Name
Date
Class
Reteach
LESSON
Factoring ax 2 ⫹ bx ⫹ c
8-4
When factoring ax 2 bx c, first find factors of a and c. Then check the products
of the inner and outer terms to see if the sum is b.
Factor 2x 2 ⫹ 11x ⫹ 15. Check your
answer.
2x 2 11x 15 x
Factor 3x 2 ⫺ 23x ⫹ 14. Check your
answer.
x
Factors
of 2
Factors
of 15
Outer Inner
1 and 2
1 and 2
1 and 2
1 and 2
1 and 15
15 and 1
5 and 3
3 and 5
1 15 2 1 17 7
1 1 2 15 31 7
1 3 2 5 13 7
1 5 2 3 11 3
3x 2 23x 14 Factors
of 3
x
x
Outer Inner
Factors
of 14
1 and 3 1 and 14 1 14 3 1 17 7
1 and 3 14 and 1 1 1 3 14 42 7
1 and 3 2 and 7 1 7 3 2 13 7
1 and 3 7 and 2
1 2 3 7 23 3
x 7 3x 2 x 3 2x 5 Check:
Check:
x 7 3x 2 3x 2 2x 21x 14
x 3 2x 5 2x 2 5x 6x 15
2
3x 23x 14 3
2
2x 11x 15 3
1. Factor 5x 2 12x 4 by filling in the blanks below.
Factors
Outer Inner
Factors
1
and
5
1
and
4
1
4
5
1
9
1
and
5
4
and
1
1
1
5
4
21
1
and
5
2
and
2
1
2
5
2
12
x
⫹ 2 5x ⫹ 2 Factor each trinomial.
2
2. 3x 7x 4
3x
3. 2x 2 13x 21
⫹ 4 x ⫹ 1 Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a107c08-4_rt.indd 30
2x
⫺ 7 x ⫺ 3 30
4. 4x 2 8x 3
2x
⫹ 3 2x ⫹ 1 Holt Algebra 1
12/26/05 8:13:45 AM
Process Black
Name
LESSON
8-4
Date
Class
Reteach
Factoring ax 2 ⫹ bx ⫹ c (continued)
When c is negative, one factor of c is positive and one is negative. You can stop checking
factors when you find the factors that work.
Factor 2x 2 ⫹ 7x ⫺ 15. Check your answer.
2x 2 7x 15 Factors of 2
1 and 2
1 and 2
1 and 2
1 and 2
x
x
Factors of 15 Outer Inner
3 and 5
1 5 2 3 3 and 5
1 5 2 3
5 and 3
1 3 2 5 5 and 3
1 3 2 5
1 7
17
7 7
73
Check:
x 5 2x 3 x 5 2x 3 2x 2 3x 10x 15
2
2x 7x 15
When a is negative, factor out 1. Then factor as shown previously.
Factor ⫺5x 2 ⫹ 28x ⫹ 12. Check your answer.
5x 2 28x 12
1 5x 2 28x 12 1 Factors of 5
1 and 5
1 and 5
1 and 5
1 and 5
x
x
Factors of 12 Outer Inner
2 and 6
1 6 5 2 2 and 6
1 6 5 2
6 and 2
1 2 5 6
6 and 2
1 2 5 6 4 7
47
28 7
28 3
Check:
1 x 6 5x 2 1 x 6 5x 2 2
1 5x 2x 30x 12 2
1 5x 28x 12 2
5x 28x 12
Factor each trinomial.
2
5. 3x 7x 20
3x
⫹ 5 x ⫺ 4 Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a107c08-4_rt.indd 31
6. 5x 2 34x 7
5x
⫺ 1 x ⫹ 7 31
7. 2x 2 3x 5
⫺1 2x ⫺ 5 x ⫹ 1 Holt Algebra 1
12/26/05 8:13:46 AM
Process Black
*À>VÌViÊ
&ACTORINGAXBXC
--"
n{
n{
&ACTOREACHTRINOMIALWHERECISPOSITIVE
&ACTOREACHTRINOMIAL
XX
X X
XX
SÓ X Î DS Ó X x D
S£ XDSX Ó D
XX
*À>VÌViÊ
&ACTORINGAXBXC
--"
XX
ÊTÎXÊÈÊEÊTXÊÊ{ÊEÊ
XX
ÊTÓXÊÊÎÊEÊTXÊÊxÊEÊ
XX
XX
ÊTÎXÊÊ{ÊEÊTXÊÊÓÊEÊ
ÊTÎXÊÊÓÊEÊTÓXÊÊxÊEÊ ÊTÓXÊÊ£ÊEÊT{XÊÊÇÊEÊ XX
ÊTÓXÊÊÎÊEÊT{XÊÊ£ÊEÊ
SXn £ DS £ X n D
XX
ÊTxXÊÊÓÊEÊTXÊÊ{ÊEÊ
XX
ÊTÇXÊÊÎÊEÊTXÊÊnÊEÊ
ÊTÇXÊÊxÊEÊTÎXÊÊ£ÊEÊ SX DSÓ XD
X X
ÊT{XÊÊÎÊEÊTXÊÊÎÊEÊ
X X
X X
ÊTÓXÊÊ£ÊEÊTÓXÊÊÇÊEÊ X X
XX
ÊT{XÊÊÎÊEÊTÎXÊÊ{ÊEÊ ÊTÎXÊÊ{ÊEÊTÓXÊÊxÊEÊ
ÊTÎXÊÊ£ÊEÊTÎXÊÊÓÊEÊ
XX
ÊTXÊÊxÊEÊTXÊÊÈÊEÊ
ÊTÎXÊÊnÊEÊTÓXÊÊxÊEÊ
X X
ÊTXÊÊ£äÊEÊTÓXÊÊÎÊEÊ
TXÊÎÊEÊT££XÊÊnÊEÊ XX
ÊTÎXÊÊnÊEÊTXÊÊÓÊEÊ
X X
ÊTXÊÊ{ÊEÊTnXÊÊÎÊEÊ
ÊTXÊÊÓÊEÊTxXÊÊÎÊEÊ
XX
X X
XX
SÎ X { DS£ X £ D
ÊTnXÊÊ£ÊEÊTXÊÊÊEÊ
XX
ÊTÓXÊÊ£ÎÊEÊTXÊÊ£ÊEÊ XX
ÊTÎXÊÊxÊEÊTXÊÊÎÊEÊ
ÊT{XÊÊÎÊEÊTÎXÊÊ{ÊEÊ
&ACTOREACHTRINOMIALWHERECISNEGATIVE
XX
X X
ÊTÎXÊÊxÊEÊTÓXÊÊxÊEÊ
XX
ÊTÎXÊÊ{ÊEÊTÓXÊÊxÊEÊ
X X
XX
X X
ÊT{XÊÊÇÊEÊTXÊÊ£ÊEÊ
X X
SÎ Xn Ç DSÎ Xn Ó D
X X
ÊTxXÊÊ£ÊEÊTXÊÊ{ÊEÊ
XX
ÊTÓXÊÊÊEÊTÓXÊÊÎÊEÊ
X X
XX
XX
X X
X X
&ACTOREACHTRINOMIALWHEREAISNEGATIVE
XX
XX
XX
£ÊÊT{XÊÊÊEÊTÎXÊÊÓÊEÊ
£ÊÊTxXÊÊÈÊEÊT{XÊÊ£ÊEÊ
Ó
SxÊX ÊÊ{nXÊÊÓÇD
SÓ X £ DSÎ X { D
Sx X Î DS £ X D
£ÊÊTxXÊÓÊEÊT{XÊÊÎÊEÊ
4HEAREAOFARECTANGLEISX X4HELENGTHISX4HEWIDTHIS
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
{XÊÊ£
4HEAREAOFARECTANGLEISX X
4HELENGTHISX7HATISTHEWIDTH
n{
ÌÊ}iLÀ>Ê£
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
n{
XX
D D
7HENFACTORINGAX BXCFIRSTFINDFACTORSOFAANDC4HENCHECKTHEPRODUCTS
OFTHEINNERANDOUTERTERMSTOSEEIFTHESUMISB
CC
&ACTORX X#HECKYOUR
ANSWER
ÊTÎDÊÊÇÊEÊTÓDÊÊ£ÊEÊ ÊTÇXÊÊÎÊEÊTÓXÊÊÎÊEÊ B B
ÊT{BÊÊxÊEÊTxBÊÊ£ÊEÊ TT
H H
ÊTTÊÊÇÊEÊT{TÊÊÇÊEÊ
XXS X
&ACTORS &ACTORS
OF
OF
X X
ÊTÈMÊÊxÊEÊTÓMÊÊxÊEÊ
£ÊÊTxXÊÊÎÊEÊT{XÊÊÊEÊ
ÊTÓCÊÊ£ÊEÊTnCÊÊxÊEÊ
M M
XX
AND
AND
AND
AND
ÊTÓXÊÊÇÊEÊTÎXÊÊ{ÊEÊ
FF
ÊTxFÊÊÊEÊTÎFÊÊÓÊEÊ
XXS X
D
&ACTORS
OF
/UTER)NNER
ÊT£ÈHÊÊxÊEÊT{HÊÊÎÊEÊ
XX
ÊTÎXÊÊxäÊEÊTÓXÊÊÎÊEÊ
N N
ÊT{XÊÊxÊEÊTXÊÊÓÊEÊ
ÊTÇXÊÊ{ÊEÊTÎXÊÊ{ÊEÊ X X
ÊT£ÓXÊÊxÊEÊTXÊÊÈÊEÊ SXDSXD
#HECK
SXDSXDXXX
X X3
&ACTORS
&ACTORS
AND AND AND AND AND AND /UTER)NNER
ÊTÈPÊÊÇÊEÊTÎPÊÊÓÊEÊ
Y Y
TXETXE
&ACTOREACHTRINOMIAL
XX
X X
XX
ÊTÎYÊÊ£ÊEÊT{YÊÊ£xÊEÊ
{XÊÊx
ÓXÊÊÊV
iÃ
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
SDSD3
ÊTÎKÊÊ{ÊEÊTÎKÊÊÓÊEÊ
4HEAREAOFATOWELISXXINCHES
7HATISTHEWIDTHIFTHELENGTHISXINCHES
D
&ACTORX XBYFILLINGINTHEBLANKSBELOW
P P
4HEAREAOFAPARALLELOGRAMISXX
4HEBASEISX7HATISTHEHEIGHT
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
AK4up.indd 57
£ÊÊT£ÎWÊÊÊÓxÊEÊTWÊÊ£ÊEÊ
£ÊÊTÓXÊÊÊEÊTÓXÊÊÊxÊEÊ
KK
X X
ÊTnNÊÊ££ÊEÊTÎNÊÊÓÊEÊ
W W
ÊT£xAÊÊnÊEÊTAÊÊ{ÊEÊ XX
DS X
/UTER)NNER
AND AND
#HECK
X X
&ACTORS
OF
AND AND SDSD7
AND AND SDSD7
AND AND SDSD7
7
7
7
3
SXDSXD
A A
AND
AND
AND
AND
DS X
&ACTORX X#HECKYOUR
ANSWER
SXDSXDXXX
X X3
ÌÊ}iLÀ>Ê£
,iÌi>V
&ACTORINGAXBXC
,%33/.
&ACTOREACHTRINOMIAL
xXÊÊn
*À>VÌViÊ
&ACTORINGAXBXC
--"
£ÊÊTÓXÊÊÇÊEÊTXÊÊÈÊEÊ
ÌÊ}iLÀ>Ê£
TXETXE
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
57
TXETXE
TXETXE
(OLT!LGEBRA
Holt Algebra 1
12/28/05 8:01:19 PM
,iÌi>V
&ACTORINGAXBXCCONTINUED
,%33/.
n{
n{
3YNTHETICDIVISIONISAQUICKWAYTODIVIDEAPOLYNOMIALBYABINOMIALINTHEFORMXA
YIELDINGANOTHERFACTOROFTHEPOLYNOMIAL
7HENCISNEGATIVEONEFACTOROFCISPOSITIVEANDONEISNEGATIVE9OUCANSTOPCHECKING
FACTORSWHENYOUFINDTHEFACTORSTHATWORK
XISAFACTOROFX X5SESYNTHETICDIVISIONTOFINDTHEOTHERFACTOR
&ACTORX X#HECKYOURANSWER
XXS X
&ACTORSOF
AND
AND
AND
AND
DS X
&ACTORSOF
AND
AND
AND
AND
>i}i
&INDING&ACTORSBY3YNTHETIC$IVISION
--"
D
X
/UTER)NNER
SD7
SD7
SD7
SD3
3TEP7RITETHECOEFFICIENTSOFTHEPOLYNOMIALIN
STANDARDFORM7RITEAINABOXTOTHELEFT$RAWALINE
BELOWTHECOEFFICIENTS
X X
3TEP7RITETHEFIRSTCOEFFICIENTBELOWTHELINE
3TEP-ULTIPLYTHATCOEFFICIENTBYTHEVALUEOFAANDWRITE
THEPRODUCTUNDERTHENEXTCOEFFICIENT
3TEP!DDTHENUMBERSINTHESECONDCOLUMN
#HECK
SXDSXD
SXDSXDX XX
X X
3TEP2EPEATUNTILALLADDITIONSARECOMPLETED
4HEOTHERFACTORISX
)FDONECORRECTLYTHELASTSUMWILLBEZERO4HENUMBERS
UNDERTHEBARARETHECOEFFICIENTSOFTHEQUOTIENTIN
DECREASINGDEGREE
7HENAISNEGATIVEFACTOROUT4HENFACTORASSHOWNPREVIOUSLY
&ACTORXX#HECKYOURANSWER
!POLYNOMIALANDONEFACTORISGIVEN5SESYNTHETICDIVISIONTOFINDTHEOTHERFACTOR
XX
&ACTORSOF
AND
AND
AND
AND
&ACTORSOF
AND
AND
AND
AND
DS X
D
/UTER)NNER
SD7
SD7
SD7
SD3
{
£Ó
x
£x
ä
Î
ÎÓ
ä
ÊÊÊTÎXÊÊnÊE
XXSXD
ÊÊÊTÈXÊÊ£ÊEÊ
£Ó
n
XXSXD
SXDSXD
SX XXD
SX XD
X X
ÊÊÊT{XÊÊxÊE
#HECK
SXDSXD
XXSXD
X XSXD
SX XDS X
ÊTnXÊÊxÊEÊ
3OMEPOLYNOMIALSHAVETHREEFACTORS
TXEISAFACTOROFXXX&ACTORCOMPLETELY
&ACTOREACHTRINOMIAL
XX
X X
XX
.OWFACTORXXUSINGA
METHODYOUKNOW
XXSXDSXD
4HEFACTORSARESXDSXDSXD
!POLYNOMIALANDONEFACTORISGIVEN&ACTORCOMPLETELY
TXETXE
TXETXE
TXETXE
XXXSXD
TXÊÊ£ÊEÊTXÊÊÎÊEÊTXÊÊxÊEÊ
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
--"
n{
(OLT!LGEBRA
--"
n{
ÌÊ}iLÀ>Ê£
,i>`}Ê-ÌÀ>Ìi}iÃ
5SEA-ODEL
-OSTPEOPLEFACTORTRINOMIALSOFTHEFORMAX BXCUSINGASORTOF
ORGANIZEDGUESSANDCHECKMETHOD,OOKATTHEMODELBELOW
!BALLISKICKEDSTRAIGHTUPINTOTHEAIR
4HEHEIGHTOFTHEBALLINFEETISGIVEN
BYTHEEXPRESSIONT T
WHERETISTIMEINSECONDS&ACTORTHE
EXPRESSION4HENFINDTHEHEIGHTOFTHE
BALLAFTERSECOND
ÊTXÊÊÎÊEÊV
)NSTRUCTORSLEDANEXERCISECLASSFROM
ARAISEDRECTANGULARPLATFORMATTHEFRONT
OFTHEROOM4HEWIDTHOFTHEPLATFORM
WASSXDFEETANDTHEAREAWAS
SX XDFT &INDTHELENGTHOF
THISPLATFORM!FTERTHEEXERCISESTUDIOIS
REMODELEDTHEAREAOFTHEPLATFORMWILL
BESX XDFT "YHOWMANY
FEETWILLTHEWIDTHOFTHEPLATFORMCHANGE
£ÊÊT{TÊÊ{ÊEÊT{TÊÊ£ÊEÊÀ
{ÊÊT{TÊÊ£ÊEÊTTÊÊ£ÊEÊÆÊäÊviiÌ
!CLOTHINGSTOREHASARECTANGULAR
CLEARANCESECTIONWITHALENGTHTHATIS
TWICETHEWIDTHW$URINGASALETHE
SECTIONISEXPANDEDTOANAREAOF
WDFT&INDTHEAMOUNT
SW
OFTHEINCREASEINTHELENGTHANDWIDTHOF
THECLEARANCESECTION
ÊTÎXÊÊÎÊEÊvÌÆÊ
i}Ì
ÊVÀi>Ãi`ÊLÞÊxÊvÌ]
VÀi>ÃiÊvÊÓÊvÌ
Ü`Ì
ÊVÀi>Ãi`ÊLÞÊÇÊvÌÊ
&ACTORTHETRINOMIALXXINTOTWOBINOMIALS
s 2ECALL4HEACRONYM&/),STANDSFOR&IRST/UTER)NNER,AST
s 3IGNS4HISTRINOMIALREQUIRESAhPLUSvANDAhMINUSvBINOMIAL
s 3ETUPS&,DS&,DOS XDS XD
s h&IRSTv4HEFACTORIZATIONSOFAREAND
s h,ASTv4HEFACTORIZATIONSOFAREAND
s h/UTERvANDh)NNERv'UESSANDCHECKTHESEVALUESINTHEBINOMIALS
4HEGOALISTOMULTIPLYTHEh/UTERvTERMSANDTHEh)NNERvTERMSANDGET
ASUMOF
/
)
S XDS XD/UTER )NNER
s
.O
.O
.O
.O
.O
.O
.O
9ES
!NSWERXXFACTORSINTOSXDSXDORJUSTSXDSXD
3ELECTTHEBESTANSWER
#OMPLETETHEFOLLOWINGTOGUIDEYOUINFACTORINGX X
4HEAREAOFASOCCERFIELDIS
SX XDM 4HEWIDTH
OFTHEFIELDISSXDM7HATISTHE
LENGTH
# SXDM
! SXDM
" SXDM
$ SXDM
&ORACERTAINCOLLEGETHENUMBEROF
APPLICATIONSRECEIVEDAFTERXRECRUITING
SEMINARSISMODELEDBYTHEPOLYNOMIAL
X X7HATISTHIS
EXPRESSIONINFACTOREDFORM
! SXDSXD
" SXDSXD
# SXDSXD
$ SXDSXD
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 58
!RECTANGULARPAINTINGHASANAREAOF
SX XDCM )TSLENGTHIS
SXDCM&INDTHEWIDTHOFTHE
PAINTING
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
TXÊÊ{ÊEÊTÓXÊÊ£ÊEÊTXÊÊxÊEÊ
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
*ÀLiÊ-Û}
&ACTORINGAXBXC
7RITETHECORRECTANSWER
X X XSXD
£Ê ÊÎ
£Ê Ê£ÓÆÊÓÊ ÊÈÆÊÎÊ Ê{
ÕÃ]ÊÕÃ
7HATSIGNSARENEEDEDINEACHOFTHETWOBINOMIALS
ÊTÊÊÊÊÊXÊÊÊÊÊÊEÊTÊÊÊÊXÊÊÊÊÊÊEÊ
3ETUPTHEBINOMIALSFORFACTORINGTHISPOLYNOMIAL
!SQUAREPARKINGLOTHASANAREAOF
SXXDFT7HATISTHELENGTH
OFONESIDEOFTHEPARKINGLOT
( SXDFT
& SXDFT
* SXDFT
' SXDFT
7HATARETHEFACTORIZATIONSOF
*INNEEDSTOFENCEINHISRECTANGULAR
BACKYARD4HEFENCEWILLHAVEONE
LONGSECTIONAWAYFROMBUTPARALLEL
TOTHELENGTHOFHISHOUSEANDTWO
SHORTERSIDESCONNECTINGTHATSECTION
TOTHEHOUSE4HELENGTHOF*INSHOUSE
ISSXDYDANDTHEAREAOFHIS
BACKYARDISSX XDYD (OW
MANYYARDSOFFENCINGWILL*INNEED
( SXDYD
& SXDYD
' SXDYD
* SXDYD
'UESSANDCHECKTHEFACTORSTHATWILLRESULTINTHECORRECTMIDDLETERMCOEFFICIENTOF
7HATARETHEFACTORIZATIONSOF
*ÃÃLiÊ>ÃÜiÀ\Ê
ÊTÊÊÊÊÊÊXÊÊÊÊÊÊÊEÊTÊÊÊÊÊÊXÊÊÊÊÊÊÊÊEÊÊÊÊÊÊÊÊ"ÕÌiÀÊÊÊÊÊÊÊÊÊÊiÀ
Î
Î
Î
Î
Î
Î
£
£Ó
{
Î
È
Ó
£
£
£
£
£
£
£Ó
£
Î
{
Ó
È
ÎÊ
ÎÊ
ÎÊ
ÎÊ
ÎÊ
ÎÊ
Ê£Ó
Ê£
ÊÎ
Ê{
ÊÓ
ÊÈ
7HATISTHEFINALANSWERFORFACTORINGXX
ÌÊ}iLÀ>Ê£
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
58
£Ê Ê£ ÎÇ
£ÓÊ Ê£ £x
{Ê Ê£ £Î
ÎÊ Ê£ £x
ÈÊ Ê£ £Ó
ÓÊ Ê£ Óä 9iÃ
ÊTÎXÊÊÓÊEÊTXÊÊÈÊEÊ
ÌÊ}iLÀ>Ê£
Holt Algebra 1
12/28/05 8:02:01 PM
© Copyright 2026 Paperzz