Core 3 Revision Notes

Pure Core 3
Revision Notes
June 2016
Pure Core 3
1
Algebraic fractions .................................................................................................3
Cancelling common factors .................................................................................................................. 3
Multiplying and dividing fractions ....................................................................................................... 3
Adding and subtracting fractions .......................................................................................................... 3
Equations .............................................................................................................................................. 4
2
Functions ...............................................................................................................5
Notation ................................................................................................................................................ 5
Domain, range and graph ...................................................................................................................... 5
Defining functions ........................................................................................................................................................................... 6
Composite functions ............................................................................................................................. 7
Inverse functions and their graphs ........................................................................................................ 7
To find the inverse of a function x β†’ y................................................................................................................................. 7
Domain and range of inverse functions ................................................................................................ 9
Modulus functions .............................................................................................................................. 10
Modulus functions y = |f (x)|.................................................................................................................................................10
Modulus functions y = f (|x|) ..................................................................................................................................................11
Standard graphs................................................................................................................................... 11
Combinations of transformations of graphs ........................................................................................ 12
Sketching curves ................................................................................................................................. 13
3
Trigonometry ........................................................................................................ 14
Sec, cosec and cot ............................................................................................................................... 14
Graphs ................................................................................................................................................................................................14
Inverse trigonometrical functions ....................................................................................................... 15
Graphs ................................................................................................................................................................................................15
Trigonometrical identities ................................................................................................................... 16
𝑃+𝑄
π‘ƒβˆ’π‘„
Proof of sin P + sin Q = 2 sin οΏ½ οΏ½ cos οΏ½ οΏ½ .................................................................................................................16
2
2
Finding exact values.....................................................................................................................................................................17
Proving identities. .........................................................................................................................................................................17
Eliminating a variable between two equations ...............................................................................................................18
Solving equations ..........................................................................................................................................................................18
R cos(x + Ξ±) ........................................................................................................................................ 19
4
Exponentials and logarithms ................................................................................ 21
Natural logarithms .............................................................................................................................. 21
Definition and graph ....................................................................................................................................................................21
Equations of the form eax + b = p ............................................................................................................................................22
5
Differentiation ...................................................................................................... 23
Chain rule ............................................................................................................................................ 23
Product rule ......................................................................................................................................... 23
Quotient rule ........................................................................................................................................ 24
Derivatives of ex and logex ≑ ln x. ..................................................................................................... 25
π’…π’š
𝒅𝒙
=
𝟏
𝒅𝒙
𝐝𝐲
............................................................................................................................................. 26
Derivative of ax................................................................................................................................... 26
Trigonometric differentiation .............................................................................................................. 27
Chain rule – further examples ............................................................................................................. 27
Trigonometry and the product and quotient rules ............................................................................... 28
6
Numerical methods .............................................................................................. 30
Locating the roots of f(x) = 0 .............................................................................................................. 30
The iteration xn + 1 = g(xn) ................................................................................................................... 30
Conditions for convergence................................................................................................................. 31
7
Appendix.............................................................................................................. 32
Derivatives of sin x and cos x .............................................................................................................. 32
limβ„Žβ†’0
sinβ„Ž
β„Ž
= 1 ...............................................................................................................................................................................32
Alternative formula for derivative ........................................................................................................................................32
Derivatives of sin x and cos x ...................................................................................................................................................33
Index ........................................................................................................................... 34
2
C3 JUNE 2016 SDB
1
Algebraic fractions
Cancelling common factors
Example: Simplify
Solution:
x 3 βˆ’ 2 x 2 βˆ’ 3x
.
4 x 2 βˆ’ 36
First factorise top and bottom fully –
x( x 2 βˆ’ 2 x βˆ’ 3) x( x βˆ’ 3)( x + 1)
x 3 βˆ’ 2 x 2 βˆ’ 3x
=
=
4( x βˆ’ 3)( x + 3)
4( x 2 βˆ’ 9)
4 x 2 βˆ’ 36
and now cancel all common factors, in this case (x – 3) to give
x( x + 1)
.
4( x + 3)
Answer =
Multiplying and dividing fractions
This is just like multiplying and dividing fractions with numbers and then cancelling common
factors as above.
Example:
9 x 2 βˆ’ 4 3x 2 βˆ’ x βˆ’ 2
Simplify
÷
3x 2 βˆ’ 2 x
x3 + x2
Solution:
First turn the second fraction upside down and multiply
=
x3 + x2
9x 2 βˆ’ 4
×
3x 2 βˆ’ 2 x 3x 2 βˆ’ x βˆ’ 2
=
x ( x + 1)
(3 x βˆ’ 2)(3 x + 2)
×
(3x + 2)( x βˆ’ 1)
x(3 x βˆ’ 2)
factorise fully
2
Answer
=
cancel all common factors
x( x + 1)
.
x βˆ’1
Adding and subtracting fractions
Again this is like adding and subtracting fractions with numbers; but finding the Lowest
Common Denominator can save a lot of trouble later.
Example: Simplify
Solution:
3x
5
.
βˆ’ 2
x βˆ’ 7 x + 12 x βˆ’ 4 x + 3
2
First factorise the denominators
=
3x
5
βˆ’
( x βˆ’ 3)( x βˆ’ 4) ( x βˆ’ 3)( x βˆ’ 1)
=
3x( x βˆ’ 1)
5( x βˆ’ 4)
βˆ’
( x βˆ’ 3)( x βˆ’ 4)( x βˆ’ 1) ( x βˆ’ 3)( x βˆ’ 1)( x βˆ’ 4)
=
3x 2 βˆ’ 3x βˆ’ 5 x + 20
3x 2 βˆ’ 8 x + 20
=
( x βˆ’ 1)( x βˆ’ 3)( x βˆ’ 4) ( x βˆ’ 1)( x βˆ’ 3)( x βˆ’ 4)
C3 JUNE 2016 SDB
we see that the L.C.D. is (x – 3)(x – 4)(x – 1)
which cannot be simplified further.
3
Equations
Example: Solve
Solution:
x
x βˆ’1 1
βˆ’
=
x +1
x
2
First multiply both sides by the Lowest Common Denominator
x βˆ’1 1
x
=
βˆ’
2
x
x +1
4
β‡’
x × 2x – (x – 1) × 2(x + 1) = x(x + 1)
β‡’
2x2 – 2x2 + 2 = x2 + x
β‡’
x2 + x – 2 = 0,
β‡’
(x + 2)(x – 1) = 0
β‡’
x = –2 or 1
multiply both sides by 2x(x + 1)
C3 JUNE 2016 SDB
2
Functions
A function is an expression (often in x) which has only one value for each value of x.
Notation
y = x2 – 3x + 7,
f (x) = x2 – 3x + 7
and
f : x β†’ x2 – 3x + 7
are all ways of writing the same function.
Domain, range and graph
The domain is the set of values which x can take:
this is sometimes specified in the definition
sometimes is evident from the function: e.g. for √x, x can only take positive x or zero values.
The range is that part of the y–axis which is used.
Example: Find the range of the function
f : x β†’ 2x – 3 with domain
x ∈ β„œ: –2 < x ≀ 4.
6
Solution:
First sketch the graph for values of x between – 2
4
range
and 4 (the domain), and we can see that we are only using
2
y
y=2xβˆ’3
the y–axis from –7 to 5,
βˆ’4
not including y = –7 (since x β‰  –2),
βˆ’2
but including y = 5 (since x can equal 4)
βˆ’4
and so the range is
x
domain
2
4
βˆ’2
6
βˆ’6
y ∈ β„œ: –7 < y ≀ 5.
βˆ’8
Example: Find the largest possible domain and the range for the function
f : x β†’ x βˆ’ 3 + 1.
Solution:
First notice that we cannot have the square root of a negative number and so
x – 3 cannot be negative
β‡’
x–3β‰₯0
β‡’ largest possible domain is x ∈ β„œ: x β‰₯ 3.
y
To find the range we first sketch the graph
6
and we see that the graph will cover all of the
y=√(xβˆ’3)+1
4
range
y-axis from 1 upwards
2
domain
and so the range is
C3 JUNE 2016 SDB
y ∈ β„œ: y β‰₯ 1.
βˆ’2
2
4
6
8
10
12
x
14
16
5
Example: Find the largest possible domain and the range for the function
f:x→
Solution:
2x
. Give the equations of its asymptotes.
x +1
The only problem occurs when the denominator is 0, and so x cannot be –1.
Thus the largest domain is x ∈ β„œ: x β‰  –1.
To find the range we sketch the graph
8
and we see that y can take any value
y=2x/(x+1)
except 2,
6
4
range
asymptote y=2
2
so the range is y ∈ β„œ: y β‰  2.
domain
0
Asymptotes are x = –1 and y = 2
y
βˆ’8
βˆ’6
βˆ’4
domain
2
βˆ’2
4
6
x
8
βˆ’2
asymptote x=βˆ’1
βˆ’4
range
βˆ’6
Defining functions
Some mappings can be made into functions by restricting the domain.
Examples:
1) The mapping x β†’ √x where x ∈ β„œ is not a function as βˆšβ€“9 is not defined, but if we
restrict the domain to positive or zero real numbers then f : x β†’ √ x where x ∈ β„œ, x β‰₯ 0
is a function.
1
where x ∈ β„œ is not a function as the image of x = 3 is not defined,
x βˆ’3
1
but f : x β†’
where x ∈ β„œ, x β‰  3 is a function.
x βˆ’3
2) x β†’
6
C3 JUNE 2016 SDB
Composite functions
To find the composite function fg we must do g first.
Example: f : x β†’ 3x – 2
Solution:
and
g : x β†’ x2 + 1. Find fg and gf.
Think of f and g as β€˜rules’
f is
multiply by 3
g is
square
β‡’ fg is
subtract 2
add 1
square
add 1
multiply by 3
subtract 2
giving (x2 + 1) × 3 – 2 = 3x2 + 1
β‡’ fg : x β†’ 3x2 + 1
gf is
or
multiply by 3
fg(x) = 3x2 + 1.
subtract 2
square
add 1
giving (3x – 2)2 + 1 = 9x2 – 12x + 5
β‡’ gf : x β†’ 9x2 – 12x + 5
or gf (x) = 9x2 – 12x + 5.
Note that fg and gf are not the same.
Inverse functions and their graphs
The inverse of f is the β€˜opposite’ of f:
thus the inverse of β€˜multiply by 3’ is β€˜divide by 3’
and the inverse of β€˜square’ is β€˜square root’.
The inverse of f is written as f –1: note that this does not mean β€˜1 over f ’.
The graph of y = f –1(x) is the reflection in y = x of the graph of y = f (x).
To find the inverse of a function x β†’ y
(i) interchange x and y
(ii) find y in terms of x.
C3 JUNE 2016 SDB
7
Example: Find the inverse of f : x β†’ 3x – 2.
Solution:
We have x β†’ y = 3x – 2
4
(i)
interchanging x and y β‡’ x = 3y – 2
(ii)
solving for y β‡’
β‡’
f
–1
y=
y=x
x+2
3
x+2
:x→
3
y
2
y = f –1(x)
βˆ’4
x
βˆ’2
2
βˆ’2
4
y = f (x)
βˆ’4
Example: Find the inverse of g : x β†’
Solution:
(i)
(ii)
y
x+3
We have x β†’ y =
2x βˆ’ 5
interchanging x and y
y+3
β‡’ x =
2y βˆ’ 5
6
y=x
4
y = g –1(x)
2
solving for y
y = g (x) x
β‡’ x(2y – 5) = y + 3
β‡’
2xy – 5x = y + 3
β‡’
2xy – y = 5x + 3
β‡’
y(2x – 1) = 5x + 3
β‡’
y =
β‡’
g –1 : x β†’
Note that f f –1 (x) = f
8
x+3
.
2x βˆ’ 5
–1
βˆ’4
βˆ’2
2
4
βˆ’2
βˆ’4
5x + 3
2x βˆ’ 1
5x + 3
2x βˆ’ 1
f (x) = x.
C3 JUNE 2016 SDB
6
Domain and range of inverse functions
Note that the domain of f (x) is the range of f
and that the range of f (x) is the domain of f
This is because the graph of y = f
Example: f (x) = (x – 3)2 + 4,
–1
–1
(x),
–1
(x).
(x) is that of y = f (x) after a reflection in the line y = x.
x ∈ β„œ, x ≀ 3.
(a)
Sketch the graph of y = f (x), and state its range.
(b)
Find the inverse function, f –1(x) and sketch its graph on the same diagram.
Show the line y = x on your diagram.
(c)
State the domain and range of f –1(x).
Solution:
(a)
As the domain of f is x ≀ 3, we only
have the β€˜left’ part of the parabola.
y
8
The range is f (x) β‰₯ 4, f (x) ∈ β„œ.
y = f (x)
6
(b)
To find the inverse, swap x and y, then
find y.
y=x
4
x = (y – 3)2 + 4
β‡’
y – 3 = ±βˆšπ‘₯ βˆ’ 4 .
From the reflection of y = f (x) in y = x,
we can see that we want the negative
sign
β‡’
(c)
x
βˆ’2
2
4
6
8
βˆ’2
y = 3 – √π‘₯ βˆ’ 4.
The domain of f –1(x) is x β‰₯ 4
(the range of f (x)).
The range of f –1(x) is f –1(x) ≀ 3
C3 JUNE 2016 SDB
y = f –1(x)
2
(the domain of f (x)).
9
Modulus functions
Modulus functions y = |f (x)|
|f (x)| is the β€˜positive value of f (x)’,
so to sketch the graph of y = |f (x)| first sketch the graph of y = f (x) and then reflect the
part(s) below the x–axis to above the x–axis.
Example: Sketch the graph of y = |x2 – 3x|.
Solution:
First sketch the graph of y = x2 – 3x
Then reflect the portion below
the x-axis in the x–axis to give
3 y
3 y
y=x²βˆ’3x
y=|x²βˆ’3x|
2
2
1
1
x
βˆ’1
10
1
2
3
4
x
βˆ’1
1
βˆ’1
βˆ’1
βˆ’2
βˆ’2
2
3
4
C3 JUNE 2016 SDB
Modulus functions y = f (|x|)
In this case f (–3) = f (3), f (–5) = f (5), f (–8.7) = f (8.7) etc. and so the graph on the
left of the y–axis must be the reflection of the graph on the right of the y–axis,
so to sketch the graph, first sketch the graph for positive values of x only, then reflect
the graph sketched in the y–axis.
3 y
y=x²βˆ’3x
2
Example: Sketch the graph of y = |x|2 – 3|x|.
1
x
Solution:
β‡’
βˆ’4
2
f (x) = x – 3x
βˆ’3
βˆ’2
βˆ’1
1
2
3
4
βˆ’1
f (x) = x2 – 3x
βˆ’2
First sketch the graph of y = x2 – 3x for positive
values of x only.
3 y
y=|x|²βˆ’3|x|
2
Then reflect your graph in the y–axis to
1
x
complete the sketch.
βˆ’4
βˆ’3
βˆ’2
βˆ’1
1
2
3
4
βˆ’1
βˆ’2
Standard graphs
y
3 y
4
y=x
y=x³
y=x⁴
2
y=x²
3
1
2
x
βˆ’3
βˆ’2
βˆ’1
1
2
1
βˆ’1
x
βˆ’2
βˆ’1
1
2
βˆ’2
βˆ’1
y
2
y
3
y=1/x
1
2
x
βˆ’3
βˆ’2
βˆ’1
1
βˆ’1
βˆ’2
C3 JUNE 2016 SDB
2
y=√x
1
3
x
βˆ’1
1
2
3
4
5
6
7
βˆ’1
11
Combinations of transformations of graphs
We know the following transformations of graphs:
y = f (x)
 a
translated through  ο£· becomes y = f (x – a) + b
ο£­ bο£Έ
stretched factor a in the y-direction becomes y = a × f (x)
 x
stretched factor a in the x-direction becomes y = f  
ο£­ aο£Έ
reflected in the x-axis becomes y = – f (x)
reflected in the y-axis becomes y = f (–x)
We can combine these transformations:
Examples:
1)
y = 2f (x – 3) is the image of y = f (x) under a stretch in the y-axis of factor 2
 3
followed by a translation   , or the translation followed by the stretch.
ο£­0ο£Έ
2)
y = 3x2 + 6 is the image of y = x2 under a stretch in the y-axis of factor 3
 0
followed by a translation   ,
ο£­ 6ο£Έ
BUT these transformations cannot be done in the reverse order.
To do a translation before a stretch we have to notice that
0
3x2 + 6 = 3(x2 + 2) which is the image of y = x2 under a translation of  
ο£­ 2ο£Έ
followed by a stretch in the y-axis of factor 3.
3)
12
y = – sin(x + Ο€) is the image of y = sin x under a reflection in the x-axis
ο£«βˆ’Ο€ ο£Ά
ο£·ο£· , or the translation followed by the reflection.
followed by a translation of 
ο£­ 0 ο£Έ
C3 JUNE 2016 SDB
Sketching curves
When sketching curves, show the coordinates of the intercepts with the axes, and the
equations of any asymptotes βˆ’ show the asymptotes with dotted lines.
Example:
Solution:
2
Sketch the curve 𝑦 = 4 βˆ’ π‘₯, x > 0
5 y
4
asymptote y=4
3
y=4βˆ’2/x
2
asymptote
1
x=0
βˆ’2
βˆ’1
x
1
2
3
4
5
βˆ’1
βˆ’2
βˆ’3
Note that the domain is x > 0, so no graph to the left of the y-axis.
x β‰  0 β‡’ curve does not meet the x-axis
y=0 β‡’
x=1
Thinking of y =
βˆ’2
π‘₯
translated up 4,
the horizontal asymptote is y = 4.
Do not forget that the y-axis, x = 0, is also an asymptote.
C3 JUNE 2016 SDB
13
3
Trigonometry
Sec, cosec and cot
Secant is written
sec x =
cotangent is written cot x =
1
;
cos x
cosecant is written
cosec x =
1
sin x
1
cos x
=
tan x sin x
Graphs
y
y
2
y=cosecx
y=secx
2
y=cosx
βˆ’Ο€
y=sinx
x
2Ο€
Ο€
βˆ’Ο€
βˆ’2
Ο€
x
2Ο€
βˆ’2
y
y=tanx
y=cotx
2
Notice that your calculator does not have sec,
cosec and cot buttons so to solve equations
involving sec, cosec and cot, change them
into equations involving sin, cos and tan and
then use your calculator as usual.
x
βˆ’Ο€
Ο€
βˆ’2
Example: Find cosec 35o.
Solution:
cosec 35o =
1
1
=
= 1 β‹… 743 to 4 S.F.
o
sin 35
0 β‹… 53576...
for 0 ≀ x ≀ 2Ο€
Example: Solve sec x = 3β‹…2
Solution:
β‡’
14
sec x = 3β‹…2
β‡’
1
1
= 3 β‹… 2 β‡’ β‡’ cos x =
= 0 β‹… 3125
cos x
3β‹… 2
x = 1β‹…25 or 2Ο€ – 1β‹…25 = 5β‹…03 radians to 3 S.F.
C3 JUNE 2016 SDB
2Ο€
Inverse trigonometrical functions
The inverse of sin x is written as arcsin x or sin–1 x and in order that there should only be
one value of the function for one value of x we restrict the domain to –π/2 ≀ x ≀ Ο€/2 .
Note that the graph of y = arcsin x is the reflection of part of the graph of y = sin x in the
line y = x.
Similarly for the inverses of cos x and tan x, as shown below.
Graphs
y = arcsin x
y
Ο€/2
y = arccos x
y
y=x
y=arcsinx
Ο€
y=arccosx
y=x
y=sinx
x
βˆ’3
βˆ’2
βˆ’1
1
2
3
Ο€/2
4
y=cosx
x
βˆ’Ο€/2
βˆ’3
βˆ’2
βˆ’1
1
2
3
4
y = arctan x
y
y=tanx
y=x
y=arctanx
Ο€/2
x
βˆ’6
βˆ’5
βˆ’4
βˆ’3
βˆ’2
βˆ’1
1
2
3
4
5
6
βˆ’Ο€/2
C3 JUNE 2016 SDB
15
Trigonometrical identities
You should learn these
sin2 ΞΈ + cos2 ΞΈ = 1
tan( A - B) =
tan2ΞΈ + 1 = sec2ΞΈ
1 + cot2ΞΈ = cosec2ΞΈ
tan 2 A =
sin (A + B) = sin A cos B + cos A sin B
tan A - tan B
1 + tan A tan B
2 tan A
1 - tan 2 A
3 tan A βˆ’ tan 3 A
tan 3A =
1 βˆ’ 3 tan 2 A
sin (A – B) = sin A cos B – cos A sin B
sin 2A = 2 sin A cos A
cos (A + B) = cos A cos B – sin A sin B
sin P + sin Q = 2 sin
P+Q
P -Q
cos
2
2
sin P – sin Q = 2 cos
P+Q
P -Q
sin
2
2
cos P + cos Q = 2 cos
P+Q
P -Q
cos
2
2
cos (A – B) = cos A cos B + sin A sin B
cos 2A = cos2 A – sin2 A
= 2 cos2 A – 1
= 1 – 2 sin2 A
sin2 A = ½ (1 – cos 2A)
cos2 A = ½ (1 + cos 2A)
cos P – cos Q =
sin2 ½ ΞΈ = ½ (1 – cos ΞΈ)
cos2 ½ ΞΈ
- 2 sin
P+Q
P -Q
sin
2
2
2 sin A cos B = sin(A + B) + sin(A – B)
= ½ (1 + cos ΞΈ)
sin 3A = 3 sin A – 4 sin3 A
2 cos A sin B = sin(A + B) – sin(A – B)
cos 3A = 4 cos3A – 3 cos A
2 cos A cos B = cos(A + B) + cos(A – B)
tan A + tan B
tan( A + B) =
1 - tan A tan B
–2 sin A sin B = cos(A + B) – cos(A – B)
The last four formulae, 2 sin A cos B = sin(A + B) + sin(A – B) etc., are not in the formula
booklet, and should be learnt.
You should know the proofs of the four formulae sin P + sin Q = 2 sin
Proof of sin P + sin Q = 2 sin
𝑷+𝑸
𝟐
cos
π‘·βˆ’π‘Έ
2
cos
π‘ƒβˆ’π‘„
2
, etc.
𝟐
We know that
sin(A + B) = sin A cos B + cos A sin B
and
sin(A βˆ’ B) = sin A cos B βˆ’ cos A sin B
β‡’
𝑃+𝑄
sin(A + B) βˆ’ sin(A βˆ’ B) = 2 sin A cos B
Now put P = A + B, and Q = A βˆ’ B
β‡’
β‡’
P + Q = 2A, and P βˆ’ Q = 2B,
sin P + sin Q = 2 sin
𝑃+𝑄
2
cos
π‘ƒβˆ’π‘„
2
β‡’
A=
.
𝑃+𝑄
2
, and B =
π‘ƒβˆ’π‘„
2
The other formulae can be proved in a similar way.
16
C3 JUNE 2016 SDB
Finding exact values
When finding exact values you may not use calculators.
Example: Find the exact value of cos 15o
Solution:
We know the exact values of sin 45o, cos 45o and sin 30o, cos 30o
so we consider
=
1
2
×
cos 15 = cos (45 – 30)
3
2
+
1
2
× 12 =
3 + 1
2 2
= cos 45 cos30 + sin 45 sin 30
6 +
4
=
2
.
Example: Given that A is obtuse and that B is acute, and sin A = 3/5 and cos B = 5/13 find
the exact value of sin (A + B).
Solution:
We know that sin (A + B) = sin A cos B + cos A sin B so we must first find
cos A and sin B.
Using
sin2 ΞΈ + cos2 ΞΈ = 1
β‡’
cos2 A = 1 – 9/25 =
16
β‡’
cos A = ± /5 and
sin B = ± /13
4
/25
and
sin2 B = 1 – 25/169 =
144
/169
12
But A is obtuse so cos A is negative, and B is acute so sin B is positive
β‡’
cos A = – 4/5 and
β‡’
sin (A + B) = 3/5 × 5/13 + – 4/5 × 12/13 =
sin B =
12
/13
–33
/65
Proving identities.
Start with one side, usually the L.H.S., and fiddle with it until it equals the other side.
Do not fiddle with both sides at the same time.
Example: Prove that
Solution:
cos 2 A + 1
= cot 2 A .
1 - cos 2 A
2 cos 2 A
2 cos 2 A - 1 + 1
cos 2 A + 1
= cot 2 A . Q.E.D.
=
=
L.H.S. =
2
2
1 - cos 2 A
2 sin A
1 - (1 - 2sin A)
C3 JUNE 2016 SDB
17
Eliminating a variable between two equations
Example: Eliminate ΞΈ from the parametric equations x = sec ΞΈ – 1, y = tan ΞΈ.
Solution:
β‡’
We remember that tan2ΞΈ + 1 = sec2ΞΈ
sec2ΞΈ – tan2ΞΈ = 1.
secΞΈ = x + 1
and tanΞΈ = y
β‡’
(x + 1)2 – y2 = 1
β‡’
y2 = (x + 1)2 – 1 = x2 + 2x.
Solving equations
Here you have to select the β€˜best’ identity to help you solve the equation.
Example:
Solve the equation sec2A = 3 – tan A, for 0 ≀ A ≀ 360o.
Solution:
We know that
tan2A + 1 = sec2A
β‡’
tan2A + 1 = 3 – tan A
β‡’
tan2A + tan A – 2 = 0,
β‡’
(tan A – 1)(tan A + 2) = 0
β‡’
tan A = 1
β‡’
A = 45, 225, or 116β‹…6, 296β‹…6.
or tan A = –2
Example: Solve sin 3x βˆ’ sin 5x = 0
Solution:
18
factorising gives
for 0o ≀ x ≀ 90o.
Using the formula sin P βˆ’ sin Q = 2 cos
𝑃+𝑄
β‡’
2 cos 4x sin(βˆ’x) = 0
β‡’
β‡’
cos 4x = 0,
or sin x = 0
β‡’
4x = 90, 270, (450), … or x = 0, (180), …
β‡’
x = 0o, 22β‹…5o or 67β‹…5o.
2
cos 4x sin x = 0
sin
π‘ƒβˆ’π‘„
2
C3 JUNE 2016 SDB
R cos(x + Ξ±)
An alternative way of writing a cos x ± b sin x
using one of the formulae listed below
(1)
R cos (x + Ξ±) = R cos x cos Ξ± – R sin x sin Ξ±
(2)
R cos (x – Ξ±) = R cos x cos Ξ± + R sin x sin Ξ±
(3)
R sin (x + Ξ±) = R sin x cos Ξ± + R cos x sin Ξ±
(4)
R sin (x – Ξ±) = R sin x cos Ξ± – R cos x sin Ξ±
To keep R positive and Ξ± acute, we select the formula with corresponding + and – signs.
The technique is the same which ever formula we choose.
Example: Solve the equation
Solution:
12 sin x – 5 cos x = 6 for 0o ≀ x ≀ 3600.
First re–write in the above form:
notice that the sin x is positive and the cos x is negative so we need formula (4).
R sin (x – Ξ±) = R sin x cos Ξ± – R cos x sin Ξ± = 12 sin x – 5 cos x
Equating coefficients of sin x, β‡’ R cos Ξ± = 12
I
Equating coefficients of cos x, β‡’ R sin Ξ± = 5
II
β‡’ R2 cos2 Ξ± + R2 sin2 Ξ± = 122 + 52
Squaring and adding I and II
β‡’
R2 (cos2 Ξ± + sin2 Ξ±) = 144 + 25
β‡’
R2 = 169
but cos2 Ξ± + sin2 Ξ± = 1
β‡’ R = ±13
But choosing the correct formula means that R is positive β‡’ R = +13
Substitute in I
β‡’
β‡’
cos Ξ± =
12
/13
Ξ± = 22β‹…620…o or 337β‹…379…o or ……
and choosing the correct formula means that Ξ± is acute
β‡’
β‡’
To solve
Ξ± = 22β‹…620…o.
12 sin x – 5 cos x = 13 sin(x – 22β‹…620…)
12 sin x – 5 cos x = 6
β‡’
12 sin x – 5 cos x = 13 sin(x – 22β‹…620…) = 6
β‡’
sin(x – 22β‹…620…) = 6/13
β‡’
x – 22β‹…620… = 27β‹…486… or 180 – 27β‹…486… = 152β‹…514…
β‡’
x = 50β‹…1o or 175β‹…1o .
C3 JUNE 2016 SDB
19
Example: Find the maximum value of 12 sin x – 5 cos x and the smallest positive value
of x for which it occurs.
Solution:
From the above example 12 sin x – 5 cos x = 13 sin(x – 22.6).
The maximum value of sin(anything) is 1 and occurs when the angle is 90, 450, 810
etc. i.e. 90 + 360n
β‡’
the max value of 13 sin(x – 22β‹…6) is 13
when x – 22β‹…6 = 90 + 360n β‡’ x = 112β‹…6 + 360no,
β‡’
20
smallest positive value of x is 112β‹…6o.
C3 JUNE 2016 SDB
4
Exponentials and logarithms
Natural logarithms
Definition and graph
y = ex
e β‰ˆ 2β‹…7183 and logs to base e
y=x
2
are called natural logarithms.
log e x is usually written ln x.
y = ln x
βˆ’2
2
x
Note that y = e and y = ln x
are inverse functions and that
the graph of one is the reflection
βˆ’2
of the other in the line y = x.
Graph of y = e(ax + b) + c.
y
y = e2x
y = ex
3
The graph of y = e2x is the graph of
y = ex stretched by a factor of 1/2 in
2
the direction of the x-axis.
y = e2x is above y = ex for x > 0,
1
and below for x < 0.
βˆ’2
The graph of y = e(2x + 3) is the graph of
y = e2x
 βˆ’ 32 ο£Ά
y = e translated through   since
ο£­ 0 ο£Έ
2x
2x + 3 = 2(x –
βˆ’3
2
y = e(2x+3)+4
)
4
and the graph of y = e(2x +3) + 4 is that of
0
y = e(2x + 3) translated through  
ο£­ 4ο£Έ
y = e(2x+3)
βˆ’4
C3 JUNE 2016 SDB
6
βˆ’2
2
2
21
Equations of the form eax + b = p
Example: Solve e2x + 3 = 5.
Solution:
Take the natural logarithm of each side,
β‡’
ln (e2x + 3) = ln 5
β‡’
x =
β‡’
remember that ln x is the inverse of ex
2x + 3 = ln 5
ln 5 βˆ’ 3
= –0β‹…695 to 3 S.F.
2
Example: Solve ln (3x – 5) = 4.
Solution:
(i) From the definition of logs
loga x = y ⇔ x = ay
ln (3x – 5) = 4
β‡’
3x βˆ’ 5 = e4
β‡’
x =
e4 + 5
= 19β‹…9 to 3 S.F.
3
OR
(ii) Raise both sides to the power of e, .
22
β‡’
eln (3x – 5) = e4 β‡’
β‡’
x =
(3x – 5) = e4
remember that ex is the inverse of ln x
e4 + 5
= 19β‹…9 to 3 S.F.
3
C3 JUNE 2016 SDB
5
Differentiation
Chain rule
If y is a composite function like y = (5x2 – 7)9
think of y as y = u9, where u = 5x2 – 7
then the chain rule gives
dy du
dy
=
×
du dx
dx
dy
du
= 9u 8 ×
dx
dx
dy
= 9(5 x 2 βˆ’ 7) 8 × (10 x) = 90 x(5 x 2 βˆ’ 7) 8 .
dx
β‡’
β‡’
The rule is very simple, just differentiate the function of u and multiply by
dy
.
dx
Example:
y = √(x3 – 2x). Find
Solution:
y = √(x3 – 2x) = ( x 3 βˆ’ 2 x) 2 .
1
β‡’
β‡’
β‡’
β‡’
du
.
dx
Put u = x3 – 2x
1
y= u 2
dy
dy du
=
×
dx
du dx
βˆ’1
dy
du
= 12 u 2 ×
=
dx
dx
dy
3x 2 βˆ’ 2
=
.
1
3
dx
2
2( x βˆ’ 2 x )
1
2
( x 3 βˆ’ 2 x)
βˆ’1
2
× (3 x 2 βˆ’ 2)
Product rule
If y is the product of two functions, u and v, then
dy
dv
du
= u
+ v
y = uv β‡’
.
dx
dx
dx
Example: Differentiate y = x2 × βˆš(x – 5).
Solution:
y = x2 × βˆš(x – 5) = x2 × ( x βˆ’ 5)
so put u = x2 and v = ( x βˆ’ 5)
dy
dv
du
= u
+ v
β‡’
dx
dx
dx
= x2 ×
=
1
2
2
( x βˆ’ 5)
x
2 xβˆ’5
C3 JUNE 2016 SDB
βˆ’1
2
1
1
2
2
1
+ ( x βˆ’ 5) 2 × 2x
+ 2x x βˆ’ 5 .
23
Quotient rule
If y is the quotient of two functions, u and v, then
u
y =
v
dy
=
dx
β‡’
Example: Differentiate y =
v
du
dv
βˆ’ u
dx
dx .
2
v
2x βˆ’ 3
x 2 + 5x
2x βˆ’ 3
,
so put u = 2x – 3 and v = x2 + 5x
2
x + 5x
du
dv
v
βˆ’ u
dy
dx
dx
=
2
dx
v
Solution:
y =
β‡’
( x 2 + 5 x) × 2 βˆ’ (2 x βˆ’ 3) × (2 x + 5)
=
( x 2 + 5 x) 2
=
2 x 2 + 10 x βˆ’ (4 x 2 + 4 x βˆ’ 15)
βˆ’ 2 x 2 + 6 x + 15
=
.
( x 2 + 5 x) 2
( x 2 + 5 x) 2
Example: If y =
3π‘₯βˆ’2
√π‘₯βˆ’1
its simplest form.
π‘†π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›:
β‡’
β‡’
β‡’
β‡’
β‡’
24
𝑦=
, find
3π‘₯ βˆ’ 2
1
(π‘₯ βˆ’ 1)2
1
𝑑𝑦
𝑑π‘₯
, expressing your answer as a single algebraic fraction in
βˆ’1
(π‘₯ βˆ’ 1)2 × 3 βˆ’ (3π‘₯ βˆ’ 2) × 12(π‘₯ βˆ’ 1) 2
𝑑𝑦
=
𝑑π‘₯
π‘₯βˆ’1
1
(3π‘₯ βˆ’ 2)
(π‘₯ βˆ’ 1)2 × 3 βˆ’
1
𝑑𝑦
2(π‘₯ βˆ’ 1) οΏ½2
=
𝑑π‘₯
π‘₯βˆ’1
1
(3π‘₯ βˆ’ 2)
(π‘₯ βˆ’ 1)2 × 3 βˆ’
1
1
𝑑𝑦
2(π‘₯ βˆ’ 1) οΏ½2
2(π‘₯ βˆ’ 1) οΏ½2
=
×
1
𝑑π‘₯
π‘₯βˆ’1
2(π‘₯ βˆ’ 1) οΏ½2
𝑑𝑦
6(π‘₯ βˆ’ 1) βˆ’ (3π‘₯ βˆ’ 2)
6π‘₯ βˆ’ 6 βˆ’ 3π‘₯ + 2
=
=
3οΏ½
3
𝑑π‘₯
2(π‘₯ βˆ’ 1) 2
2(π‘₯ βˆ’ 1) οΏ½2
𝑑𝑦
3π‘₯ βˆ’ 4
=
3
𝑑π‘₯
2(π‘₯ βˆ’ 1) οΏ½2
C3 JUNE 2016 SDB
Derivatives of ex and logex ≑ ln x.
𝑑𝑦
y = ex
β‡’
y = ln x
β‡’
𝑑𝑦
y = ln kx
β‡’
y = ln k + ln x
or y = ln kx β‡’
β‡’
y = ln xk
𝑑π‘₯
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
= ex
1
=
=
π‘₯
1
π‘˜π‘₯
×π‘˜ =
y = k ln x
β‡’
1
π‘₯
β‡’
𝑑𝑦
𝑑π‘₯
= 0+
1
π‘₯
=
1
π‘₯
using the chain rule
dy
1
k
= k×
=
dx
x
x
Example: Find the derivative of f (x) = x3 – 5ex at the point where x = 2.
Solution:
f (x) = x3 – 5ex
β‡’
f β€²(x) = 3x2 – 5ex
β‡’
f β€²(2) = 12 – 5e2 = –24β‹…9
f (x) = ln 3x – ln x5
Example: Differentiate the function
Solution:
β‡’
f (x) = ln 3x – ln x5 = ln 3 + ln x – 5 ln x = ln 3 – 4 ln x
f β€²(x) =
βˆ’4
x
or we can use the chain rule
β‡’
f β€²(x) =
1
1
βˆ’4
× 3 βˆ’ 5 × 5x 4 =
x
3x
x
Example: Find the derivative of
Solution:
f (x) = log 10 3x =
=
β‡’
ln 3x
ln 10
using change of base formula
ln 3 + ln x
ln 3
ln x
=
+
ln 10
ln 10
ln 10
f β€²(x) = 0 +
C3 JUNE 2016 SDB
f (x) = log 10 3x.
1
x
ln 10
=
1
.
x ln 10
25
2
Example: y = e x . Find
Solution:
β‡’
β‡’
where u = x2
y = eu,
dy du
dy
×
=
du dx
dx
dy
du
= eu ×
= eu × 2x
dx
dx
Example: y = ln 7x3. Find
Solution:
β‡’
β‡’
π’…π’š
𝒅𝒙
=
dy
.
dx
2
= 2x e x .
dy
.
dx
y = ln u, where u = 7x3
dy
dy du
=
×
dx
du dx
dy
1 du
1
3
= ×
=
.
× 21x 2 =
3
dx
u dx
x
7x
𝟏
𝒅𝒙
π’…π’š
Using the chain rule we can see that
𝑑𝑦
𝑑π‘₯
× π‘‘π‘¦ = 1,
𝑑π‘₯
β‡’
𝑑𝑦
𝑑π‘₯
=
1
𝑑π‘₯
𝑑𝑦
𝑑𝑦
Example: x = sin2 3y. Find 𝑑π‘₯ .
Solution:
First find
𝑑π‘₯
𝑑𝑦
𝑑𝑦
β‡’
𝑑π‘₯
𝑑π‘₯
as this is easier.
𝑑𝑦
= 2 sin 3y cos 3y × 3 = 6 sin 3y cos 3y
=
1
𝑑π‘₯
𝑑𝑦
=
1
1
=
=
3 sin 6 y
6 sin 3 y cos 3 y
1
3
cosec 6y
Derivative of ax
y = ax
β‡’
Proof:
y = ax
β‡’
β‡’
β‡’
𝑑𝑦
𝑑π‘₯
= π‘Ž π‘₯ ln π‘Ž
ln y = ln ax = x ln a
1 𝑑𝑦
𝑦 𝑑π‘₯
𝑑𝑦
𝑑π‘₯
= ln π‘Ž
= y ln a = ax ln a
You should know this proof.
26
C3 JUNE 2016 SDB
Example:
If y = 5x + 2, find
𝑑𝑦
𝑑π‘₯
.
Solution 1: y = 5x × 52 = 25 × 5x
β‡’
𝑑𝑦
𝑑π‘₯
= 25 × 5x ln 5
Solution 2: y = 5x + 2 = 5u
β‡’
𝑑𝑦
𝑑π‘₯
𝑑𝑒
= 5u ln 5 × π‘‘π‘₯ = 5x + 2 ln 5
2
Example:
𝑦 = 7π‘₯ , find
Solution:
y = 7u
β‡’
𝑑𝑦
𝑑π‘₯
using the chain rule and
𝑑𝑒
𝑑π‘₯
=1
𝑑𝑦
𝑑π‘₯
𝑑𝑒
2
= 7u ln 7 × π‘‘π‘₯ = 7π‘₯ ln 7 × 2x
using the chain rule
Trigonometric differentiation
x must be in RADIANS when differentiating trigonometric functions.
f (x)
f β€² (x)
sin x
cos x
cos x
– sin x
tan x
sec2 x
sec x
sec x tan x
cot x
– cosec2 x
cosec x
– cosec x cot x
important formulae
sin2 x + cos2 x = 1
tan2 x + 1 = sec2 x
1 + cot2 x = cosec2 x
Chain rule – further examples
Example: y = sin4 x.
Solution:
β‡’
y = sin4 x.
Find
dy
.
dx
Put u = sin x
y = u4
dy
dy du
=
×
dx
du dx
dy
du
= 4u 3 ×
= 4 sin 3 x × cos x .
dx
dx
β‡’
β‡’
C3 JUNE 2016 SDB
27
Example: y = e sin x . Find
dy
.
dx
y = eu,
where u = sin x
dy du
dy
=
×
du dx
dx
dy
du
= eu ×
= esin x × cos x
dx
dx
Solution:
β‡’
β‡’
Example: y = ln (sec x). Find
Solution:
= cos x × esin x .
dy
.
dx
y = ln u, where u = sec x
dy
dy du
=
×
dx
du dx
dy
1 du
1
= ×
× sec x tan x = tan x .
=
dx
u dx
sec x
β‡’
β‡’
Trigonometry and the product and quotient rules
Example: Differentiate y = x2 × cosec 3x.
dy
dv
du
= u
+ v
dx
dx
dx
Solution:
y = x2 × cosec 3x
Put u = x2 and v = cosec 3x
𝑑𝑦
𝑑π‘₯
28
=
x2 × (– 3cosec 3x cot 3x) + cosec 3x × 2x
=
– 3x2 cosec 3x cot 3x + 2x cosec 3x.
C3 JUNE 2016 SDB
Example: Differentiate y =
Solution:
u
y =
v
y =
tan 2 x
7x3
β‡’
dy
=
dx
v
du
dv
βˆ’ u
dx
dx
2
v
tan 2 x
7x3
Put u = tan 2x and v = 7x3
β‡’
β‡’
β‡’
C3 JUNE 2016 SDB
7 x 3 × 2 sec 2 2 x βˆ’ tan 2 x × 21x 2
dy
=
dx
(7 x 3 ) 2
14 x 3 sec 2 2 x βˆ’ 21x 2 tan 2 x
dy
=
dx
49 x 6
2 x sec 2 2 x βˆ’ 3 tan 2 x
dy
=
dx
7x 4
29
6
Numerical methods
Locating the roots of f(x) = 0
A quick sketch of the graph of y = f (x) can give a rough
idea of the roots of f (x) = 0.
y=f(x)
If y = f (x) changes sign between x = a and x = b and if
f (x) is continuous in this region then a root of f (x) = 0
lies between x = a and x = b.
x
a
b
The iteration xn + 1 = g(xn)
Example:
(a) Show that a root, Ξ±, of the equation f (x) = x3 – 8x – 7 = 0 lies between 3 and 4.
(b) Show that the equation
x3 – 8x – 7 = 0 can be re–arranged as x =
(c) Starting with x1 = 3, use the iteration xn + 1 =
iterations for x.
3
3
8x + 7 .
8 x n + 7 to find the first four
(d) Show that your value of x4 is correct to 3 S.F.
Solution:
(a)
f (3) = 27 – 24 – 7 = –4,
Thus
f (x) changes sign and f (x) is continuous β‡’ there is a root between 3 and 4.
(b)
x3 – 8x – 7 = 0
(c)
x1 = 3
(d)
β‡’
and f (4) = 64 – 32 – 7 = +25
x3 = 8x + 7
β‡’
x2 =
β‡’
x3 = 3β‹…17912997899
β‡’
x4 = 3β‹…18905898325
3
8× 3 + 7
β‡’
x=
β‡’
3
8x + 7 .
= 3β‹…14138065239
x4 = 3β‹…19 to 3 S.F.
f (3β‹…185) = 3β‹…1853 – 8 × 3β‹…185 – 7 = – 0β‹…17 …
f (3β‹…195) = 3β‹…1953 – 8 × 3β‹…195 – 7 = + 0β‹…05 …
f (x) changes sign and f (x) is continuous
30
β‡’
there is a root in the interval [3β‹…185, 3β‹…195]
β‡’
Ξ± = 3β‹…19 to 3 S.F.
C3 JUNE 2016 SDB
Conditions for convergence
If an equation is rearranged as x = g(x) and if there is a root x = Ξ±
then the iteration xn+1 = g(xn), starting with an approximation near x = Ξ±
will converge if –1 < g β€²(Ξ±) < 1
(i)
y
y
y=x
y=x
y=g(x)
y=g(x)
x
x
X1
X2
X3 X4
X1
(a) will converge without oscillating
if 0 < g β€²(Ξ±) < 1,
(ii)
will diverge if
g β€²(Ξ±) < –1 or g β€²(Ξ±) > 1.
(b)
X3
X4 X2
will oscillate and converge
if –1 < g β€²(Ξ±) < 0,
y
y=g(x)
y=x
x
X1 X 2 X3
C3 JUNE 2016 SDB
X4
31
7
Appendix
Derivatives of sin x and cos x
𝐬𝐒𝐧 𝒉
π₯π’π¦π‘β†’πŸŽ οΏ½
𝒉
� = 𝟏
C
A
OAB is a sector of a circle with centre O and radius r.
The area of the triangle OAB,
1 2
r
2
sin h,
is less than the area of the sector OAB,
β‡’
β‡’
1 2
r
2
sin β„Ž
β„Ž
sin h <
<1
1 2
rh
2
r
1 2
rh
2
1 2
rh
2
<
B
r
r tan h
is less than the area of the triangle OBC,
1 2
rh
2
h
O
…….I
Also the area of the sector OAB,
β‡’
r tan h
1 2
r
2
I and II β‡’ cos h <
and as β„Ž β†’ 0,
β‡’
tan h
sin β„Ž
β„Ž
cos h <
sin β„Ž
β‡’ 1 < lim οΏ½
οΏ½<1
β„Žβ†’0
β„Ž
β‡’ lim οΏ½
β„Žβ†’0
tan h,
sin β„Ž
<1
lim cos β„Ž = 1
β„Žβ†’0
1 2
r
2
β„Ž
……..II
sin β„Ž
οΏ½ =1
β„Ž
h must be in RADIANS, as the formula for the area of sector is only true if h is in radians.
Alternative formula for derivative
y
R
The gradient of the curve at P will be nearly
equal to the gradient of the line QR.
y = f (x)
P
Q
S
QM = f (x – h) and RN = f (x + h)
β‡’ RS = f (x + h) – f (x – h)
QS = MN = 2h
β‡’ gradient of QR =
M
𝑓 (π‘₯ + β„Ž) – 𝑓 (π‘₯ – β„Ž)
2β„Ž
x–h
N
x
x+h
and as h β†’ 0, the gradient of QR β†’ f β€²(x) =
gradient of the curve at P
β‡’ f β€²(x) =
limit 𝑓 (π‘₯ + β„Ž) – 𝑓 (π‘₯ – β„Ž)
β„Žβ†’0
2β„Ž
In C2 we used the formula f β€²(x) =
32
limit 𝑓(π‘₯+β„Ž)βˆ’π‘“(π‘₯)
β„Žβ†’0
β„Ž
C3 JUNE 2016 SDB
x
Derivatives of sin x and cos x
limit 𝑓 (π‘₯ + β„Ž) – 𝑓 (π‘₯ – β„Ž)
β„Žβ†’0
2β„Ž
f (x) = sin x and f β€²(x) =
β‡’ f β€²(x)
limit sin (π‘₯ + β„Ž) – sin (π‘₯ – β„Ž)
β„Žβ†’0
2β„Ž
=
limit (sin π‘₯ cos β„Ž +cos π‘₯ sin β„Ž ) βˆ’ (sin π‘₯ cos β„Žβˆ’cos π‘₯ sin β„Ž )
β„Žβ†’0
2β„Ž
=
limit 2cos π‘₯ sin β„Ž
β„Žβ†’0
2β„Ž
=
=
but
β‡’ f β€²(x) =
𝑑
limit
β„Žβ†’0
𝑑π‘₯
limit
β„Žβ†’0
cos π‘₯
sin β„Ž
sin β„Ž
οΏ½
β„Ž
β„Ž
οΏ½ = 1
(sin π‘₯) = cos x
Similarly, we can show that
𝑑
𝑑π‘₯
(cos π‘₯) = – sin x
x must be in RADIANS.
C3 JUNE 2016 SDB
33
Index
algebraic fractions
adding and subtracting, 3
equations, 4
multiplying and dividing, 3
chain rule, 23
further examples, 27
cosecant, 14
cotangent, 14
curves
sketching, 13
derivative
ax, 26
ex, 25
ln x, 25
differentiation
𝑑𝑦𝑑π‘₯ = 1 𝑑π‘₯𝑑𝑦, 26
proof of results for sin x and cos x, 32
trigonometric functions, 27
equations
graphical solutions, 30
exponential
eax + b = p, 22
graph of y = e(ax + b) + c, 21
graph of y = ex, 21
functions, 5
combining functions, 7
defining functions, 6
domain, 5
modulus functions, 10
range, 5
34
graphs
combining transformations, 12
standard functions, 11
inverse functions
domain and range, 9
finding inverse, 7
graphs, 7
iteration
conditions for convergence, 31
iteration equation, 30
justification of accuracy, 30
locating the roots, 30
logarithm
graph of ln x, 21
natural logarithm, 21
product rule, 23
further examples, 28
quotient rule, 24
further examples, 28
R cos(x + Ξ±), 19
secant, 14
trigonometrical identities, 16
trigonometry
finding exact values, 17
graphs of sec, cosec and cot, 14
harder equations, 18
inverse functions, 15
proving identities, 17
C3 JUNE 2016 SDB