263 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 83. False. There might not be . 85. 124°= 124°(~-~oo) periodicity, as in the equation ~ 2.164"’"v ,radians sin(x2) = 0 14 14 89. tan 30°= -- ~ x- tan 30° x 14 = 24.249 ~ 3 87. -0.41°= -0.41(~-~oo) .~ - 0.007 radians 16 16 ~ 24.892 91. sin 40°= -- ==> x- . x sin 40° 95. f(x) = ~cot y x Section 5.4 Sum and Difference Formulas [] You should memorize the sum and difference formulas. sin(u + v) = sin u cos v + cos u sin v cos(u + v) = cos u cos v ¥ sin u sin v tan u + tan v tan(u + v) = 1~ tan u tan v [] You should be able to use these formulas to find the values of the trigonometric functions of angles whose sums or differences are special angles. [] You should be able to use these formulas to solve trigonometric equations. Solutions to Odd-Numbered Exercises 1. (a) cos + = cos -~ cos ~ - sin ~2222 (b) cosZ + cos-y = -~- 2 2 264 PART I: Solutions to Odd-Numbered Exercises and Practice Tests ’rr_l (b)~sin7’n" ~__ 1 ~ -1 - ~ ~-~ = sin 6 2 -7-- sin3 -~ 2 - ~) = 2 5. (a) cos(O° + 135°) = cos 0° cos 135° - sin 0° sin 135° = cos 135° (b) cos 0° + cos 135° = 1 2 2 7. (a) sin(315° - 60°) = sin 315° cos 60° - cos 315° sin 60° = (b) sin 315° _ sin 60° - 22 2 2 2 2 - 9o sin 75° = sin(30° + 45°) = sin 30° cos 45° + sin 45° cos 30° 22 2 4 2 11. sin 105° = sin(60° + 45°) = sin 60° cos 45° + sin 45° cos 60° 2 2 -~(~ + 4" 2 2 2 - "!~’(w’~ + 1) cos 75° = cos(30° + 45°) = cos 30° cos 45° - sin 30° sin 45° cos 105° = cos(60° + 45°) = cos 60° cos 45° - sin 60° sin 45° tan 75°= tan(30° + 45°) tan 30° + tan 45° 1 - tan 30° tan 45° tan 105° = tan(60° + 45°) tan 60° ÷ tan 45° 1 - tan 60° tan 45° _ !-,/~/3)+ 1 .f~ + 3 1 -(~/3/3) 3 6.,/~ + 12 v’~ + 2 6 3+4 1 - .,/~ - 1 - -,/~ _ 4+2.¢/~__2_ ~ -2 265 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 13. sin 195° = sin(225° - 30°) = sin 225° cos 30° - sin 30° cos 225° = -sin 45° cos 30° + sin 30° cos 45° cos 195° = cos(225° - 30°) = cos 225° cos 30° + sin 225° sin 30° = -cos 45° cos 30° - sin 45° sin 30° tan 195° = tan(225° - 30°) tan 225° - tan 30° 1 + tan 225° tan 30° tan 45° - tan 30° 1 + tan 45° tan 30° llqr .15. sin-- = sin +~ + 12 = sin ~- cos ~ + sin -~ cos _ COS-i-~- = COS + 3"n" ~r 3¢r ¢r = cos -~- cos ~ - sin ~ s~ ~ llg tan -- = tan 4 + tan(3cr/4) + tanCcr/6) 1 - tan(3~r/4) tan(qr/6) -1 + (~/~/3) 1 - (-1)(./~/3) -3+./5 3+45 __ -12 + 6v.~_/-ff 6 17. 12 6 4 sin - = sin - = sin -~ cos + - sin -~ cos -~ .45_ 22 cos - = cos - 2 2 4" = cos ~- cos -~ + sin + sin 4 2 2 22 tan = tan (~2) (~ ~) tan(,rr/6)= 1 + tan(o/6) tan(,rr/+ tan(’a-/4) 19. cos 40° cos 15° - sin 40° sin 15° = cos(40° + 15°) = cos 55° 21. sin 340° cos 50° - cos 340° sin 50° = sin(340° - 50°) = sin 290° - -2 + 45 PART I: Solutions to Odd-Numbered Exercises and Practice Tests tan(325° - 86°) = tan 239" 25. sin 3 cos 1.2 - cos 3 sin 1.2 = sin(3 - 1.2) = sin 1.8 cos -~ cos ~ - sin ~ sin ~ = cos + 12,n" 35 = COS ~ 29. Yl 0.4 0.6 0.8 1.0 " 1.2 1.4 0.9801 0.9211 0.8253 0.6967 0.5403 0.3624 0.1700 Y2 0.9801 0.9211 0.8253 0.6967 0.5403 0.3624 0.1700 x 0.2 , =sin cosx+sinxo cos2 COS x = Y2 31. x 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Yl 0.6621 0.7978 0.9017 0.9696 0.9989 0.9883 0.9384 Y2 0.6621 0.7978 0.9017 0.9696 0.9989 0.9883 0.9384 = sin ~ cos x + sin x o cos 6 2 = - cos x + -- sin x 2 2 = ½(cos x + ~’~ sin x) 0~1,5 = Y2 0 33. x Yl Y2 2 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.9605 0.8484 0.6812 0.4854 0.2919 0.1313 0.0289 0.9605 0.8484 0.6812 0.4854 0.2919 0.1313 0.0289 ............... y, = cos(x + ~r)cos(x = (cos x " cos qr- sin x ¯ sin [cos x cos ~r + sin x sin ~r] = I-cos x] I-cos x] = COS2 X = Y2 0~1.5 267 PART I: Solutions to Odd-Numbered Exercises and Practice Tests For Exercises 35-37, we have: sin u = ~, u is in Quadrant I ==> cos u - i~ cos v = -53-, v is in Quadrant II :=~ sin v = ~ 37. costu" + v)" = cos u cos v - sin u sin v 35. sin(u + v) = sin u cos v + cos u sin v + - 12 4 _33 12 3 _ -56 -- 65 -- 65 For Exercises 39-41, we have: sin u = ~s, u ~s in Quadrant II ==> cos u = =~ 4 3 cos v = g, v ~s in Quadrant IV ==> sin v = -3 39. cos(u + v) = cos u ° cos v - sin u ° sin v -96 + 21 125 43. cos(,rr - 0) + sin "n" + -75 125 41o sin(v - u) = sin v ¯ cos u - sin u ¯ cos v -3 72 - 28 125 5 44 125 = cos "rr cos 0 + sin ~ sin 0 + sin -~ cos 0 + sin 0 cos ~2 = (-1)(cos O) + (O)(sin O) + (1)(cos O) + (sin 0)(0) = -cos 0 + cos 0 = 0 tan x + tan ~r tan ’n" - tan x 45° tan(x + ~r) - tan(qr - x) = 1 - tan xo tan ~r- 1 + tan ¢r tan x = 2tanx 47° sin(x + y) + sin(x - y) = sin x cosy + sin y cos x + sin x cos y - sin y cos x = 2 sin x cos y 49. cos(x + y)cos(x - y) = [cos x cos y - sin x sin y][cos x cos y + sin x sin y] = cos~ x cos2 y - sin2 x sin~ y = cos~ x(1 - sin~ y) - sin: x sin2 y = cos2 x - sin2 y(cos:~ x + sin2 x) = cos2 x - sin2 y 268 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 51. sin(arcsin x + arccos x) = sin(arcsin x) cos(arccos x) + sin(arccos x) cos(arcsin x) =~.x+ ~/~- x~ ¯ ~/~-x~ = x2 + 1 x2 =1 0 = arcsin x 0 = arecos x 53. Let: u = arctan 2x and v = arccos x tan u = 2x cos v = x 1 x sin(arctan 2x- arccos x) = sin(u - v) = sin u cos v - cos u sin v 2x 1 ,/4x~ + ~(x) ~:~x~ - ./i - x~ ,/4x~ + 1 55. sin(x + ~) + sin(x - ~) = 1 sin x cos ~ + cos x sin ~ + sin x cos ~ - cos x sin ~ = 1 2 sin x(0.5) = 1 sin x = 1 2 269 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 57. cos x cos ~- - sin x sin ~ - cos x cos ~- + sin x sin = 1 -2sinx -~- = I -~,/~sinx = 1 sin x = sin x = X-- 1 ~: ./2 2 5¢r 4’ 4 tan(x + zr) + 2 sin(x + or) = 0 59. tan x + tan "n" + 2(sin x cos ,r + cos x sin or) = 0 1 - tan x tan ~r tan x + 0 + 2[sinx(-1) + cosx(0)] = 0 1 - tan x(0) tan x - 2 sin x = 0 1 sin x - 2sinx COS X sin x = 2 sin x cos x sin x(1 - 2 cos x) = 0 sin x = 0 or x=O,~ 0 1 2 7r 5qr x-3,3 COS X -- -- 6.28 The poims of intersection occur at x = 0.7854 and x = 5.4978. 270 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 63. tan(x + 7r) - cos(x + ~) = 0 I I I The points of intersection occur at x = 0 and x ~ 3.14. 65. Yl +yz=Acos27r t _ +Acos2cr + = A[cos(~)cos(~-~)+ sin(~)" /2¢rx’~] A[cos(~) cos(~) = ~ cos cos 2 69. False. sin 75° = sini30° + sin 45°) = sin 30° cos 45° + cos 30° 45° 67. False. See page 404. 22 22 + -- 4 71. cos(nqr + 0) = cos n’rr cos 0 - sin n~" sin 0 = (- 1)n (cos O) - (O)(sin O) = (- 1)’~ (cos 0), where n is an integer. b b 73. C=arctan- ~ tanC- --o sinCa a b a bz’ cost- ~/a2 + b2 J~2 + a -,/az+bzsin(B0+ C) = ~/a2+ b2 sinB0 ° ~/a~+bZ + ,/,a2+bZ ° cosB0 = asinB0+bcosB0 ( ) 75. sin 0 + cos 0 a=l,b=l,B=l b ,n (a) C = arctan-= arctan 1 = -a 4 sin 0 + cos 0 = ./a~ + ba sin(B0 + C) a ,/r (b) C = arctan~- = arctan I b 4 sin 0 + cos 0 = x/a2 ÷ bz cos(B0 - C) 77. 12sin30+5cos30 a= 12, b=5, B =3 b 5 (a) C = arctan- = arctan s-2 -~ 0.3948 a IZ 12 sin 30 + 5 cos 30 = ~/a2 + b2 sin(B0 + C) ~ 13 sin(30 + 0.3948) a 12 (b) C = arctan ~- = arctan -z- ~ 1.1760 12 sin 30 + 5 cos 30 = ~/a2 + b2 cos(B0 - C) ~ 13 cos(30 - 1.1760) 271 PART I: Solutions to Odd-Numbered Exercises and Practice Tests b~ 79. C=arctan-=-- =~ a=0 a2 ~/a2+b2=2 ==> b=2 B=I 2 sin(0 + ~)= (0)(sin 0)+ (2)(cos 0) = 2 cos 0 81o From the figure, it appears that u + v = w. Assume that u, v, and w are all in Qua&ant I. From the figure: s1 tan u - 3s 3 s1 2s 2 tan w = - = 1 tan v - $ tan u + tan v 1/3 + 1/2 5/6 tan(u + v) = = - 1 = tan w. 1 - tan u tan v 1 - (1/3)(1/2) 1 - (1/6) Thus, tan(u + v) = tan w. Because u, v, and w are all in Quadrant I, we have arctan[tan(u + v)] = arctan[tan w] U+V=W. tan ~r + tan 0 1 - tan ~r tan 0 0 + tan 0 -1’ - (0) tan 0 =tanO 83. tanOr + O) = 6.28 cos + h - cos 6 85. f(h) = h g(h) = cos --" h sin ~ \~] (a) The domains are both (-~, 0), (0, ~x~). (b) h f(h) 0.01 0.02 0.05 0.1 0.2 0.5 -0.5043 -0.5086 -0.5214 -0.5424 -0.5830 -0.6915 -0.5043 -0.5086 -0.5214 -0.5424 -0.5830 -0.6915 (c) 1 (d) The values tend to y = 2" 272 PART L" Solutions to Odd-Numbered Exercises and Practice Tests 87, x = O: y = -½(0 - 10) + 14 = 5 + 14 = 19. y-intercept: (0, 19) 1 y=O: O=-~(x-10)÷ 14=-½x + 19 ~ x= 38. x-intercept: (38,0) 89. x = o: 12(0) - 91 - 5 = 9 - 5 = 4. y-intercept: (0, 4) y = O: 12x - 91 = 5 ==> x = 7, 2. x-intercepts: (2, 0), (7~ O) = ~ because cos ~ = T Section 5.5 93. arcsin 1 = _-- because sin _-- = 1. 2 2 Multiple-Angle and Product.Sum Formulas You should know the following double-angle formulas. (a) sin 2u = 2 sin u cos u (b) cos 2u = COS2 U -- sinz u = 2 cosz u - 1 = 1 - 2 sinz u 2 tan u 1 - tanz u [] You should be able to reduce the power of a trigonometric function. (c) tan 2u - 1 - cos 2u 1 + cos 2u (a) sinz u = (b) cos2 u = 2 2 [] You should be able to use the half-angle formulas. (a) sin~=_+ u ~/1-cosu 2u ~/l+cosu (b) cos~=+ [] You should be able to use the product-sum formulas. 1 (a) sin u sin v =~ [cos(u - v) - cos(u + v)] 1 (c) sin u cos v = ~ [sin(u + v) + sin(u - v)] 2 1 - cos 2u (c) tanz u = 1 + cos 2u u 1 - cos u sin u (c) tan sin u 2 1 + cos u 1 (b) cos u cos v = ~ [cos(u - v) + cos(u + v)] 1 (d) cos u sin v = ~ [sin(u + v) - sin(u - v)] [] You should be able to use the sum-product formulas. (a) sin x + sin y = 2 sln~--~)cos --~ (b) sin x- sin y = 2 cos~--~)sin ~ (c) cos x + cos y = 2 cos~--~)cos --~ [x + y’~ (x-y) (d) cosx-cosy=-2sinX+Y sin x-y
© Copyright 2026 Paperzz