Ch 3 Logs bl 3.notebook April 22, 2013 Properties of Logs Product Rule logb(RS) = logb(R) + logb(S) Quotient Rule logb(R/S) = logb(R) - logb(S) Power Rule logb(Rc) = c logb(R) Apr 1410:11 AM Proof logb(RS) =logb(R) + logb(S) RS = bxby = b(x+y) logb(RS) = x + y = logb(R) + logb(S) Apr 1411:10 AM 1 Ch 3 Logs bl 3.notebook April 22, 2013 Proof logb(R/S) =logb(R) - logb(S) R/S = bx/by = b(x-y) logb(R/S) = x - y = logb(R) - logb(S) Apr 1411:14 AM Proof logb(Rc) =c logb(R) Let y = logbRc = logb(R*R.........*R)}(c times) = c logb(R) Change of base let y = logbR by = R log by =log R y log by = log R y = log R / log by = logbR log3 16 = log 16 / log 3 or log3 16 = ln 16 / ln 3 Apr 1411:16 AM 2 Ch 3 Logs bl 3.notebook April 22, 2013 Properties of Natural Logs -LN Product Rule ln(RS) = ln(R) + ln(S) Quotient Rule ln(R/S) = ln(R) - ln(S) Power Rule ln(Rc) = c ln(R) Apr 1411:35 AM To solve an equation that has a variable in the exponent Isolate the variable term Then take the log of both sides (If the base is e, take ln of both sides) Use the power rule to write x log # Solve for x 5x = 7 log 5x = log 7 x log 5 = log 7 x = log 7 / log 5 Apr 1610:03 AM 3 Ch 3 Logs bl 3.notebook April 22, 2013 Solve the equation 4x = 7 ln 4x = ln 7 (take ln of both sides) xln 4 = ln 7 (use power rule) x = ln 7 / ln 4 (divide by ln 4) Apr 1411:56 AM Example 1 32x+1 = 15 log 32x+1 = log 15 (2x+1) log 3 = log 15 2x +1 = log 15 / log 3 2x = ( ) -1 x = ( ) /2 Example 2 8 + 2ex = 12 2ex = 4 ex = 2 ln ex = ln 2 x = ln 2 Apr 1610:08 AM 4 Ch 3 Logs bl 3.notebook April 22, 2013 Apr 141:49 PM Apr 141:48 PM 5 Ch 3 Logs bl 3.notebook April 22, 2013 Rewriting a log of a product log (8xy4) = log8 + log x + log y4 log 23 + log x + log y4 3 log 2 + log x + 4 log y Condensing a Logarithmic Function 5 ln x - 2 ln (xy) = ln x5-ln (x2y2) = ln ((x5)/(x2y2)) = ln (x3/y2) Apr 1411:46 AM Do p 299 1-14 15-18 Apr 1412:06 PM 6 Ch 3 Logs bl 3.notebook April 22, 2013 Apr 141:55 PM Apr 142:08 PM 7 Ch 3 Logs bl 3.notebook April 22, 2013 Homework p 300 # 23,26,29,31,34,35, 39,40,43,44 Apr 142:15 PM How to graph a log function Remember that since a0 = 1 so the log 1 = 0 ax has a horizontal asymptote of y=0 so the graph of a log must have a vertical asymptote at x = 0 The rules of shifts and stretches still exist. Apr 142:18 PM 8 Ch 3 Logs bl 3.notebook April 22, 2013 Apr 142:09 PM Apr 142:11 PM 9 Ch 3 Logs bl 3.notebook April 22, 2013 Apr 142:12 PM Homework / classwork FMC p 134 #6,8,11,12,18,20,30 p 138 # 5-8, 13-20 Homework p 313 # 1-15 odd Apr 142:26 PM 10 Ch 3 Logs bl 3.notebook April 22, 2013 Evaluate without a calc 6. a) log(log 10) b) √log 100 -log√100 c. log(√10∛105√10) d. 1000 log 3 e. .01log 2 f. 1/ (log(1/log(10√10)) Apr 142:31 PM #8 x= log A, y = log B Write an expression in terms of x and y a. log(AB) b. log(A3*√B) c log (A - B) d. log(A) / Log (B) e. Log (A/B) f. AB Apr 142:39 PM 11 Ch 3 Logs bl 3.notebook April 22, 2013 Let p = log m and q= log n Write the following expressin in terms of p and q w/o logs a. m b. n3 c. log mn3 d. log √m Apr 142:45 PM 12. 5(1.031)x = 8 18. log (1-x) - log (1+x) =2 20. bx = c 30. 58e(4t+1)= 30 Apr 142:53 PM 12 Ch 3 Logs bl 3.notebook graph y = 2 3x + 1 y = -e-x April 22, 2013 y = log(x-4) y = ln(x + 1) Apr 142:57 PM Find the domain 13. ln(x2) 14. (ln x)2 15. ln(ln x) 16. ln(x-3) Apr 142:59 PM 13 Ch 3 Logs bl 3.notebook April 22, 2013 Continuous Compounding Finance A = Pert A = P (1 + r/n)nt A= Annual Yield r = interest rate n = number of times it is compounded per year t = number of years Apr 1910:33 AM Apr 2211:34 AM 14 Ch 3 Logs bl 3.notebook April 22, 2013 Apr 2211:34 AM Apr 2211:53 AM 15 Ch 3 Logs bl 3.notebook April 22, 2013 Apr 221:24 PM 16
© Copyright 2026 Paperzz