MATHS TEST PAPER XI –: (SET – B) TRIGONOMETRY, PMI & COMPLEX NUMBER Max. Marks : 100 Time : 3 hrs Each question carries 1 mark 7 1. Convert 1 Radians into degree, minutes & seconds. 2. Find the value of cos(17100 ) 3. 4. Convert (-35 / 2) Radians into degree measure. Find the value of tan( / 8) 5. Derive the formula of cos A – cos B. 6. Express Z 7. For what values of x is 8. Solve : x 2 2 0 9. If z = a + ib is any non zero complex number, then find the value of Arg (z) + Arg (Conjugate of z) 10. Find modulus and argument of 2 3 2i . ( 2 5) in the form a + ib. (1 2) 5x 2 x 5 0. Each question carries 4 marks 11. Evaluate : cos 2 x cos 2 x cos 2 x 3 3 cos 2 33 cos 2 57 2 2 21 2 69 sin sin 2 2 13. Find the value of tan ( / 8). 12. Prove that 14. Show that tan3x tan 2x tan x tan 3x tan 2x tan x 15. Prove that sin 3x sin 2x sin x 4sin x cos cos 16. If cos ( ) sin ( ) cos ( ) sin ( ), prove that cot cot cot cot . 17. Find the modulus & Argument of the given complex no & convert it to polar form. Z 18. x y x y If (x iy)1/3 (a ib), then find the value of a b a b x 2 3x 2 i 1 cos i sin 3 3 Page 1 3 2i sin is purely real. 1 2 i sin 19. Find real such that 20. 1 1 1 1 1 Prove that 1 ... 2 2 for all n 2, n N. 4 9 16 n n 21. Prove that 1.3 35 5.7 ..... (2n 1) (2n 1) 22. 1 1 1 1 n 1 Prove that 1 2 1 2 1 2 ... 1 2 for all natural numbers, n 2. 2 3 4 n 2n n(4n 2 6n 1) 3 Each question carries 6 marks sin 7x sin 9x sin 5x sin 3x 23. Prove that tan 6x cos 7x cos9x cos5x cos3x 24. Express cos 6x in terms of cos x only. 25. Find the general solution of the equation : sin x sin 3x sin 5x. 26. Find the modulus & Argument of the given complex no & convert it to polar form. Also write its polar Coordinates. Z 27. 28. 8 920 578 (4i 4) cos i sin 12 51 (i) If a & b are different complex numbers with | b | = 1, Then find (ii) If x + i y = | ba | |1 ab | (a i b) , then find the value of (x 2 y2 ). (a i b) Using principle of Mathematical Induction, prove that for all natural nos n 1 n(4n 2 6n 1) . 3 29. Using Principle of Mathematical Induction, Prove that for all natural nos n 1 1.3 3.5 5.7 ..... (2n 1) (2n 1) 1 1 1 1 2n ...................... (1 2) (1 2 3) (1 2 3 ......n) (n 1) Page 2
© Copyright 2026 Paperzz