Friday, 26 February Math 105, section 207 Quiz 7 Name: Student number: Time: 25 minutes Rxp 1. Find the derivative of the function F (x) = 1 4 + 2t + sin(t) dt at the point x = 1: p p a) 0 b) 6 + sin(1) − 2 c) 6 + sin(1) d) √2+cos(1) 6+sin(1) R ln x p 2. (Midterm 2, 2015) Find the derivative of the function G(x) = 1 4 + 2t + sin(t) dt at the point x = 1: √ (1) a) 2(2 + cos(1)) b) 2+cos c) 2 d) 6 2 p R 2x 3. What is the derivative of the function H(x) = x 4 + 2t + sin(t) dt? p p a) 2p 4 + 4x + sin(2x) −p 4 + 2x + sin(x) b) 4 + 4x + sin(2x) p p − 4 + 2x + sin(x) c) 2(2 + 2cos(2x))p 4 + 4x + sin(2x) − (2 + cos x)p 4 + 2x + sin(x) d) (2 + 2cos(2x)) 4 + 4x + sin(2x) − (2 + cos x) 4 + 2x + sin(x) R1 4. −1 (x + 1)(x2 + 2x)6 dx? 1 1 1 27 a) b) (27 − 1) c) (37 + 1) d) 7 14 14 7 5. R x2 + x dx? x3 − x 1 a)− +C x−1 b) ln |x + 1| +C |x − 1| c) ln|x − 1| + C 6. (Midterm 2, 2014, with a small change) tution x = 2sinθ)√ √ 3 a) 4 b)1 − 43 R2 √ c)1 − 3 2 1 x2 √ d) ln(x3 − x) + C 1 dx? (Hint: use the substi4 − x2 √ d) 2 2 7. Use the technique of integration by parts to compute a)0 b) π2 c)π d) π 2 Rπ 0 x sin x dx? Friday, 26 February Math 105, section 207 Quiz 7 Some formulae: 1 + cos2x 1 − cos2x , sin2 x = , 2 2 1 1 secx = , (tanx)0 = 1 + tan2 x = = sec2 x, cosx cos2 x Z Z tanx dx = −ln|cos x| + C = ln|sec x| + C, cotx dx = ln|sinx| + C, cos2 x = Z Z secx dx = ln|secx + tanx| + C, cscx dx = −ln|cscx + cotx| + C, 1 − sin2 x = cos2 x, 1 + tan2 x = sec2 x, sec2 x − 1 = tan2 x, sin 2x = 2sinx cosx, cos2x = cos2 x − sin2 x = 2cos2 x − 1 = 1 − 2sin2 x
© Copyright 2026 Paperzz