 1'91(a)
ud 1'9 (tt)
ant 2'61q1
rurl 9'gI (r)
sl ) 00€ ]e enlB^ IunlulxEul sll seqJEeJ le,\\oo
enrssrrue ,{poq1cu1q eqr qclq,t te ql8ue1e,tu,tt eqJ 6ZI-ZI
ud..ur76
vzt-ztd lun0ll
7699 (a) ud..Lu716 09LT, (p) urrl.,tu716 t 80 t (r)
rurl..ur7,16 E9Z@) rurl.,tu716 Vg'l (.D)
sr
.{poq>1ce1q 1e.r1ceds
zu/A\
srql
Je
U6Z
ud gg;o
eqJ
')
ql8ue1e,ne,tt e lu le,ntod eAISSIute
00E ts eceJrns
zulll|' L99 \a)
zullt\ 991 ({l
(r)
t
taplsuoC 8Z1-ZI
iu/Ar\
t9t
0r)
.ru/AA 0 (r)
sr uorlnrpcl {q atu;.rns
luo{ pelltue eq uec l€q] leeq Jo elur turlulxulu eqJ J.sz
Jog le esBJJns ? JepISuoJ LZI-aI
luertluoJl^ue uP uI
sualqord uexl (11) Sutteaut8ul lo sleluouepunl
gzl-Ztd lun0ll
'Qnt )
ogg
=t
.1o ,(lLnrssrursup.rt eql (r/) 'e1t1d reqrosqu eqt uo lueplcul xrll+
rulos eql (r) eururreleq :etr,tr Surlooc eqt ,(q y gtg t€ peurel
-ururu sr '{cEIq eq 01 pereplsuoJ eq uuc qclq,t 'e1u1d reqrosqu
erlt puu '.u/_/d 096 Jo elPr r? lu lueptcul sr uotlerpel lelos
LunE<Y
url'Ig>Y>€'0
ul1-l
['0 >
Y
.roJ
roJ
roJ
0
6'9
0
:
:
:
.J
zt
I.r
sc ue,tt3 i't lolcelloo Ju]os
€ ur pesn -ra.toc sse13 e 1o (lt,r.tsstutsuu:1 1e.r1ceds eqJ €ZI-ZI
roJ
roJ
loJ
0-t.r
980-'.r
0-L.r
se pesseldxa eq ucc sseli
fls.ppr
=
Josues eql fq peldec:e1uL st Iy tuo:;
petllue uorl€rpuJ qcrq,^A ]u elEl aql eulruJelep 'uollutpelJr.+o
ru/A\ 0002 3utcuet.tedxe st'ry ecu;:ns ;1 ,(1a,tr1cedsa: '1'9
puu S'0 ere ly eoulrns ;o ,{lr,trssrrue pue {lr,r.rld.IosqB eqJ
') 00? : tJ lo e;nleredruel luelsuoc 1l suIEJuIaul pue (;o1
-Jel.]el pue Jelllrue asn;;rp) enbedo sr ly ecu;.rng 'ern8r3
eql ur u,l[oqs se pa]uello eJu -ulJ I :'V cJlB Io.Iosues uoll
-rrper u pur .urr t : tV eeru Jo eJPJrns ll€urs V yZI-7I
0t[ osle sr elnter:duel ;enor
ssr13 aqt Jr ratu,'rt Sutlooc eqt ot raJsuurt iueq.Io otn: aqt (;)
puu 'ete1d raqrosqu aqt fq pellrure uorterpur roJ re^oc ssel8 eqt
'e1u1d eql go ,{lrntsstrue pue ',(1,tr1caga: ',{1r
-,r rlfuosqu eqt euluJelep ') 0S€ Jo ernleJedulel u.loJlun e sur31
-uruu e1u1d eqt.+I uouJe,\uoc .(q 16 009 Jo eter u 1u leeq 3urso1
sr eceJ.rns er{} pu€ 'uotlerpertt eqt Jo lA 000t sqrosqe etuld eq1
',,11
p
0009 Jo elcr le uollelpnxl uJoJrun s:ruet:adxe 1t puu '-ru g
Jo ueJe uu seq ecuJlns do1 eq1 ecp,JJns Je,^\o[ eq] pue se8pe
eql uo petelnsur lla,tr sI e1e1d leg enbedo Ieluozlroq Y 9ZI-ZI
;tqBr1 ro; sse13 srqt ;o ,{tt,nLssttusuurl eql sI lEt{A\
'uollerpu.r Julos -loJ sse13 srql 1o ,(1t,r.t"^stutsueJl eql eulruJeleq
gzt-Ztd runcll
rurlgZ<y
Lurl S'Z>y>qE0
turl gg'0>y
^uor1,
E60=3
t90='r,
oluld
J.ti-
.re;n8ar
{l'J
\._lln\r_IlllrLJa>-
)rrqt-uu-t u;o ,{l,rrssnusue:1
lellceds eqj- Z7.L-TI
'uoIluIpEJ Jelos Jo uorldrosqu Jo elul eql pue eceJJn!
eqt;o (lr,tr1fuosqu rElos eqt eululete(l 'zul711'0Ll.+o elel € lr
uorlurper rPlos se^lecer 0zI-zI 'qord uI ere.+.rns aql I7I-7I
',ro\^
J
I
rlv
'e1e1d eql;o erntu:edurel unuqtltnbe eql eunureleq 'eceJtns
{ceq eql roJ Jog te ere seruJrns Sutpuno.r-rns aqt ellqm J"tt- sl
eceJrns luo{ eql rog. ernleredtuel ,(1s e.tqce;;e eqJ 'X..ru//A 0Z
sr luersrJJeoc JeJsuerl lueq uotlcenuoc eql pu€ 3o9 st e:n1e;ed
-ruel rru eqJ '€6'0Jo f]rntsstute ue pue €9'0.]o {1r.ttldrosqu relos
e e^Bq seceJrns e1e1d eq1 'ereJrns eql Jo Ierurou eql qtL,tt e13ue
',{1e,ttlcedser 'zu/1\ 0gZ
o0€ B se{Eru uoqerpur lcerlp eqJ
qtt,^\ el€ld ulqt
puu 00t
;o slueuodruoc esnlJrp pue lcerlp
e Jo eceJrns ]uoJJ eql uo lueplcul sI uorl€Ipel
0zl-zld lunclJ
EO O
.I
Lun 'y
IO
rulos szl-zl
If the surface is exposed to atmosphere with an
effective sky temperature of 250 K, the equilibrium temperature of the surface is
(c) 303 K
(b) 298 K
(a) 28rK
12-130 A surface absorbs 10 percent of radiation at wavelengths less than 3 pm and 50 percent of radiation at wavelengths greater than 3 pm. The average absorptivity of this
surface for radiation emitted by a source at 3000 K is
(a) 0.\4 (b) 0.22 (c) 0.30 (d) 0.38 (e) 0.42
6 W/m2'K.
l2-l3l A surface at 300"C has an emissivity of 0.7 in the
wavelength range of 0-4.4 pm and 0.3 over the rest of the
wavelength range. At a temperature of 300'C, 19 percent of
the blackbody emissive power is in wavelength range uP to
4.4 um. The total emissivitv of this surface is
(c) 0.624
(b) 0.316
(a) 0.300
12-135 A surface is exposed to solar radiation. The direct and
diffuse components of sola.r radiation are 350 and 250 W/m2, and
the direct radiation makes a 35' angle with the normal of the
surface. The solar absorptivity and the emissivity of the surface are 0.24 and 0.41, respectively. If the surface is observed
to be at 315 K and the effective sky temperature is 256 K, the
net rate of radiation heat transfer to the surface is
h) -129W1m2 (b) -44Wlm2 (c) 0 wm2
(a
(e) 0.50
0.10
12-132 Consider a 4-cm-diameter and 6-cm-long cylindrical
rod at 1000 K. If the emissivity of the rod surface is 0.75, the
total amount of radiation emitted by all surfaces of the rod in
20 min is
(c) 434 kJ
(a) 43kI
(b) 385 kJ
(e) 684 kJ
(d) s13 kJ
12-133 Solar radiation is incident on a semi-transparent body
at a rate of 500 Wm2. If 150 W/m2 of this incident radiation
is reflected back and 225 W lm2 is transmitted across the bodv,
the absorptivity ofthe body is
(a') o
(b)
0.2s
(c)
0.30
(A
0.45
(e)
I
12-134 Solar radiation is incident on an opaque surface at a
rate of 400 Wm2. The emissivity of the surface is 0.65 and
the absorptivity to solar radiation is 0.85. The convection coefficient between the surface and the environment at 25oC is
(a 3t1K
(A
t29Wlm2
(e) 339 K
(el5)7'V,llmz
Design and Essay Problems
12-136 Write an essay on the radiation properties of selective surfaces used on the absorber plates of solar collectors.
Find out about the various kinds of such surfaces, and discuss the performance and cost of each type. Recommend a
selective surface that optimizes cost and performance.
12-137 According to an Atomic Energy Commission report,
a hydrogen bomb can be approximated as a large fireball at a
temperature of 1200 K. You are to assess the impact if such a
bomb exploded 5 km above a city. Assume the diameter of the
hreball to be 1 km, and the blast to last 15 s. Investigate the level
of radiation energy people, plants, and houses will be exposed
to, and how adversely they will be affected by the blast.