Algorithms for Constructing Even-Sided Selfagons Frances Worek [email protected] Mount Holyoke College REU 2005 – p.1/25 Studying the Selfatope! MHC REU 2005 Research Goals: • study the selfatope, a special type of polytope used in a paper by Jessica Sidman and David Cox • relate selfatope to toric varieties – p.2/25 What is a polytope? • Def: The convex hull of a set A is the intersection of all convex sets containing A; ie, the smallest convex set containing A. – p.3/25 What is a polytope? • Def: The convex hull of a set A is the intersection of all convex sets containing A; ie, the smallest convex set containing A. • Def: A polytope is a convex hull of a finite number of points. – p.3/25 What is a polytope? • Def: The convex hull of a set A is the intersection of all convex sets containing A; ie, the smallest convex set containing A. • Def: A polytope is a convex hull of a finite number of points. • Ex: Set of Points Polytope – p.3/25 What is a selfatope? • Def: Selfatope - smooth, lattice polytope with lattice-free edges! A selfatope in R2 is called a selfagon. – p.4/25 What is a selfatope? • Def: Selfatope - smooth, lattice polytope with lattice-free edges! A selfatope in R2 is called a selfagon. • Def: Lattice Polytope - a polytope with integer valued vertices – p.4/25 What is a selfatope? • Def: Selfatope - smooth, lattice polytope with lattice-free edges! A selfatope in R2 is called a selfagon. • • Def: Lattice Polytope - a polytope with integer valued vertices Def: Lattice-free Edges - no lattice points on an edge between vertices – p.4/25 Defining Smooth • Def: P ∈ Rn - lattice polytope v vertex in P wi first lattice point along i-th edge incident to v – p.5/25 Defining Smooth • • Def: P ∈ Rn - lattice polytope v vertex in P wi first lattice point along i-th edge incident to v P is smooth if for every v ∈ P {wi − v} forms a Z-basis for Zn – p.5/25 Defining Smooth • • • Def: P ∈ Rn - lattice polytope v vertex in P wi first lattice point along i-th edge incident to v P is smooth if for every v ∈ P {wi − v} forms a Z-basis for Zn ie w − v 1 .. . = ±1. wk − v – p.5/25 Example of Smooth Polytope (0, 1) (0, 0) (1, 0) ˛ ˛ ˛ ˛ ˛ ˛ ˛(1, 0) − (0, 0)˛ ˛1 ˛=˛ ˛ ˛ ˛ ˛ ˛(0, 1) − (0, 0)˛ ˛0 ˛ ˛ ˛ ˛ ˛ ˛ ˛(0, 0) − (1, 0)˛ ˛−1 ˛=˛ ˛ ˛ ˛ ˛ ˛(0, 1) − (1, 0)˛ ˛−1 ˛ ˛ ˛ ˛ ˛ ˛ ˛(1, 0) − (0, 1)˛ ˛1 ˛=˛ ˛ ˛ ˛ ˛ ˛(0, 0) − (0, 1)˛ ˛0 ˛ ˛ 0˛ ˛=1 ˛ 1˛ ˛ ˛ 0˛ ˛ = −1 ˛ 1˛ ˛ ˛ −1˛ ˛ = −1 ˛ −1˛ – p.6/25 Questions • Given a particular n, can you construct a selfagon with n edges? – p.7/25 Questions • • Given a particular n, can you construct a selfagon with n edges? Given two selfagons with n edges, are they equivalent? – p.7/25 Outline of Presentation • Algorithm for constructing n-gon, 2 | n, 4 - n – p.8/25 Outline of Presentation • Algorithm for constructing n-gon, 2 | n, 4 - n • Algorithm for constructing n-gon, 4 | n – p.8/25 Outline of Presentation • Algorithm for constructing n-gon, 2 | n, 4 - n • Algorithm for constructing n-gon, 4 | n • Algorithm for constructing n-gon, 2 | n – p.8/25 Outline of Presentation • Algorithm for constructing n-gon, 2 | n, 4 - n • Algorithm for constructing n-gon, 4 | n • Algorithm for constructing n-gon, 2 | n • equivalence to Lyzinski Algorithm – p.8/25 Algorithm 1 Algorithm for n-gon, 2 | n, 4 - n • v0 = (0, 0) • v1 = (0, 1) • vi = vi−1 + (1, n−2 4 − i + 2), 2 ≤ i ≤ • n+2 . Reflect about y = x and y = −(x − x n−2 ) + y 4 4 n+2 4 – p.9/25 Algorithm 1 - 14-gon Ex: • v0 = (0, 0) • v1 = (0, 1) n+2 4 = 4 ⇒ compute v2 , v3 , and v4 • v2 = v1 + (1, 3) = (1, 4) • v3 = v2 + (1, 2) = (2, 6) • v4 = v3 + (1, 1) = (3, 7) Reflect about y = x and y = −x + 9. • v4 v 3 v 2 v 1 v 0 – p.10/25 Algorithm 2 Algorithm for n-gon, 4 | n • v0 = (0, 0) • v1 = (0, 1) • vi = vi−1 + (1, n4 + 2 − i), 2 ≤ i ≤ • vi = vi−1 + (i − n4 , 1), • v n2 = v n−2 + (1, 0). 2 • Reflect about y = 12 y n2 , x = 12 x n2 . n+8 4 ≤i≤ n+4 4 n−2 2 – p.11/25 Algorithm 2 - 12-gon Ex: • v0 = (0, 0) – p.12/25 Algorithm 2 - 12-gon Ex: • • v0 = (0, 0) v1 = (0, 1) – p.12/25 Algorithm 2 - 12-gon Ex: • • • v0 = (0, 0) v1 = (0, 1) n+4 4 = 4 ⇒ compute vi for i = 2, . . . , 4 using vi = vi−1 + (1, 5 − i) – p.12/25 Algorithm 2 - 12-gon Ex: • • • v0 = (0, 0) v1 = (0, 1) n+4 4 • = 4 ⇒ compute vi for i = 2, . . . , 4 using vi = vi−1 + (1, 5 − i) v2 = v1 + (1, 3) = (1, 4) – p.12/25 Algorithm 2 - 12-gon Ex: • • • v0 = (0, 0) v1 = (0, 1) n+4 4 • • = 4 ⇒ compute vi for i = 2, . . . , 4 using vi = vi−1 + (1, 5 − i) v2 = v1 + (1, 3) = (1, 4) v3 = v2 + (1, 2) = (2, 6) – p.12/25 Algorithm 2 - 12-gon Ex: • • • v0 = (0, 0) v1 = (0, 1) n+4 4 • • • = 4 ⇒ compute vi for i = 2, . . . , 4 using vi = vi−1 + (1, 5 − i) v2 = v1 + (1, 3) = (1, 4) v3 = v2 + (1, 2) = (2, 6) v4 = v3 + (1, 1) = (3, 7) – p.12/25 Algorithm 2 - 12-gon Ex: • • • v0 = (0, 0) v1 = (0, 1) n+4 4 • • • • n−2 2 = 4 ⇒ compute vi for i = 2, . . . , 4 using vi = vi−1 + (1, 5 − i) v2 = v1 + (1, 3) = (1, 4) v3 = v2 + (1, 2) = (2, 6) v4 = v3 + (1, 1) = (3, 7) = 5 ⇒ use vi = vi−1 + (i − 3, 1) for v5 – p.12/25 Algorithm 2 - 12-gon Ex: • • • v0 = (0, 0) v1 = (0, 1) n+4 4 • • • • n−2 2 • = 4 ⇒ compute vi for i = 2, . . . , 4 using vi = vi−1 + (1, 5 − i) v2 = v1 + (1, 3) = (1, 4) v3 = v2 + (1, 2) = (2, 6) v4 = v3 + (1, 1) = (3, 7) = 5 ⇒ use vi = vi−1 + (i − 3, 1) for v5 v5 = v4 + (2, 1) = (5, 8) – p.12/25 Algorithm 2 - 12-gon Ex: • • • v0 = (0, 0) v1 = (0, 1) n+4 4 • • • • n−2 2 • • = 4 ⇒ compute vi for i = 2, . . . , 4 using vi = vi−1 + (1, 5 − i) v2 = v1 + (1, 3) = (1, 4) v3 = v2 + (1, 2) = (2, 6) v4 = v3 + (1, 1) = (3, 7) = 5 ⇒ use vi = vi−1 + (i − 3, 1) for v5 v5 = v4 + (2, 1) = (5, 8) v6 = v5 + (1, 0) = (6, 8) – p.12/25 Algorithm 3 Algorithm for n-gon, n even • v0 = (0, 0) • For i = 1, . . . , n−4 2 , let vi = vi−1 + (i − 1, i). • n−4 + (1, 1) . v n−4 = v +1 2 2 • n−4 v n−4 = v + (1, 0). +2 +1 2 2 • Reflect about y = 12 y n2 , x = 12 x n2 . – p.13/25 Algorithm 3 - 12-gon i vi 0 (0, 0) 1 (0, 1) 2 (1, 3) 3 (3, 6) 4 (6, 10) 5 (7, 11) 6 (8, 11) The lines of reflection are y = 11 2 ,x = 4. – p.14/25 Comparison of our two 12-gons • Equivalent? – p.15/25 Comparison of our two 12-gons • Equivalent? • Def: polytopes P , Q, are equivalent if there exists a linear transformation A ∈ GLn (Z) such that AP = Q – p.15/25 Comparison of our two 12-gons • • Equivalent? • Def: polytopes P , Q, are equivalent if there exists a linear transformation A ∈ GLn (Z) such that AP = Q Not equivalent! - 33 lattice points (Algorithm 2) vs. 32 lattice points (Algorithm 3) – p.15/25 So Algorithm 3 and Algorithm 2 don’t always produce equivalent selfagons. However, Algorithm 3 and the Lyzinski Algorithm do. – p.16/25 Lyzinski algorithm 4 | n • v0 = (0, 0) – p.17/25 Lyzinski algorithm 4 | n • v0 = (0, 0) • vi = vi−1 + (i − 1, 1), 1 ≤ i ≤ n 4 – p.17/25 Lyzinski algorithm 4 | n • v0 = (0, 0) • vi = vi−1 + (i − 1, 1), 1 ≤ i ≤ • n + (1, 0) v n+4 = v 4 4 n 4 – p.17/25 Lyzinski algorithm 4 | n • v0 = (0, 0) • vi = vi−1 + (i − 1, 1), 1 ≤ i ≤ • n + (1, 0) v n+4 = v 4 4 • Reflect this segment about the line y = 1 y = x n+4 − . 2 4 n 4 1 2 and – p.17/25 Lyzinski Algorithm, 12-gon i 0 1 2 3 4 vi (0, 0) (0, 1) (1, 2) (3, 3) (4, 3) – p.18/25 Lyzinski Algorithm, 2 | n, 4 - n • v0 = (0, 0) – p.19/25 Lyzinski Algorithm, 2 | n, 4 - n • v0 = (0, 0) • vi = vi−1 + (i − 1, 1) for 1 ≤ i ≤ n+2 4 – p.19/25 Lyzinski Algorithm, 2 | n, 4 - n • v0 = (0, 0) • vi = vi−1 + (i − 1, 1) for 1 ≤ i ≤ • n+2 + (1, 0) v n+6 = v 4 4 n+2 4 – p.19/25 Lyzinski Algorithm, 2 | n, 4 - n • v0 = (0, 0) • vi = vi−1 + (i − 1, 1) for 1 ≤ i ≤ • n+2 + (1, 0) v n+6 = v 4 4 • vj = vj−1 + ( n2 + 1 − j, −1), n+10 4 n+2 4 ≤j≤ n 2 – p.19/25 Lyzinski Algorithm, 2 | n, 4 - n • v0 = (0, 0) • vi = vi−1 + (i − 1, 1) for 1 ≤ i ≤ • n+2 + (1, 0) v n+6 = v 4 4 • vj = vj−1 + ( n2 + 1 − j, −1), • Rotate this segment to complete the selfagon. n+10 4 n+2 4 ≤j≤ n 2 – p.19/25 Lyzinski Algorithm, 14-gon i vi 0 (0, 0) 1 (0, 1) 2 (1, 2) 3 (3, 3) 4 (6, 4) 5 (7, 4) 6 (9, 3) 7 (10, 2) – p.20/25 Equivalence of Algorithms P - Lyzinski selfagon, Q Algorithm 3 selfagon Sketch of proof: • want to find linear trans. A s.t. AP = Q – p.21/25 Equivalence of Algorithms P - Lyzinski selfagon, Q Algorithm 3 selfagon Sketch of proof: • want to find linear trans. A s.t. AP = Q • problem - to which vertices in Q can we map a given vertex in P and find this A? – p.21/25 Equivalence of Algorithms P - Lyzinski selfagon, Q Algorithm 3 selfagon Sketch of proof: • want to find linear trans. A s.t. AP = Q • problem - to which vertices in Q can we map a given vertex in P and find this A? • use inner normal fans to solve this problem – p.21/25 Inner Normal Fan Example of Inner normal fan of polytope: Thm (Fulton)ri ray of inner normal fan ai ri = ri−1 + ri+1 , ai constant, invariant under linear transformation – p.22/25 Equivalence of Algorithms Sketch of proof, ctd: • Consider inner normal fans of the two selfagons. – p.23/25 Equivalence of Algorithms Sketch of proof, ctd: • Consider inner normal fans of the two selfagons. • Determine linear transformation B between fans, using the invariants ai to determine which rays in the first fan map to which rays in the second fan. – p.23/25 Equivalence of Algorithms Sketch of proof, ctd: • Consider inner normal fans of the two selfagons. • Determine linear transformation B between fans, using the invariants ai to determine which rays in the first fan map to which rays in the second fan. • Use that A = (B −1 )T to find A, the transformation between the selfagons. – p.23/25 Equivalence of Algorithms We find that transformations between P generated by Lyzinski Alg. and Q generated by 3rd Alg is: n−8 1 4 • For n-gons with 4 | n, A = n−4 . 1 4 – p.24/25 Equivalence of Algorithms We find that transformations between P generated by Lyzinski Alg. and Q generated by 3rd Alg is: n−8 1 4 • For n-gons with 4 | n, A = n−4 . 1 4 • For n-gons with 2 | n, 4 - n, n−10 −1 − 4 A= . n−6 −1 − 4 – p.24/25 Acknowledgements Thank you to: • Dr. Jessica Sidman • Dr. Margaret Robinson • Fellow REU participants, especially Joanna Miles for her help with Prosper • NSF, for funding this REU – p.25/25
© Copyright 2026 Paperzz