Exponential form of complex numbers 1-E Precalculus Euler's formula Euler's fomula e i = cos i sin connects trigonometric functions and complex numbers. For the angle π we get ei = − 1 1-1 ⇔ ei 1 = 0 Precalculus Euler's formula This fomula provides a remarkable simple connection of 5 very important mathematical constants: Euler's number e, the imaginary unit i of complex numbers, the number π, the unit number 1 and zero, 0. 1-2 Precalculus Most remarkable formula http://www.cap.ca/wyp/mediaPhysics.asp Richard Feynman, american physicist and Nobel laureate in 1965, called Euler's formula one of the most remarkable formulas in all of mathematics. 1-3 Precalculus Most remarkable formula Richard Feynman (1918-1988) Richard Feynman, american physicist and Nobel laureate in 1965, called Euler's formula one of the most remarkable formulas in all of mathematics. 1-4 Precalculus Exponential form trigonometric form z = r cos i sin ↓ e i = cos i sin ↓ exponential form z = r ei 2-1 Precalculus Representation of complex numbers: Summary x , y : Re z = x , pair of real numbers: z= xi y polar form: algebraic (Cartesian) form r , : r – absolute value of z, – argument of z z = r cos i sin z = r e i complex conjugate: 2-2 Im z = y trigonometric form exponential form Im z * = − Im z Precalculus Exponential form of complex numbers: Exercise Transform the complex numbers into Cartesian form: a) z = 2e i π 6 b ) z = 2 √3 e i π 3 c ) z = 4 e 3π i d ) z = 4e i π 2 e ) z = √2 e i f ) z = 2 √3 e g ) z = √3 e 6-1 i 3π 4 i 2π 3 13 π 6 Precalculus Exponential form of complex numbers: Solution a ) z : r = 2, = b ) z : r = 2 3 , = z = 3 i , 3 c ) z : r = 4, = 3 , d ) z : r = 4, = e ) z : r = 2 , f ) z : r = 2 3 , g ) z : r = 3 , 6-2 , 6 z = 3 3 i , 2 z = −4 = 3 , 4 = = z = 4i 2 , 3 13 , 6 z = −1 i z = −3 3 i z= 3 3 i 2 2 Precalculus http://simania.co.il/bookimages/covers76/765785.jpg 3-3 Precalculus
© Copyright 2026 Paperzz