Volume 14 Number 20 1986 Nucleic Acids Research Molecular cloning and characterization of small polydisperse circular DNA from mouse 3T6 cells Per Sunnerhagen, Rose-Marie Sjoberg, Anne-Li Karlsson, Leif Lundh and Gunnar Bjursell Department of Medical Biochemistry, University of Goteborg, PO Box 33031, £400 33 Goteborg, Sweden Received 18 September 1986; Accepted 25 September 1986 ABSTRACT We h a v e i s o l a t e d , cloned and a n a l y z e d s m a l l polydisperse c i r c u l a r ( s p c ) DNA f r o m m o u s e 3 T 6 c e l l s . T h e r e p r e s e n t a t i o n o f h i g h l y r e p e a t e d m o u s e g e n o m e s e q u e n c e f a m i l i e s i n spcDNA h a s b e e n e x a m i n e d , a n d t h e B1 r e p e a t a p p e a r s o v e r r e p r e s e n t e d i n spcDNA by t w o c r i t e r i a . The m a j o r i t y o f spcDNA c l o n e s , however, i s made o u t by a s y e t u n c h a r a c t e r i z e d middle repetitive s e q u e n c e s . We h a v e i n v e s t i g a t e d t h e i n c r e a s e i n t h e spcDNA p o p u l a t i o n upon c y c l o h e x i m i d e t r e a t m e n t of i n d i v i d u a l s e q u e n c e s , which a r e found t o a m p l i f y differentially. IHTRODUCTIOH In addition c e l l s t o chromosomal contain small extrachromosomal identified are present avian and insect a origin per cell such as t r e a t m e n t cultivation in DNA, cDNA from stationary excluded. include excision reverse s o u r c e s of spcDNA, been that i s no fixed chromosomal of (8,9). genomic r e a r r a n g e m e n t s by p r o d u c t c i r c u l a r been lines examined of sequences, copy number. increases with from Since limited on and and of or circular homologous to circularization the replication formation as to inhibitors considered developmental is of a v a r i e t y spcDNA i s the spcDNA t h e number of synthesis are mammalian, and in contrast episomal (3,6,7) may l e a v e been of Rather, chromosomes hypotheses certain These have (1-5). as a result protein phase. DNA. sizes 0 . 0 0 1 t o 0 . 1 % o f t o t a l DNA. and c e l l have misfiring" In ( m t ) DNA, m a m m a l i a n varying transcription although Current "repllcon transposition from population there spcDNA m o l e c u l e s stimuli, ranging of in a l l tissues heterogeneous plasmids, polydisperse DNA c i r c l e s i n amounts They and mitochondrial main has not of spcDNA intermediates stages, in specific DNA m o l e c u l e s as a (5,10). The main p a r t of work on mammalian spcDNA on t h e m o l e c u l a r © IRL Press Limited, Oxford, England. level 7823 Nucleic Acids Research has been BSC-1 carried individual that Schlndler and distinct size showed that discrete cell in primate There sequences indicating Our out (2,9,12). is represented spcDNA Rush (12) middle molecular BSC-1 not lengths in species, 1^ r e p e a t s Paulson an or are event. THE 1 from (3,11) there discrete Kpn and element spcDNA HeLa that a random that spcDNA repetitive as spcDNA a s is demonstrated in such evidence in formation classes the cells growing Thus, show as e_t j i ] ^ ( 8 ) hybridizes established to human line. previous electron possibility provokes effect an was work was issue, such that increased demonstrated done and as with also their study and cloned of of cell several 3T6 more of spcDNA. but most We w a n t to of settle spcDNA from our this spcDNA, involvement DNA. As a f i r s t characterized This of regarding and p o s s i b l e the cells lines, questions Induction indicated mammalian (cellular) cells. general (13) DNA t o in amplification and studies foreign production mouse mechanism recombination Isolated, microscopic transfer step we m o u s e 3T6 in have cells. MATERIALS AHD METHODS Cel 1 c u l t u r e . Eagle's penicillin p e r ml Purification time of h of 3 purified by cccDNA bromide 50 alkaline was calf density added to on M o u s e 3T6 c e l l s , to a 5% a l i q u o t all was 10^ a t Fractions DNA w e r e dissolved in the to the as final DNA was described (4), CsC1-ethidium from pooled, TE. cells. a Circular successive gradients. of added cells. three circular and modified 100 U of t o n e a r c o n f l u e n c e . A t 24 h b e f o r e denaturation essentially purified serum, streptomycin per ml. cyc1oheximide ug/ml precipitated The the third destained, purity of the p r e p a r a t i o n w a s e x a m i n e d by e l e c t r o n m i c r o s c o p y . Electron droplet microscopy. Visualization t e c h n i q u e and m e a s u r e m e n t of (16295 base described 7824 was containing ethanol mtDNA of 10% f e t a l cloning. were grown harvest, (EtBr) gradient final were grown i n D u l b e c c o ' s 100 ug of H-thymidine before concentration but and cccDNA f o r harvest, harvest 16 M o u s e 3T6 c e l l s medium s u p p l e m e n t e d w i t h earlier pairs (15). <14>) as a of DNA with an aqueous contour l e n g t h s u s i n g mouse length standard have been Nucleic Acids Research Construction of spcDNA Aliquots, 50 ng e a c h , separately with DNA f r a g m e n t s llgated and separation on of Hanahan MtDNA clones 1 through s i x - c u t t e r preparation digested with with Xho ^ . were screening into A 100 with ng Kpn no. 2 with by ligation colonies pooled, methylation. were mtDNA pUC 9 , as were Bam H_I probes. of the I_ a n d plus the hybridization The f i r s t Hae I I by containinlng cccDNA Sjil^ I_ a n d aliquot P s t I., n o . 3 w i t h were to Xma was clones 14) a s portion aliquots. ng) resistance mouse I_, linkers pUC 9 ( 1 6 ) . by c o l o n y unpubl., of (10 cleaved cloned S a c I_, n o . 5 w i t h protected of of six The a l i q u o t s I-linkers, portion on p l a t e s eliminated digested £ _ l £ I, Hae 11 p l u s cleavage recombinant 4 (G. B J u r s e l l , divided with and inserts l i b r a r y . was thereafter Ps t were the gel-purified fragments The and to a m p i c i l l l n (17), of digested TaqI). a Lac Z phenotype library. were T 4 DNA p o l y m e r a s e After CL-6B, transformed by s c o r i n g sites end with Sepharose identified The blunt Bam H I - , P s t _ I - d o u b l e procedure Xgal. The f o u r - c u t t e r preparation o r T t h HJ3 JU ( a n i s o s c h l z o m e r made t o 25 ng of C J D ] ^ RR1 w e r e using 1lbrarles. t h e cccDNA t o Bam H I - a n d P s t l - l I n k e r s . ligated E. Mspl were clone of was Bj5l_ _II^, n o . 4 Sph I, and no. 6 a n d Bam H I - a n d P s t _IAddition of Bam H I - a n d transformation described for of the RR1 a n d four-cutter library. Radlolabellng of t r a n s l a t i o n electrophoresis total cccDNA Southern by labeled Total of in Tris-borate transferred S . l k k — saturation density. acid treatment (22) After fractions were ,w e r e of DNA containing 3 gel 3 T 6 DNA o r essentially out in or g r o w n with described was c e n t r i f u g e d fractionation, nick- by (19). 1% treatment, control 8 1 0 as by as agarose t h e DNA w a s filters. o f DNA f r o m Labeling supernatants gradients. was c a r r i e d After c e l l s , cycloheximide total "oligo-1abeling" (21) to n i t r o c e l l u l o s e 3Tei labeled purified 3 T 6 DNA w a s p r e p a r e d buffer. ^^c^t b l o t t i n g were clones, electro-elution, using (20). Electrophoresis Gradlent and plasmids I n s e r t s followed were blotting. described gels DNA. W h o l e (18). cycloheximidet o a b o u t 3 H-thymidlne above. DNA to e q u i l i b r i u m H-radloactivity circular DNA In was were from h a l f and Hirt CsCl-EtBr determined pooled and 7825 Nucleic Acids Research 33 30 25 za 13 Innn n n nn n n B !ii! ! i I' i i n ?0 ES GO 55 30 43 «0 35 30 25 20 13 10 5 n iiii c II iiK | h1 1n] kb 7826 Nucleic Acids Research recentrifuged. The second fractions were stored treated, denatured gradient i n t h e dark was a l s o until and a p p l i e d f r a c t i o n a t e d , and use.Aliquots to n i t r o c e l l u l o s e were acid- filters as described (4). Hybridization. DNA, s l o t from colonies, bacterial filters, DNA was h y b r i d i z e d probes of representing provided conserved" of (EC) s e q u e n c e R1/R2, Rotival the was g i v e n mouse I n s e r t s of electrophoresis. was provided triple recovered from above A mouse together fragment satellite were this satellite (23) was 288, gift sequences D r . M. M e u n i e r - c o m p r i s i n g most of (28). purified containing After Mm 3 1 a kind of (MIF)r e p e a t The by g e l plasmid, C l o n e 16 T a g _ I - , H h a 1^- a n d E c o R1 - and g e l e l e c t r o p h o r e s i s , 17 m o u s e were of t h e R group clones b y D r . W. H d r z . digestion encompassing Plasmld and t h e " e v o l u t i o n a r i l y respectively, pMRB1-1 a n d pMRB5, t h e DjJA^ t o u s b y D r H. Z a c h a u . interspersed or on n i t r o c e l l u l o s e pMR 1 4 2 a n d pMR (24,25) (24,26), gels o f t h e mouse genome Arepresentative furnished long mous£ Plasmids t h e B2 r e p e t i t i o n agarose as described (13). family Fort. from immobilization repeated t h e B1 r e p e a t D r . N. H a s t i e . (27), after blotted and washed h^ghl^y by D r . P. representing blotted, a T a g _I monomer r e p e a t s fragment in tandem was plasmid. RESULTS Preparation than o_f cccDNA. 99% o f corresponding after 3 the treatment In (29), t h i s CsCl-EtBr DNA. S i n c e labeling o r spcDNA, cccDNA. E x t e n s i v e the t h i r d H-rad 1 o a c t i v i t y to c i r c u l a r H-thymidine mitochondrial 3 figure electron before is a valid in the s p e c i f i c is identical both gradient, was f o u n d estimate better peak radioactivity in e i t h e r and a f t e r the chromosomal, eye 1 o h e x l m l d e of t h e p u r i t y of microscopic examination r e v e a l s mtDNA F i g . 1. Length d i s t r i b u t i o n s , o b t a i n e d by e l e c t r o n microscopy, of c i r c u l a r and l i n e a r DNA in the cccDNA p r e p a r a t i o n used for c l o n i n g before and a f t e r c l e a v a g e with r e s t r i c t i o n enzymes. Solid l i n e , c i r c u l a r DNA; broken l i n e , l i n e a r DNA. A, n a t i v e preparation; n = 268 B, f o u r - c u t t e r cleaved; n = 254 C, s i x - c u t t e r cleaved; n = 498 7827 Nucleic Acids Research m o l e c u l e s , spcDNA m o l e c u l e s of v a r i o u s s i z e s , and a few l i n e a r m o l e c u l e s . F i g . 1 A d i s p l a y s t h e s i z e d i s t r i b u t i o n of c i r c u l a r DNA i n t h e cccDNA p r e p a r a t i o n . The n u m b e r r a t i o of spcDNA t o mtDNA m o l e c u l e s i s 7 to 1, which e q u a l s a 7 0 - f o l d a m p l i f i c a t i o n of spcDNA compared t o 3T6 c e l l s n o t t r e a t e d w i t h c y c l o h e x i m l d e ( 1 3 ) . The l o w a m o u n t of l i n e a r DNA, 1.5 %, i s i n a g r e e m e n t w i t h t h e 3 H p r o f i l e of t h e g r a d i e n t . I n c l o s e a g r e e m e n t w i t h o u r e a r l i e r r e s u l t s f o r 3T6 c e l l s n o t t r e a t e d w i t h c y c 1 o h e x i m i d e ( 1 3 ) , a mean s i z e of 2.04 k i l o b a s e p a i r s (kb) i s f o u n d f o r spcDNA. T h u s , i n c o n t r a s t t o t h e s i t u a t i o n i n D r o s o p h l 1 a ( 3 0 ) , t h e s i z e of spcDNA d o e s n o t d e c r e a s e u p o n c y c 1 o h e x i m i d e amplification. spcDNA c l o n e 1 i b r a r l e s . As t h e c l o n i n g p r o t o c o l p e r m i t s c l o n i n g of a l l c o n t a m i n a t i n g l i n e a r DNA m o l e c u l e s , we found i t n e c e s s a r y t o e s t i m a t e t h e p r o p o r t i o n of c i r c u l a r DNA r e p r e s e n t e d i n t h e c l o n e b a n k s . T h i s c a n be d o n e by c o m p a r i n g t h e p r o p o r t i o n s of c i r c u l a r v s . l i n e a r DNA in t h e n a t i v e and f o u r - c u t t e r and s i x c u t t e r d i g e s t e d cccDNA p r e p a r a t i o n ( F i g . 1 ) . I t I s n o t e w o r t h y t h a t s h o r t l i n e a r m o l e c u l e s ( l e s s t h a n a p p r o x . 200 b a s e p a i r s <bp>) a r e i n d i s t i n g u i s h a b l e from t h e c y t o c h r o m e c b a c k g r o u n d . Hence, no c o n c l u s i o n s can be drawn a b o u t t h e s i z e d i s t r i b u t i o n of t h e r e s u l t i n g clone I n s e r t s , which in f a c t have a c o n s i d e r a b l y s h o r t e r mean l e n g t h t h a n s u g g e s t e d from F i g . 1 B and C ( s e e T a b l e 1 ) . I t i s s e e n , h o w e v e r , t h a t i n d e e d t h e m a j o r i t y of spcDNA m o l e c u l e s h a v e been l i n e a r i z e d , a t l e a s t 83% a f t e r f o u r - c u t t e r d i g e s t i o n and a t l e a s t 18% a f t e r s i x - c u t t e r digestion. A f t e r e l i m i n a t i o n of mtDNA c l o n e s , 2 3 0 a n d 4 7 0 spcDNA r e c o m b i n a n t c l o n e s r e m a i n i n t h e f o u r - c u t t e r and s i x - c u t t e r library, r e s p e c t i v e l y . The p r o p e r t i e s of c h a r a c t e r i z e d c l o n e s a r e summarized In T a b l e 1. The i n s e r t s of t h e f o u r - c u t t e r c l o n e s h a v e a mean s i z e o f a p p r o x i m a t e l y 250 b p , and i n s e r t s up t o 2 kb h a v e been f o u n d . In the s i x - c u t t e r l i b r a r y , i n s e r t s i z e s r a n g e from 200 bp t o 3 k b , w i t h a mean a r o u n d 750 b p . R e p r e s e n t a t i o n of h i g h 1y r e pea t e d s e q u e n c e f a m i l i e s i n spcDNA c l o n e l i b r a r i e s . T a b l e 2 3 hows t h e n u m b e r o f c l o n e s i n t h e two spcDNA l i b r a r i e s t h a t a r e p o s i t i v e i n c o l o n y h y b r i d i z a t i o n w i t h h i g h s t r i n g e n c y w a s h i n g ( s e e M a t e r i a l s and Methods) f o r h i g h l y 7828 Nucleic Acids Research Table 1 . Properties of individual spcDNA clones. Hybridization Stronger hybHomology Clone (a) Insert size (kb ) with highly pattern in ridization repeated DNA 3T6 DNA (b) with cccDNA Four-cutter library 0.3 pSPC-5 IS 0.4 -8 B1 IS 2.0 -20 B + 0.2 B1 -29 0. 1 -31 MIF 0.5 IS + -47 1 .0 B1 -49 0.2 -50 IS 0.6 -52 IS + 0.2 -53 B1 0.4 -83 R 0.4 _ -86 IS + 0.3 _ -100 IS -102 0.5 IS + B 0.3 IS -127 2.0 IS+B + -145 0.2 IS -165 0.2 -170 IS -174 0.3 IS -201 0.5 IS Six-cutter library IS + -238 1 .0 0.8 -243 IS 0.4 -249 R 0.2 _ -291 IS -292 1 .3 B2 -371 0.7 IS -372 0.3 B1 1 .0 -389 IS + IS + B -420 0.4 -492 0.3 IS -518 0.5 IS 0.2 MIF -537 0.2 IS -547 -580 _ 1 .5 IS + 0.4 R -585 IS -612 R 0.5 -621 0.8 B1 0.6 -627 IS + IS + B -631 1 .2 -641 0.2 IS + -644 1 .0 IS -648 MIF 1 .5 0.4 -669 IS MIF 1 .7 -679 0.6 -688 IS + (a) C l o n e s of which only insert size and lack of homology to highly repeated DNA or only homology to highly repeated DNA are known are not included in this table. (b) B = one or several discrete bands IS rhybridizati-on smear c h a r a c t e r i s t i c of interspersed sequences 7829 Nucleic Acids Research Table 2. Representation of highly r e p e t i t i v e mouse DNA sequences in the spcDNA clone l i b r a r i e s . Fraction of Repeat No. of posi tive clones in spcDNA libraries chromosomal element Four-cutter Six-cutter Total % DNA (24,31) library library B1 10 25 35 5.0 0.9-1.3% B2 - 2 2 0.3 0.5-0.8% EC 1 5 6 0.8 0.5-0.8% R 2 8 10 1. 4 1.0-1.5% MIF 4 1 0 14 2.0 4.0-5.0% Satellite - - repetitive DNA. When s t r i n g e n c y hybridization were and w a s h i n g obtained When (data calculating the f o l l o w i n g (1) When the expected the cloned elements, 5-1 0% by l o w e r i n g t o 48°C, number identical identical fragments frequency the c l o n e d fragments elements, the f r a c t i o n of p o s i t i v e to that into the results colonies, of c h r o m o s o m a l DNA, consideration: are considerably the proportion the r e p e a t equal was r e d u c e d temperature h a s t o be t a k e n the r e p e t i t i o n - n o t shown). assuming a d i s t r i b u t i o n repeated - of p o s i t i v e longer clones than the d e p e n d s on of t h e r e p e a t e l e m e n t s . By c o n t r a s t , are shorter t h a n o r n o t much l o n g e r the proportion of p o s i t i v e clones if than should o f t h e genome c o n s t i t u t e d by a c e r t a i n repeat element. (il) The d i s t r i b u t i o n elements. arranged than <24>) dispersed to being total dispersed used sites i s stronger flanking elements. short sequences t h e enzymes The f i v e 7830 since and dispersed, prototype in dependence elements, for short addition for This of restriction sites in the repeated f o r long will or tandemly be f a r t h e r ( 2 0 0 b p f o r B1 a n d B 2 , 4 0 0 - 5 0 0 a l l contain contained apart T h e B1 , B2 a n d R e l e m e n t s , bp f o r R In t h e i r published i n t h e EMBL d a t a b a s e (23,25,27) for cloning sites in a t a density comparable to that m o u s e DNA. sequence sequences families repeated B 1 , B 2 , R, M I F a n d EC r e p r e s e n t a l l more than 30 000 t i m e s per haplold Nucleic Acids Research 3.7 - II **•• 0.7 - w Fig. 2. S o u t h e r n b l o t s of c h r o m o s o m a l 3T6 DNA probed w i t h i n d i v i d u a l spcDNA clones. In each lane is shown to the left Bam H1- cleaved and to the right Eco RJ_-cl e a v e d 3T6 DNA. Lanes 1 - 5~j~ random ly chosen spcDNA c l o n e s . 1, p S P C - 6 3 1 ; 2, p S P C - 5 0 ; 3, p S P C - 4 2 0 ; 4, pSPC-243; 5, pSPC-100. Lanes 6 - 10, spcDNA clones identified by d i f f e r e n t i a l h y b r i d i z a t i o n . 6, p S P C - 5 8 0 ; 7, p S P C - 3 8 9 ; 8, pSPC20; 9, p S P C - 4 7 ; 10, p S P C - 8 6 . genome (24). The o n l y s i g n i f i c a n t d e v i a t i o n number of colonies overrepresented is for B1, element MIF sites near repeat was sufficient the expected has not been to permit The long in the average density of sites. A slight <24>) although (31). sequence a minor The precludes be drawn sequences tandem cloning from in Chromosomal (31) contains no sites underrepresentation clones. The for fraction of satellite DNA arrangement in flanking these data about of most sites, and but deviation absence of s a t e l l i t e DNA from the c l o n e banks was e x p e c t e d , since prototype in this length, parts reveals no drastic is found in both libraries for MIF-positive of (up to 7 kb its e n t i r e (26) cloning representation frequency. is sequence used. A p p a r e n t l y sequenced examination of the sequenced from apparently about 5-fold. The EC p r o t o t y p e c o n t a i n no s i t e s for the e n z y m e s flanking from the expected which the enzymes is cleaved satellite by Tag 1^ sequences so no conclusions the representation of the used, can satellite spcDNA. organization of spcDNA clones. Fig. 2 shows Southern 7831 Nucleic Acids Research 1 i iilMllilli 1 11 2 tI I I I I I lilt I Iff 3 4 I III 5 Fig. 3. H y b r i d i z a t i o n o f c l o n e s o f h i g h l y r e p e a t e d DNA a n d o f mtDNA t o CsCl-EtBr gradient slot blots of DNA f r o m normal and cycloheximide-treated 3T6 c e l l s , prepared as d e s c r i b e d in M a t e r i a l s and M e t h o d s . The f r a c t i o n c o r r e s p o n d i n g t o t h e l o w e r p a r t of t h e t u b e i s o r i e n t e d t o t h e l e f t . A f t e r immobilization on n i t r o c e l l u l o s e , t h e DNA w a s h y b r i d i z e d w i t h t h e purified i n s e r t s o f t h e f o l l o w i n g p r o b e s : Rows 1 a n d 6 , mtDNA; 2 a n d 7 , Mm31 ( B 1 ) ; 3 a n d 8 , p M R B 1 - 1 ( M I F ) ; 4 a n d 9 , R 1 / R 2 ( R ) ; 5 a n d 1 0 , c l o n e 16 ( s a t e l l i t e ) . R o w s 1 - 5 , s l o t b l o t s o f o n e g r a d i e n t from untreated c e l l s ; 6 - 10, of one gradient from cycloheximide-treated cells. A, n o r m a l c e l l s . T h e a u t o r a d i o g r a m s w e r e s c a n n e d w i t h an o p t i c a l densitometer. Hybridization intensities were c o n v e r t e d to a b s o l u t e a m o u n t s o f DNA u s i n g c a l i b r a t i o n c u r v e s p r e p a r e d by a p p l y i n g t o t a l 3 T 6 DNA, s o n i c a t e d , d i l u t e d i n 4 7 . 8 % ( w / w ) o f C s C l a n d 0.4 m g / m l o f E t B r , a n d t h e r e a f t e r t r e a t e d a s a b o v e , i n a m o u n t s r a n g i n g from 3 pg t o 1 ug and h y b r i d i z e d w i t h t h e same p r o b e . The c u r v e s shown w e r e n o r m a l i z e d s u c h t h a t t h e sums of t h e DNA a m o u n t s o f t h e f r a c t i o n s f r o m t h e p e a k o f l i n e a r DNA ( f r a c t i o n s 1 4 - 1 6 f r o m t h e l e f t ) w e r e s e t e q u a l . R e l a t i v e DNA a m o u n t s a r e g i v e n o n t h e Y - a x i s . F o r mtDNA, n o r m a l i z a t i o n w a s 7832 Nucleic Acids Research i n s t e a d d o n e s u c h t h a t t h e sums of t h e DNA a m o u n t s from t h e c i r c u l a r peak ( f r a c t i o n s 6-8 from t h e l e f t ) were e q u a l i n A and B. B, a s i n A b u t c e l l s t r e a t e d w i t h c y c l o h e x i m i d e . b l o t s where i n d i v i d u a l spcDNA c l o n e s were h y b r i d i z e d t o t o t a l 3T6 DNA, d i g e s t e d w i t h Bam HI o r Eco R1. Out o f 20 r a n d o m l y c h o s e n spcDNA c l o n e s , of w h i c h o n l y two h y b r i d i z e d w i t h any of t h e h i g h l y r e p e a t e d p r o b e s (one f o r B1, one f o r R), a l l p r o d u c e d the h y b r i d i z a t i o n smear c h a r a c t e r i s t i c of interspersed r e p e t i t i v e s e q u e n c e s . I n some c a s e s , b a n d s of d i s c r e t e s i z e s were v i s i b l e o v e r t h e smear. T h i s p r e d o m i n a n c e of d i s p e r s e d r e p e t i t i v e s e q u e n c e s was u n e x p e c t e d s i n c e r e p e t i t i v e , nons a t e l l i t e DNA makes o u t o n l y 16 - 24 % of t h e mouse genome ( 2 4 ) . Of t h i s , t h e f i v e p r e v i o u s l y i d e n t i f i e d h i g h l y r e p e a t e d s e q u e n c e f a m i l i e s c o n s t i t u t e 8 % of t o t a l DNA ( 2 4 ) , l e a v i n g 8 - 16 % f o r m i d d l e r e p e t i t i v e s e q u e n c e s . S i n c e a s i m i l a r p r o p o r t i o n (9 %) of h i g h l y r e p e a t e d DNA i s f o u n d i n o u r spcDNA l i b r a r i e s , on t h e o r d e r of 90 % of o u r spcDNA c l o n e s r e p r e s e n t d i s p e r s e d , m i d d l e r e p e t i t i v e s e q u e n c e s . By c o m p a r i n g h y b r i d i z a t i o n s w h e r e t h e i n s e r t s a r e of s i m i l a r l e n g t h , and where l a b e l i n g of p r o b e s has been e q u a l l y e f f i c i e n t ( b a s e d on t h e h y b r i d i z a t i o n t o a s t a n d a r d i z e d a m o u n t of p l a s m l d DNA) we c o n c l u d e t h a t the m a j o r i t y of o u r i n t e r s p e r s e d spcDNA c l o n e s h y b r i d i z e less i n t e n s e l y w i t h 3T6 DNA t h a n do t h e c l o n e s of h i g h l y r e p e t i t i v e DNA. R e p r e s e n t a t i o n of i n d i v i d u a l s e q u e n c e s j^n spcDNA from u n t r e a t e d and c y c l o h e x l m l d e - t r e a t e d e e l I s . By p r o b i n g d u p l i c a t e filters w i t h c o l o n i e s from t h e c l o n e banks w i t h e i t h e r t o t a l chromosomal 3T6 DNA or t o t a l 3T6 cccDNA, c l o n e s were i d e n t i f i e d t h a t r e a c t e d somewhat s t r o n g e r w i t h cccDNA t h a n w i t h chromosomal DNA, which would s u g g e s t an o v e r r e p r e s e n t a t i o n i n spcDNA. In t h i s g r o u p , no c l o n e s h y b r i d i z e d w i t h any of t h e h i g h l y r e p e a t e d p r o b e s . T w e l v e s u c h c l o n e s w e r e u s e d a s p r o b e s a g a i n s t S o u t h e r n b l o t s of c h r o m o s o m a l DNA ( F i g . 2 , l a n e s 6 - 1 0 ) . J u s t a s w i t h t h e r a n d o m l y c h o s e n c l o n e s , a l l showed a d i s p e r s e d p a t t e r n of h y b r i d i z a t i o n w i t h one e x c e p t i o n , pSPC-20, which l a b e l e d a s e t of d i s t i n c t b a n d s , r e p e a t e d on t h e o r d e r of 10 - 100 t i m e s i n t h e genome ( F i g . 2 , l a n e 8 ) . In F i g . 3 , i n d i v i d u a l c l o n e s of h i g h l y r e p e a t e d DNA h a v e b e e n 7833 Nucleic Acids Research h y b r i d i z e d t o C s C l / E t B r g r a d i e n t s of p a r t i a l l y p u r i f i e d cccDNA from u n t r e a t e d or cycloheximide-treated c e l l s . Approximately 90 % of t h e H - a c t i v i t y was f o u n d i n t h e l i n e a r p e a k i n t h e s e g r a d i e n t s . The p o s i t i o n of .the c i r c u l a r peak can be v e r i f i e d by h y b r i d i z i n g t o mtDNA ( F i g . 3 , rows 1 and 6 ) . H y b r i d i z a t i o n by p r o b e s o t h e r t h a n mtDNA t o t h e c i r c u l a r p e a k consistently occured a t a s l i g h t l y h i g h e r p o s i t i o n in the g r a d i e n t . This i s in a g r e e m e n t w i t h t h e o r i g i n a l o b s e r v a t i o n of Smith and V i n o g r a d ( 2 9 ) , who a t t r i b u t e d i t t o a h i g h e r s u p e r h e l i c a l d e n s i t y i n .spcDNA t h a n i n mtDNA. Of c o u r s e , i t i s e s s e n t i a l t o t h i s t y p e of a s s a y t h a t no h o m o l o g i e s e x i s t b e t w e e n mtDNA and t h e p r o b e s u s e d . T h i s was v e r i f i e d by c o m p a r i n g t h e s e q u e n c e s of mtDNA and of t h e h i g h l y r e p e a t e d p r o b e s ( t h e s e q u e n c e d p a r t s i n t h e c a s e of MIF) u s i n g t h e GENEUS (32) Dot M a t r i x p r o g r a m . The p r o b e c o n s i s t e n t l y y i e l d i n g t h e most d i s t i n c t c i r c u l a r peak i s B1 ( F i g . 3 A and B, r o w s 2 and 7 ) . T h i s p e a k i s f o u n d b o t h i n u n t r e a t e d and c y c l o h e x i m i d e - t r e a t e d c e l l s , and t h e i n c r e a s e upon c y c l o h e x i m i d e t r e a t m e n t i s o n l y moderate (about t w o - f o l d in t h i s a s s a y ) . A l l o t h e r h i g h l y r e p e a t e d p r o b e s (B2, EC, R, MIF and s a t e l l i t e ) give comparable r e s u l t s with very l i t t l e m a t e r i a l h y b r i d i z i n g b e l o w t h e l i n e a r peak i n u n t r e a t e d c e l l s ( F i g . 3 A, rows 3 - 5 , and d a t a n o t shown). However, a f t e r c y c l o h e x i m i d e t r e a t m e n t a m a s s i v e i n c r e a s e of h y b r i d i z i n g c i r c u l a r DNA i s s e e n w i t h t h e s e p r o b e s ( F i g . 3 B, rows 8 - 10). T h i s a m p l i f i c a t i o n i s p a r t i c u l a r l y prominent ( f i v e - to t e n f o l d in t h i s assay) with MIF and R, w h i c h i n m o s t c a s e s a r e f o u n d a d j a c e n t i n t h e chromosome (33). DISCUSSIOM When c o n s t r u c t i n g c l o n e l i b r a r i e s of spcDNA, between two major i n t e r e s t s : there is a conflict i ) t o c l o n e i n t a c t c i r c l e s , and 11) t o o b t a i n a l i b r a r y t h a t i s u n b i a s e d w i t h r e s p e c t to s e q u e n c e . The s t r a t e g y i n t h i s work h a s been t o u s e r e s t r i c t i o n enzymes that cleave c o m b i n a t i o n s of s e v e r a l DNA frequently (four-cutters ) enzymes ( s i x - c u t t e r s ) in order to w i t h i n an a s w i d e a s p o s s i b l e v a r i e t y of s e q u e n c e s . T h i s h a s b e e n a c h i e v e d s i n c e t h e m a j o r i t y o f spcDNA h a s 7834 or cut goal been Nucleic Acids Research l i n e a r i z e d . T h e r e i s t h u s r e a s o n t o b e l i e v e t h a t o u r spcDNA l i b r a r i e s r e p r e s e n t a l a r g e f r a c t i o n of t h e t o t a l sequence c o m p l e x i t y i n t h e spcDNA p o p u l a t i o n . A c o m p a r a t i v e l y l a r g e number of spcDNA c l o n e s h a v e been examined f o r t h e p r e s e n c e of t h e s i x m o s t h i g h l y r e p e a t e d sequence e l e m e n t s , p e r m i t t i n g an e v a l u a t i o n of t h e d i s t r i b u t i o n between h i g h l y r e p e a t e d e l e m e n t s . I t a p p e a r s t h a t t h e B1 r e p e a t i s o v e r r e p r e s e n t e d i n spcDNA i n 3T6 c e l l s r e l a t i v e t o t h e r e s t of h i g h l y r e p e a t e d f a m i l i e s , b o t h from t h e n u m b e r of p o s i t i v e c l o n e s i n t h e l i b r a r i e s and from h y b r i d i z a t i o n s t o C s C l - E t B r g r a d i e n t s . In t h i s c o n t e x t i t i s i n t e r e s t i n g to n o t e t h a t t h e r e e x i s t s e q u e n c e h o m o l o g l e s b e t w e e n B1 and t h e p a p o v a v i r u s o r i g i n of r e p l i c a t i o n ( 3 4 ) . A r l g a (35) d e m o n s t r a t e d autonomous r e p l i c a t i o n of a c l o n e d Alu e l e m e n t , c o n s i d e r e d t o c o r r e s p o n d t o B1 i n p r i m a t e s , i n e x t r a c t s from C o s I c e l l s . T h i s d o e s n o t n e c e s s a r i l y i m p l y t h a t A l u - or B 1 - c o n t a i n i n g spcDNA m o l e c u l e s r e p l i c a t e as e p i s o m e s iji v i v o , a l t h o u g h s t r u c t u r e s r e s e m b l i n g r e p l i c a t i v e i n t e r m e d i a t e s of c i r c u l a r m o l e c u l e s h a v e b e e n i d e n t i f i e d i n t h e e l e c t r o n m i c r o s c o p e by u s and o t h e r s ( 3 6 ) . R a t h e r , B1- c o n t a i n i n g c i r c u l a r m o l e c u l e s can h a v e a r i s e n as a r e s u l t of " m i s f i r i n g " from chromosomal o r i g i n s of r e p l i c a t i o n ( 6 ) , s i n c e l a b e l i n g d a t a p o i n t a t e x c i s i o n from c h r o m o s o m e s a s t h e main mechanism of spcDNA f o r m a t i o n ( 2 9 ) . I n t h e o n l y p r e v i o u s l y p u b l i s h e d c l o n i n g s t u d y o f spcDNA from mouse c e l l s , F u j i m o t o £_t a l . (5) a r g u e f o r t h e R r e p e a t t o be p r e f e r e n t i a l l y i n v o l v e d i n spcDNA f o r m a t i o n i n mouse t h y m o c y t e s . T h i s may be a c o n s e q u e n c e of t h e s p e c i f i c genomic r e a r r a n g e m e n t s in t h y m o c y t e s s i n c e t h e i m m u n o g l o b u l i n g e n e s a r e a s s o c i a t e d w i t h R r e p e a t s . We f i n d no a p p a r e n t d e v i a t i o n from t h e e x p e c t e d a m o u n t of R r e p e a t s i n m o u s e 3T6 spcDNA. J o n e s a n d P o t t e r ( 1 1 ) screened for sequences o v e r r e p r e s e n t e d in c y c 1 o h e x i m i d e a m p l i f i e d HeLa spcDNA and found s e q u e n c e s r e p r e s e n t i n g a m i n o r , tandemly repeated, c o m p o n e n t o f s a t e l l i t e DNA. S e v e r a l e x p l a n a t i o n s c a n be g i v e n f o r t h i s r e s u l t , apparently in c o n f l i c t w i t h t h o s e of us and o t h e r s ( 3 7 ) . F i r s t , t h e r e a s o n may r e s i d e in the d i f f e r e n c e s in c e l l type or s u b c e l l u l a r l o c a t i o n of spcDNA ( J o n e s and P o t t e r i s o l a t e d spcDNA from t h e c y t o p l a s m of HeLa c e l l s ) . S e c o n d , t h e i r u s e of c o l d c o m p e t i t o r Alu DNA in 7835 Nucleic Acids Research differential hybridization precluded representation o f A l u i n spcDNA. Overabundance of r e p e t i t i v e , sequences paper). be The c i r c u l a r form an i n t e r m e d i a t e genome. of a mainly i n spcDNA h a s b e e n When highly repeated found interspersed, in the process clones with repeated sequence repetitive of t h e i r long sequences. (2-4, dispersal in the the presence overshadows By v i r t u e this e l e m e n t s may inserts, element on t h e v s . unique by u s a n d o t h e r s of d i s p e r s e d analyzing and unique any conclusions middle of t h e s h o r t mean l e n g t h o f o u r c l o n e d i n s e r t s , we h a v e b e e n a b l e t o s o r t o u t t h a t highly repeated spcDNA. I t seems population sequences Our form indicate that directly exist strongly main adressed i t s high repetitive group upon group, repetition unknown whether cycloheximide increase unique i n spcDNA. certain sequence such in the amplified This spcDNA question Some s e q u e n c e s , such in form, circular in cells has not a s B1 , seem whereas a s MIF a n d R, a p p e a r s t o b e more work clones degree for this clones task that would a r e B 1 , by v i r t u e and o v e r r e p r e s e n t a t i o n by v i r t u e of i t s apparent eye 1 o h e x i m i d e treatment. entails t h e same treatment a lower or other as after stimuli i n spcDNA, degree of although sensitivity. sequences other high Of t h e s o m e c l o n e s may b e s u i t a b l e , degree i n spcDNA was t o i d e n t i f y p r o b e s f o r spcDNA t o s t u d y t h e p r o c e s s o f i t s Candidate amplification lower earlier. repetition t h e MIF/R while by c y c l o h e x i m l d e . aim of t h i s amplification. and counterpart. of o t h e r s , a in i n t h e spcDNA and c y c 1 o h e x i m i d e - t r e a t e d "cons11tu11ve 1y" induced extent of composition t h e normal serve as efficient of t h e amount t h e sequence from enriched DNA, a s a g r o u p , t o any g r e a t of is not overrepresented is really repetitive in untreated circularization The a s i f what a r e n o t found may d i f f e r been as a whole, i s middle investigations circular to DNA, It middle their remains a r e a m p l i f i e d on that p r o v o k e an content. ACKHOWLEDGEHEHTS This work was supported Council 7836 by the Swedish Natural and the Swedish Cancer Society. Science Research Nucleic Acids Research REFERENCES 1 Y a m a g i s h i , H., K u n i s a d a , T. a n d T s u d a , T. (1982) P l a s m i d § , 299-306 2 Bertelsen, A.H., Humayun, M.Z., K a r f o p o u l o s , S.G. a n d Rush, M.G. ( 1 9 8 2 ) B i o c h e m i s t r y 2J_, 2 0 7 6 - 2 0 8 5 3 K u n i s a d a , T . a n d Y a m a g i s h i , H. ( 1 9 8 4 ) G e n e 2 1 . 2 1 3 - 2 2 3 4 S t a n f i e l d , S.W. a n d H e l i n s k i , D.R. ( 1 9 8 4 ) M o l . C e l l . Blol. h_, 173-180 5 Fujimoto, S.F., Tsuda, T., Toda, M. a n d Y a m a g i s h i , H. (1985) P r o c . N a t l . A c a d . S c l . (USA) £ 2 , 2 0 7 2 - 2 0 7 6 6 Varshavsky, A. ( 1 9 8 1 ) Proc. Natl. Acad. S c i . (USA) 7 8 , 3673-3677 7 S c h i m k e , R. ( 1 9 8 4 ) C e l l 3_7, 7 0 5 - 7 1 3 8 P a u l s o n , K . E . ,D e k a , N . , S c h m i d , C . W . , M i s r a , R, S c h i n d l e r , C.W., R u s h , M . G . , K a d y k , L. a n d L e i n w a n d , L. (1985) N a t u r e 3J_6, 359-361 9 Krolewski, J . J . a n d Rush, M.G. (1984) J. M o l . B i o l . 1 7 4 , 31-40 10 DeLap, R.J. and Rush, M.G. (1978) Proc. N a t l . Acad. S c i . (USA) 2 1 . 5 8 5 5 - 5 8 5 9 11 Jones, R.S. and Potter, S.S. (1985) Nucl. Acids R e s . J_3, 1027-1042 12 Schindler, C.W. a n d R u s h , M.G. ( 1 9 8 5 ) J . M o l . B i o l . 1 8 1 , 161-173 13 Wlberg, F.C., Sunnerhagen, P. a n d B j u r s e l l , G. ( 1 9 8 6 ) M o l . C e l l . B i o l . 6_, 6 5 3 - 6 6 2 14 Bibb, M.J., v a n Etten, R.A., Wright, C . T . , W a l b e r g , M.W. a n d C l a y t o n , D . A . ( 1 9 8 1 ) C e l l 2b_, 1 6 7 - 1 8 0 15 W i b e r g , F . C . ,S u n n e r h a g e n , P . , K a l t o f t , K., Z e u t h e n , J . a n d Bjursell, G. ( 1 9 8 3 ) N u c l . A c i d s R e s . J_1_, 7 2 8 7 - 7 3 0 2 16 V l e i r a , J . a n d M e s s i n g , J . (1982) Gene j_9, 2 5 9 - 2 6 8 17 H a n a h a n , D . ( 1 9 8 3 ) J . M o l . B l o l . J_6J>> 5 5 7 - 5 8 0 18 R i g b y , P.W.J., D l e c k m a n , M., R h o d e s , C. a n d B e r g , P. ( 1 9 7 7 ) J. M o l . B l o l . 1 1 3 , 237-251 19 F e i n b e r g , A.P. a n d V o g e l s t e i n , B. (1983) A n a l y t . Biochem. 132, 6 - 1 3 20 Blin, N. a n d S t a f f o r d , D.W. ( 1 9 7 6 ) N u c l . A c i d s R e s . 3_> 2303-2308 21 S o u t h e r n , E.M.(1975) J . M o l .B i o l . ^ 8 , 5 0 3 - 5 1 7 22 H i r t , B . ( 1 9 6 7 ) J . M o l . B i o l . 2±, 265-269 23 K r a y e v , A . S . ,K r a m e r o v , D . A . ,S k r y a b i n , K . G . , R y s k o v , A . P . , Bayev, A.A. a n d G e o r g i e v , G . P . ( 1 9 8 0 ) N u c l . A c i d s R e s . £3, 1201-1215 ~ 24 Bennett, K.L.,H i l l , R.E., P i e t r a s , D.F., Woodworth-Gutai, M., K a n e - H a a s , C , H o u s t o n , J . M . , H e a t h , J . K . a n d H a s t i e , N . D . ( 1 9 8 4 ) M o l . C e l l . B i o l . k_, 1 5 6 1 - 1 5 7 1 25 Krayev, A.S., Markusheva, T.V., Kramerov, D.A., Ryskov, A.P., S k r y a b i n , K.G.,B a y e v , A.A. a n d G e o r g i e v , G.P. (1982) Nucl. Acids Res. j_0, 7461-7475 26 Deugau, K.V., Mltchel, R.E.J. and Birnboim, H.C. (1983) Analyt. Biochem. 1 2 9 , 88-97 27 Gebhard, W., M e l t i n g e r , T., HOchtl, J. a n d Zachau, H.G. (1982) J. M o l .B i o l . 1 5 7 , 4 5 3 - 4 7 1 28 Meunier-Rotival, M., S o r i a n o , P . , Cuny, G., S t r a u s s , F. a n d B e r n a r d i , G. ( 1 9 8 2 ) P r o c . N a t l . A c a d . S c i . ( U S A ) 7 9 , 3 5 5 359 7837 Nucleic Acids Research 29 30 31 32 33 34 35 36 37 7838 S m i t h , C.A. a n d V i n o g r a d , J . (1972) J . H o i . B i o l . 6 9 , 1 6 3 178 Stanfield, S . W . a n d H e l i n s k i , D . R . ( 1 9 7 6 ) C e l l 9_, 3 3 3 - 3 4 5 H o r z , W. a n d A l t e n b u r g e r , W. ( 1 9 8 1 ) N u c l . A c i d s R e s . 9 , 683-696 Harr, R., F a l l m a n , P., Haggstrom, M., W a h l s t r o m , L. a n d G u s t a v s s o n , P. ( 1 9 8 6 ) N u c l . A c i d s R e s . J_4, 2 7 3 - 2 8 4 B e n n e t , K . L . a n d H a s t i e , N . D . ( 1 9 8 4 ) EMBO J . 3 , 4 6 7 - 4 7 2 G e o r g i e v , G.P. (1984) E u r . J. Biochem. 1 4 5 , 20'3-220 A r l g a , H . ( 1 9 8 4 ) H o i . C e l l . B i o l . 4_, 1 4 7 6 - 1 4 8 2 B e r t e l s e n , A . H . , H u m a y u n , M . Z . , L i p p r a a n , A. a n d R u s h , M . G . ( 1 9 8 2 ) B i o c h e m . B i o p h y s . R e s . Comm. 1 0 5 , 9 7 7 - 9 8 4 R i a b o w o l , K., S h m o o k l e r - R e i s , R . J . a n d G o l d s t e i n , S. ( 1 9 8 5 ) Nucl. Acids Res. 13, 5563-5584
© Copyright 2026 Paperzz