Pure Core 3 Revision Notes June 2016 Pure Core 3 1 Algebraic fractions .................................................................................................3 Cancelling common factors .................................................................................................................. 3 Multiplying and dividing fractions ....................................................................................................... 3 Adding and subtracting fractions .......................................................................................................... 3 Equations .............................................................................................................................................. 4 2 Functions ...............................................................................................................5 Notation ................................................................................................................................................ 5 Domain, range and graph ...................................................................................................................... 5 Defining functions ........................................................................................................................................................................... 6 Composite functions ............................................................................................................................. 7 Inverse functions and their graphs ........................................................................................................ 7 To find the inverse of a function x β y................................................................................................................................. 7 Domain and range of inverse functions ................................................................................................ 9 Modulus functions .............................................................................................................................. 10 Modulus functions y = |f (x)|.................................................................................................................................................10 Modulus functions y = f (|x|) ..................................................................................................................................................11 Standard graphs................................................................................................................................... 11 Combinations of transformations of graphs ........................................................................................ 12 Sketching curves ................................................................................................................................. 13 3 Trigonometry ........................................................................................................ 14 Sec, cosec and cot ............................................................................................................................... 14 Graphs ................................................................................................................................................................................................14 Inverse trigonometrical functions ....................................................................................................... 15 Graphs ................................................................................................................................................................................................15 Trigonometrical identities ................................................................................................................... 16 π+π πβπ Proof of sin P + sin Q = 2 sin οΏ½ οΏ½ cos οΏ½ οΏ½ .................................................................................................................16 2 2 Finding exact values.....................................................................................................................................................................17 Proving identities. .........................................................................................................................................................................17 Eliminating a variable between two equations ...............................................................................................................18 Solving equations ..........................................................................................................................................................................18 R cos(x + Ξ±) ........................................................................................................................................ 19 4 Exponentials and logarithms ................................................................................ 21 Natural logarithms .............................................................................................................................. 21 Definition and graph ....................................................................................................................................................................21 Equations of the form eax + b = p ............................................................................................................................................22 5 Differentiation ...................................................................................................... 23 Chain rule ............................................................................................................................................ 23 Product rule ......................................................................................................................................... 23 Quotient rule ........................................................................................................................................ 24 Derivatives of ex and logex β‘ ln x. ..................................................................................................... 25 π π π π = π π π ππ² ............................................................................................................................................. 26 Derivative of ax................................................................................................................................... 26 Trigonometric differentiation .............................................................................................................. 27 Chain rule β further examples ............................................................................................................. 27 Trigonometry and the product and quotient rules ............................................................................... 28 6 Numerical methods .............................................................................................. 30 Locating the roots of f(x) = 0 .............................................................................................................. 30 The iteration xn + 1 = g(xn) ................................................................................................................... 30 Conditions for convergence................................................................................................................. 31 7 Appendix.............................................................................................................. 32 Derivatives of sin x and cos x .............................................................................................................. 32 limββ0 sinβ β = 1 ...............................................................................................................................................................................32 Alternative formula for derivative ........................................................................................................................................32 Derivatives of sin x and cos x ...................................................................................................................................................33 Index ........................................................................................................................... 34 2 C3 JUNE 2016 SDB 1 Algebraic fractions Cancelling common factors Example: Simplify Solution: x 3 β 2 x 2 β 3x . 4 x 2 β 36 First factorise top and bottom fully β x( x 2 β 2 x β 3) x( x β 3)( x + 1) x 3 β 2 x 2 β 3x = = 4( x β 3)( x + 3) 4( x 2 β 9) 4 x 2 β 36 and now cancel all common factors, in this case (x β 3) to give x( x + 1) . 4( x + 3) Answer = Multiplying and dividing fractions This is just like multiplying and dividing fractions with numbers and then cancelling common factors as above. Example: 9 x 2 β 4 3x 2 β x β 2 Simplify ÷ 3x 2 β 2 x x3 + x2 Solution: First turn the second fraction upside down and multiply = x3 + x2 9x 2 β 4 × 3x 2 β 2 x 3x 2 β x β 2 = x ( x + 1) (3 x β 2)(3 x + 2) × (3x + 2)( x β 1) x(3 x β 2) factorise fully 2 Answer = cancel all common factors x( x + 1) . x β1 Adding and subtracting fractions Again this is like adding and subtracting fractions with numbers; but finding the Lowest Common Denominator can save a lot of trouble later. Example: Simplify Solution: 3x 5 . β 2 x β 7 x + 12 x β 4 x + 3 2 First factorise the denominators = 3x 5 β ( x β 3)( x β 4) ( x β 3)( x β 1) = 3x( x β 1) 5( x β 4) β ( x β 3)( x β 4)( x β 1) ( x β 3)( x β 1)( x β 4) = 3x 2 β 3x β 5 x + 20 3x 2 β 8 x + 20 = ( x β 1)( x β 3)( x β 4) ( x β 1)( x β 3)( x β 4) C3 JUNE 2016 SDB we see that the L.C.D. is (x β 3)(x β 4)(x β 1) which cannot be simplified further. 3 Equations Example: Solve Solution: x x β1 1 β = x +1 x 2 First multiply both sides by the Lowest Common Denominator x β1 1 x = β 2 x x +1 4 β x × 2x β (x β 1) × 2(x + 1) = x(x + 1) β 2x2 β 2x2 + 2 = x2 + x β x2 + x β 2 = 0, β (x + 2)(x β 1) = 0 β x = β2 or 1 multiply both sides by 2x(x + 1) C3 JUNE 2016 SDB 2 Functions A function is an expression (often in x) which has only one value for each value of x. Notation y = x2 β 3x + 7, f (x) = x2 β 3x + 7 and f : x β x2 β 3x + 7 are all ways of writing the same function. Domain, range and graph The domain is the set of values which x can take: this is sometimes specified in the definition sometimes is evident from the function: e.g. for βx, x can only take positive x or zero values. The range is that part of the yβaxis which is used. Example: Find the range of the function f : x β 2x β 3 with domain x β β: β2 < x β€ 4. 6 Solution: First sketch the graph for values of x between β 2 4 range and 4 (the domain), and we can see that we are only using 2 y y=2xβ3 the yβaxis from β7 to 5, β4 not including y = β7 (since x β β2), β2 but including y = 5 (since x can equal 4) β4 and so the range is x domain 2 4 β2 6 β6 y β β: β7 < y β€ 5. β8 Example: Find the largest possible domain and the range for the function f : x β x β 3 + 1. Solution: First notice that we cannot have the square root of a negative number and so x β 3 cannot be negative β xβ3β₯0 β largest possible domain is x β β: x β₯ 3. y To find the range we first sketch the graph 6 and we see that the graph will cover all of the y=β(xβ3)+1 4 range y-axis from 1 upwards 2 domain and so the range is C3 JUNE 2016 SDB y β β: y β₯ 1. β2 2 4 6 8 10 12 x 14 16 5 Example: Find the largest possible domain and the range for the function f:xβ Solution: 2x . Give the equations of its asymptotes. x +1 The only problem occurs when the denominator is 0, and so x cannot be β1. Thus the largest domain is x β β: x β β1. To find the range we sketch the graph 8 and we see that y can take any value y=2x/(x+1) except 2, 6 4 range asymptote y=2 2 so the range is y β β: y β 2. domain 0 Asymptotes are x = β1 and y = 2 y β8 β6 β4 domain 2 β2 4 6 x 8 β2 asymptote x=β1 β4 range β6 Defining functions Some mappings can be made into functions by restricting the domain. Examples: 1) The mapping x β βx where x β β is not a function as ββ9 is not defined, but if we restrict the domain to positive or zero real numbers then f : x β β x where x β β, x β₯ 0 is a function. 1 where x β β is not a function as the image of x = 3 is not defined, x β3 1 but f : x β where x β β, x β 3 is a function. x β3 2) x β 6 C3 JUNE 2016 SDB Composite functions To find the composite function fg we must do g first. Example: f : x β 3x β 2 Solution: and g : x β x2 + 1. Find fg and gf. Think of f and g as βrulesβ f is multiply by 3 g is square β fg is subtract 2 add 1 square add 1 multiply by 3 subtract 2 giving (x2 + 1) × 3 β 2 = 3x2 + 1 β fg : x β 3x2 + 1 gf is or multiply by 3 fg(x) = 3x2 + 1. subtract 2 square add 1 giving (3x β 2)2 + 1 = 9x2 β 12x + 5 β gf : x β 9x2 β 12x + 5 or gf (x) = 9x2 β 12x + 5. Note that fg and gf are not the same. Inverse functions and their graphs The inverse of f is the βoppositeβ of f: thus the inverse of βmultiply by 3β is βdivide by 3β and the inverse of βsquareβ is βsquare rootβ. The inverse of f is written as f β1: note that this does not mean β1 over f β. The graph of y = f β1(x) is the reflection in y = x of the graph of y = f (x). To find the inverse of a function x β y (i) interchange x and y (ii) find y in terms of x. C3 JUNE 2016 SDB 7 Example: Find the inverse of f : x β 3x β 2. Solution: We have x β y = 3x β 2 4 (i) interchanging x and y β x = 3y β 2 (ii) solving for y β β f β1 y= y=x x+2 3 x+2 :xβ 3 y 2 y = f β1(x) β4 x β2 2 β2 4 y = f (x) β4 Example: Find the inverse of g : x β Solution: (i) (ii) y x+3 We have x β y = 2x β 5 interchanging x and y y+3 β x = 2y β 5 6 y=x 4 y = g β1(x) 2 solving for y y = g (x) x β x(2y β 5) = y + 3 β 2xy β 5x = y + 3 β 2xy β y = 5x + 3 β y(2x β 1) = 5x + 3 β y = β g β1 : x β Note that f f β1 (x) = f 8 x+3 . 2x β 5 β1 β4 β2 2 4 β2 β4 5x + 3 2x β 1 5x + 3 2x β 1 f (x) = x. C3 JUNE 2016 SDB 6 Domain and range of inverse functions Note that the domain of f (x) is the range of f and that the range of f (x) is the domain of f This is because the graph of y = f Example: f (x) = (x β 3)2 + 4, β1 β1 (x), β1 (x). (x) is that of y = f (x) after a reflection in the line y = x. x β β, x β€ 3. (a) Sketch the graph of y = f (x), and state its range. (b) Find the inverse function, f β1(x) and sketch its graph on the same diagram. Show the line y = x on your diagram. (c) State the domain and range of f β1(x). Solution: (a) As the domain of f is x β€ 3, we only have the βleftβ part of the parabola. y 8 The range is f (x) β₯ 4, f (x) β β. y = f (x) 6 (b) To find the inverse, swap x and y, then find y. y=x 4 x = (y β 3)2 + 4 β y β 3 = ±βπ₯ β 4 . From the reflection of y = f (x) in y = x, we can see that we want the negative sign β (c) x β2 2 4 6 8 β2 y = 3 β βπ₯ β 4. The domain of f β1(x) is x β₯ 4 (the range of f (x)). The range of f β1(x) is f β1(x) β€ 3 C3 JUNE 2016 SDB y = f β1(x) 2 (the domain of f (x)). 9 Modulus functions Modulus functions y = |f (x)| |f (x)| is the βpositive value of f (x)β, so to sketch the graph of y = |f (x)| first sketch the graph of y = f (x) and then reflect the part(s) below the xβaxis to above the xβaxis. Example: Sketch the graph of y = |x2 β 3x|. Solution: First sketch the graph of y = x2 β 3x Then reflect the portion below the x-axis in the xβaxis to give 3 y 3 y y=x²β3x y=|x²β3x| 2 2 1 1 x β1 10 1 2 3 4 x β1 1 β1 β1 β2 β2 2 3 4 C3 JUNE 2016 SDB Modulus functions y = f (|x|) In this case f (β3) = f (3), f (β5) = f (5), f (β8.7) = f (8.7) etc. and so the graph on the left of the yβaxis must be the reflection of the graph on the right of the yβaxis, so to sketch the graph, first sketch the graph for positive values of x only, then reflect the graph sketched in the yβaxis. 3 y y=x²β3x 2 Example: Sketch the graph of y = |x|2 β 3|x|. 1 x Solution: β β4 2 f (x) = x β 3x β3 β2 β1 1 2 3 4 β1 f (x) = x2 β 3x β2 First sketch the graph of y = x2 β 3x for positive values of x only. 3 y y=|x|²β3|x| 2 Then reflect your graph in the yβaxis to 1 x complete the sketch. β4 β3 β2 β1 1 2 3 4 β1 β2 Standard graphs y 3 y 4 y=x y=x³ y=xβ΄ 2 y=x² 3 1 2 x β3 β2 β1 1 2 1 β1 x β2 β1 1 2 β2 β1 y 2 y 3 y=1/x 1 2 x β3 β2 β1 1 β1 β2 C3 JUNE 2016 SDB 2 y=βx 1 3 x β1 1 2 3 4 5 6 7 β1 11 Combinations of transformations of graphs We know the following transformations of graphs: y = f (x)  aο£Ά translated through  ο£· becomes y = f (x β a) + b ο£ bο£Έ stretched factor a in the y-direction becomes y = a × f (x)  xο£Ά stretched factor a in the x-direction becomes y = f  ο£· ο£ aο£Έ reflected in the x-axis becomes y = β f (x) reflected in the y-axis becomes y = f (βx) We can combine these transformations: Examples: 1) y = 2f (x β 3) is the image of y = f (x) under a stretch in the y-axis of factor 2  3ο£Ά followed by a translation  ο£·ο£· , or the translation followed by the stretch. ο£0ο£Έ 2) y = 3x2 + 6 is the image of y = x2 under a stretch in the y-axis of factor 3  0ο£Ά followed by a translation  ο£·ο£· , ο£ 6ο£Έ BUT these transformations cannot be done in the reverse order. To do a translation before a stretch we have to notice that 0ο£Ά 3x2 + 6 = 3(x2 + 2) which is the image of y = x2 under a translation of  ο£·ο£· ο£ 2ο£Έ followed by a stretch in the y-axis of factor 3. 3) 12 y = β sin(x + Ο) is the image of y = sin x under a reflection in the x-axis βΟ ο£Ά ο£·ο£· , or the translation followed by the reflection. followed by a translation of  ο£ 0 ο£Έ C3 JUNE 2016 SDB Sketching curves When sketching curves, show the coordinates of the intercepts with the axes, and the equations of any asymptotes β show the asymptotes with dotted lines. Example: Solution: 2 Sketch the curve π¦ = 4 β π₯, x > 0 5 y 4 asymptote y=4 3 y=4β2/x 2 asymptote 1 x=0 β2 β1 x 1 2 3 4 5 β1 β2 β3 Note that the domain is x > 0, so no graph to the left of the y-axis. x β 0 β curve does not meet the x-axis y=0 β x=1 Thinking of y = β2 π₯ translated up 4, the horizontal asymptote is y = 4. Do not forget that the y-axis, x = 0, is also an asymptote. C3 JUNE 2016 SDB 13 3 Trigonometry Sec, cosec and cot Secant is written sec x = cotangent is written cot x = 1 ; cos x cosecant is written cosec x = 1 sin x 1 cos x = tan x sin x Graphs y y 2 y=cosecx y=secx 2 y=cosx βΟ y=sinx x 2Ο Ο βΟ β2 Ο x 2Ο β2 y y=tanx y=cotx 2 Notice that your calculator does not have sec, cosec and cot buttons so to solve equations involving sec, cosec and cot, change them into equations involving sin, cos and tan and then use your calculator as usual. x βΟ Ο β2 Example: Find cosec 35o. Solution: cosec 35o = 1 1 = = 1 β 743 to 4 S.F. o sin 35 0 β 53576... for 0 β€ x β€ 2Ο Example: Solve sec x = 3β 2 Solution: β 14 sec x = 3β 2 β 1 1 = 3 β 2 β β cos x = = 0 β 3125 cos x 3β 2 x = 1β 25 or 2Ο β 1β 25 = 5β 03 radians to 3 S.F. C3 JUNE 2016 SDB 2Ο Inverse trigonometrical functions The inverse of sin x is written as arcsin x or sinβ1 x and in order that there should only be one value of the function for one value of x we restrict the domain to βΟ/2 β€ x β€ Ο/2 . Note that the graph of y = arcsin x is the reflection of part of the graph of y = sin x in the line y = x. Similarly for the inverses of cos x and tan x, as shown below. Graphs y = arcsin x y Ο/2 y = arccos x y y=x y=arcsinx Ο y=arccosx y=x y=sinx x β3 β2 β1 1 2 3 Ο/2 4 y=cosx x βΟ/2 β3 β2 β1 1 2 3 4 y = arctan x y y=tanx y=x y=arctanx Ο/2 x β6 β5 β4 β3 β2 β1 1 2 3 4 5 6 βΟ/2 C3 JUNE 2016 SDB 15 Trigonometrical identities You should learn these sin2 ΞΈ + cos2 ΞΈ = 1 tan( A - B) = tan2ΞΈ + 1 = sec2ΞΈ 1 + cot2ΞΈ = cosec2ΞΈ tan 2 A = sin (A + B) = sin A cos B + cos A sin B tan A - tan B 1 + tan A tan B 2 tan A 1 - tan 2 A 3 tan A β tan 3 A tan 3A = 1 β 3 tan 2 A sin (A β B) = sin A cos B β cos A sin B sin 2A = 2 sin A cos A cos (A + B) = cos A cos B β sin A sin B sin P + sin Q = 2 sin P+Q P -Q cos 2 2 sin P β sin Q = 2 cos P+Q P -Q sin 2 2 cos P + cos Q = 2 cos P+Q P -Q cos 2 2 cos (A β B) = cos A cos B + sin A sin B cos 2A = cos2 A β sin2 A = 2 cos2 A β 1 = 1 β 2 sin2 A sin2 A = ½ (1 β cos 2A) cos2 A = ½ (1 + cos 2A) cos P β cos Q = sin2 ½ ΞΈ = ½ (1 β cos ΞΈ) cos2 ½ ΞΈ - 2 sin P+Q P -Q sin 2 2 2 sin A cos B = sin(A + B) + sin(A β B) = ½ (1 + cos ΞΈ) sin 3A = 3 sin A β 4 sin3 A 2 cos A sin B = sin(A + B) β sin(A β B) cos 3A = 4 cos3A β 3 cos A 2 cos A cos B = cos(A + B) + cos(A β B) tan A + tan B tan( A + B) = 1 - tan A tan B β2 sin A sin B = cos(A + B) β cos(A β B) The last four formulae, 2 sin A cos B = sin(A + B) + sin(A β B) etc., are not in the formula booklet, and should be learnt. You should know the proofs of the four formulae sin P + sin Q = 2 sin Proof of sin P + sin Q = 2 sin π·+πΈ π cos π·βπΈ 2 cos πβπ 2 , etc. π We know that sin(A + B) = sin A cos B + cos A sin B and sin(A β B) = sin A cos B β cos A sin B β π+π sin(A + B) β sin(A β B) = 2 sin A cos B Now put P = A + B, and Q = A β B β β P + Q = 2A, and P β Q = 2B, sin P + sin Q = 2 sin π+π 2 cos πβπ 2 β A= . π+π 2 , and B = πβπ 2 The other formulae can be proved in a similar way. 16 C3 JUNE 2016 SDB Finding exact values When finding exact values you may not use calculators. Example: Find the exact value of cos 15o Solution: We know the exact values of sin 45o, cos 45o and sin 30o, cos 30o so we consider = 1 2 × cos 15 = cos (45 β 30) 3 2 + 1 2 × 12 = 3 + 1 2 2 = cos 45 cos30 + sin 45 sin 30 6 + 4 = 2 . Example: Given that A is obtuse and that B is acute, and sin A = 3/5 and cos B = 5/13 find the exact value of sin (A + B). Solution: We know that sin (A + B) = sin A cos B + cos A sin B so we must first find cos A and sin B. Using sin2 ΞΈ + cos2 ΞΈ = 1 β cos2 A = 1 β 9/25 = 16 β cos A = ± /5 and sin B = ± /13 4 /25 and sin2 B = 1 β 25/169 = 144 /169 12 But A is obtuse so cos A is negative, and B is acute so sin B is positive β cos A = β 4/5 and β sin (A + B) = 3/5 × 5/13 + β 4/5 × 12/13 = sin B = 12 /13 β33 /65 Proving identities. Start with one side, usually the L.H.S., and fiddle with it until it equals the other side. Do not fiddle with both sides at the same time. Example: Prove that Solution: cos 2 A + 1 = cot 2 A . 1 - cos 2 A 2 cos 2 A 2 cos 2 A - 1 + 1 cos 2 A + 1 = cot 2 A . Q.E.D. = = L.H.S. = 2 2 1 - cos 2 A 2 sin A 1 - (1 - 2sin A) C3 JUNE 2016 SDB 17 Eliminating a variable between two equations Example: Eliminate ΞΈ from the parametric equations x = sec ΞΈ β 1, y = tan ΞΈ. Solution: β We remember that tan2ΞΈ + 1 = sec2ΞΈ sec2ΞΈ β tan2ΞΈ = 1. secΞΈ = x + 1 and tanΞΈ = y β (x + 1)2 β y2 = 1 β y2 = (x + 1)2 β 1 = x2 + 2x. Solving equations Here you have to select the βbestβ identity to help you solve the equation. Example: Solve the equation sec2A = 3 β tan A, for 0 β€ A β€ 360o. Solution: We know that tan2A + 1 = sec2A β tan2A + 1 = 3 β tan A β tan2A + tan A β 2 = 0, β (tan A β 1)(tan A + 2) = 0 β tan A = 1 β A = 45, 225, or 116β 6, 296β 6. or tan A = β2 Example: Solve sin 3x β sin 5x = 0 Solution: 18 factorising gives for 0o β€ x β€ 90o. Using the formula sin P β sin Q = 2 cos π+π β 2 cos 4x sin(βx) = 0 β β cos 4x = 0, or sin x = 0 β 4x = 90, 270, (450), β¦ or x = 0, (180), β¦ β x = 0o, 22β 5o or 67β 5o. 2 cos 4x sin x = 0 sin πβπ 2 C3 JUNE 2016 SDB R cos(x + Ξ±) An alternative way of writing a cos x ± b sin x using one of the formulae listed below (1) R cos (x + Ξ±) = R cos x cos Ξ± β R sin x sin Ξ± (2) R cos (x β Ξ±) = R cos x cos Ξ± + R sin x sin Ξ± (3) R sin (x + Ξ±) = R sin x cos Ξ± + R cos x sin Ξ± (4) R sin (x β Ξ±) = R sin x cos Ξ± β R cos x sin Ξ± To keep R positive and Ξ± acute, we select the formula with corresponding + and β signs. The technique is the same which ever formula we choose. Example: Solve the equation Solution: 12 sin x β 5 cos x = 6 for 0o β€ x β€ 3600. First reβwrite in the above form: notice that the sin x is positive and the cos x is negative so we need formula (4). R sin (x β Ξ±) = R sin x cos Ξ± β R cos x sin Ξ± = 12 sin x β 5 cos x Equating coefficients of sin x, β R cos Ξ± = 12 I Equating coefficients of cos x, β R sin Ξ± = 5 II β R2 cos2 Ξ± + R2 sin2 Ξ± = 122 + 52 Squaring and adding I and II β R2 (cos2 Ξ± + sin2 Ξ±) = 144 + 25 β R2 = 169 but cos2 Ξ± + sin2 Ξ± = 1 β R = ±13 But choosing the correct formula means that R is positive β R = +13 Substitute in I β β cos Ξ± = 12 /13 Ξ± = 22β 620β¦o or 337β 379β¦o or β¦β¦ and choosing the correct formula means that Ξ± is acute β β To solve Ξ± = 22β 620β¦o. 12 sin x β 5 cos x = 13 sin(x β 22β 620β¦) 12 sin x β 5 cos x = 6 β 12 sin x β 5 cos x = 13 sin(x β 22β 620β¦) = 6 β sin(x β 22β 620β¦) = 6/13 β x β 22β 620β¦ = 27β 486β¦ or 180 β 27β 486β¦ = 152β 514β¦ β x = 50β 1o or 175β 1o . C3 JUNE 2016 SDB 19 Example: Find the maximum value of 12 sin x β 5 cos x and the smallest positive value of x for which it occurs. Solution: From the above example 12 sin x β 5 cos x = 13 sin(x β 22.6). The maximum value of sin(anything) is 1 and occurs when the angle is 90, 450, 810 etc. i.e. 90 + 360n β the max value of 13 sin(x β 22β 6) is 13 when x β 22β 6 = 90 + 360n β x = 112β 6 + 360no, β 20 smallest positive value of x is 112β 6o. C3 JUNE 2016 SDB 4 Exponentials and logarithms Natural logarithms Definition and graph y = ex e β 2β 7183 and logs to base e y=x 2 are called natural logarithms. log e x is usually written ln x. y = ln x β2 2 x Note that y = e and y = ln x are inverse functions and that the graph of one is the reflection β2 of the other in the line y = x. Graph of y = e(ax + b) + c. y y = e2x y = ex 3 The graph of y = e2x is the graph of y = ex stretched by a factor of 1/2 in 2 the direction of the x-axis. y = e2x is above y = ex for x > 0, 1 and below for x < 0. β2 The graph of y = e(2x + 3) is the graph of y = e2x  β 32 ο£Ά y = e translated through  ο£·ο£· since ο£ 0 ο£Έ 2x 2x + 3 = 2(x β β3 2 y = e(2x+3)+4 ) 4 and the graph of y = e(2x +3) + 4 is that of 0ο£Ά y = e(2x + 3) translated through  ο£·ο£· ο£ 4ο£Έ y = e(2x+3) β4 C3 JUNE 2016 SDB 6 β2 2 2 21 Equations of the form eax + b = p Example: Solve e2x + 3 = 5. Solution: Take the natural logarithm of each side, β ln (e2x + 3) = ln 5 β x = β remember that ln x is the inverse of ex 2x + 3 = ln 5 ln 5 β 3 = β0β 695 to 3 S.F. 2 Example: Solve ln (3x β 5) = 4. Solution: (i) From the definition of logs loga x = y β x = ay ln (3x β 5) = 4 β 3x β 5 = e4 β x = e4 + 5 = 19β 9 to 3 S.F. 3 OR (ii) Raise both sides to the power of e, . 22 β eln (3x β 5) = e4 β β x = (3x β 5) = e4 remember that ex is the inverse of ln x e4 + 5 = 19β 9 to 3 S.F. 3 C3 JUNE 2016 SDB 5 Differentiation Chain rule If y is a composite function like y = (5x2 β 7)9 think of y as y = u9, where u = 5x2 β 7 then the chain rule gives dy du dy = × du dx dx dy du = 9u 8 × dx dx dy = 9(5 x 2 β 7) 8 × (10 x) = 90 x(5 x 2 β 7) 8 . dx β β The rule is very simple, just differentiate the function of u and multiply by dy . dx Example: y = β(x3 β 2x). Find Solution: y = β(x3 β 2x) = ( x 3 β 2 x) 2 . 1 β β β β du . dx Put u = x3 β 2x 1 y= u 2 dy dy du = × dx du dx β1 dy du = 12 u 2 × = dx dx dy 3x 2 β 2 = . 1 3 dx 2 2( x β 2 x ) 1 2 ( x 3 β 2 x) β1 2 × (3 x 2 β 2) Product rule If y is the product of two functions, u and v, then dy dv du = u + v y = uv β . dx dx dx Example: Differentiate y = x2 × β(x β 5). Solution: y = x2 × β(x β 5) = x2 × ( x β 5) so put u = x2 and v = ( x β 5) dy dv du = u + v β dx dx dx = x2 × = 1 2 2 ( x β 5) x 2 xβ5 C3 JUNE 2016 SDB β1 2 1 1 2 2 1 + ( x β 5) 2 × 2x + 2x x β 5 . 23 Quotient rule If y is the quotient of two functions, u and v, then u y = v dy = dx β Example: Differentiate y = v du dv β u dx dx . 2 v 2x β 3 x 2 + 5x 2x β 3 , so put u = 2x β 3 and v = x2 + 5x 2 x + 5x du dv v β u dy dx dx = 2 dx v Solution: y = β ( x 2 + 5 x) × 2 β (2 x β 3) × (2 x + 5) = ( x 2 + 5 x) 2 = 2 x 2 + 10 x β (4 x 2 + 4 x β 15) β 2 x 2 + 6 x + 15 = . ( x 2 + 5 x) 2 ( x 2 + 5 x) 2 Example: If y = 3π₯β2 βπ₯β1 its simplest form. ππππ’π‘πππ: β β β β β 24 π¦= , find 3π₯ β 2 1 (π₯ β 1)2 1 ππ¦ ππ₯ , expressing your answer as a single algebraic fraction in β1 (π₯ β 1)2 × 3 β (3π₯ β 2) × 12(π₯ β 1) 2 ππ¦ = ππ₯ π₯β1 1 (3π₯ β 2) (π₯ β 1)2 × 3 β 1 ππ¦ 2(π₯ β 1) οΏ½2 = ππ₯ π₯β1 1 (3π₯ β 2) (π₯ β 1)2 × 3 β 1 1 ππ¦ 2(π₯ β 1) οΏ½2 2(π₯ β 1) οΏ½2 = × 1 ππ₯ π₯β1 2(π₯ β 1) οΏ½2 ππ¦ 6(π₯ β 1) β (3π₯ β 2) 6π₯ β 6 β 3π₯ + 2 = = 3οΏ½ 3 ππ₯ 2(π₯ β 1) 2 2(π₯ β 1) οΏ½2 ππ¦ 3π₯ β 4 = 3 ππ₯ 2(π₯ β 1) οΏ½2 C3 JUNE 2016 SDB Derivatives of ex and logex β‘ ln x. ππ¦ y = ex β y = ln x β ππ¦ y = ln kx β y = ln k + ln x or y = ln kx β β y = ln xk ππ₯ ππ₯ ππ¦ ππ₯ = ex 1 = = π₯ 1 ππ₯ ×π = y = k ln x β 1 π₯ β ππ¦ ππ₯ = 0+ 1 π₯ = 1 π₯ using the chain rule dy 1 k = k× = dx x x Example: Find the derivative of f (x) = x3 β 5ex at the point where x = 2. Solution: f (x) = x3 β 5ex β f β²(x) = 3x2 β 5ex β f β²(2) = 12 β 5e2 = β24β 9 f (x) = ln 3x β ln x5 Example: Differentiate the function Solution: β f (x) = ln 3x β ln x5 = ln 3 + ln x β 5 ln x = ln 3 β 4 ln x f β²(x) = β4 x or we can use the chain rule β f β²(x) = 1 1 β4 × 3 β 5 × 5x 4 = x 3x x Example: Find the derivative of Solution: f (x) = log 10 3x = = β ln 3x ln 10 using change of base formula ln 3 + ln x ln 3 ln x = + ln 10 ln 10 ln 10 f β²(x) = 0 + C3 JUNE 2016 SDB f (x) = log 10 3x. 1 x ln 10 = 1 . x ln 10 25 2 Example: y = e x . Find Solution: β β where u = x2 y = eu, dy du dy × = du dx dx dy du = eu × = eu × 2x dx dx Example: y = ln 7x3. Find Solution: β β π π π π = dy . dx 2 = 2x e x . dy . dx y = ln u, where u = 7x3 dy dy du = × dx du dx dy 1 du 1 3 = × = . × 21x 2 = 3 dx u dx x 7x π π π π π Using the chain rule we can see that ππ¦ ππ₯ × ππ¦ = 1, ππ₯ β ππ¦ ππ₯ = 1 ππ₯ ππ¦ ππ¦ Example: x = sin2 3y. Find ππ₯ . Solution: First find ππ₯ ππ¦ ππ¦ β ππ₯ ππ₯ as this is easier. ππ¦ = 2 sin 3y cos 3y × 3 = 6 sin 3y cos 3y = 1 ππ₯ ππ¦ = 1 1 = = 3 sin 6 y 6 sin 3 y cos 3 y 1 3 cosec 6y Derivative of ax y = ax β Proof: y = ax β β β ππ¦ ππ₯ = π π₯ ln π ln y = ln ax = x ln a 1 ππ¦ π¦ ππ₯ ππ¦ ππ₯ = ln π = y ln a = ax ln a You should know this proof. 26 C3 JUNE 2016 SDB Example: If y = 5x + 2, find ππ¦ ππ₯ . Solution 1: y = 5x × 52 = 25 × 5x β ππ¦ ππ₯ = 25 × 5x ln 5 Solution 2: y = 5x + 2 = 5u β ππ¦ ππ₯ ππ’ = 5u ln 5 × ππ₯ = 5x + 2 ln 5 2 Example: π¦ = 7π₯ , find Solution: y = 7u β ππ¦ ππ₯ using the chain rule and ππ’ ππ₯ =1 ππ¦ ππ₯ ππ’ 2 = 7u ln 7 × ππ₯ = 7π₯ ln 7 × 2x using the chain rule Trigonometric differentiation x must be in RADIANS when differentiating trigonometric functions. f (x) f β² (x) sin x cos x cos x β sin x tan x sec2 x sec x sec x tan x cot x β cosec2 x cosec x β cosec x cot x important formulae sin2 x + cos2 x = 1 tan2 x + 1 = sec2 x 1 + cot2 x = cosec2 x Chain rule β further examples Example: y = sin4 x. Solution: β y = sin4 x. Find dy . dx Put u = sin x y = u4 dy dy du = × dx du dx dy du = 4u 3 × = 4 sin 3 x × cos x . dx dx β β C3 JUNE 2016 SDB 27 Example: y = e sin x . Find dy . dx y = eu, where u = sin x dy du dy = × du dx dx dy du = eu × = esin x × cos x dx dx Solution: β β Example: y = ln (sec x). Find Solution: = cos x × esin x . dy . dx y = ln u, where u = sec x dy dy du = × dx du dx dy 1 du 1 = × × sec x tan x = tan x . = dx u dx sec x β β Trigonometry and the product and quotient rules Example: Differentiate y = x2 × cosec 3x. dy dv du = u + v dx dx dx Solution: y = x2 × cosec 3x Put u = x2 and v = cosec 3x ππ¦ ππ₯ 28 = x2 × (β 3cosec 3x cot 3x) + cosec 3x × 2x = β 3x2 cosec 3x cot 3x + 2x cosec 3x. C3 JUNE 2016 SDB Example: Differentiate y = Solution: u y = v y = tan 2 x 7x3 β dy = dx v du dv β u dx dx 2 v tan 2 x 7x3 Put u = tan 2x and v = 7x3 β β β C3 JUNE 2016 SDB 7 x 3 × 2 sec 2 2 x β tan 2 x × 21x 2 dy = dx (7 x 3 ) 2 14 x 3 sec 2 2 x β 21x 2 tan 2 x dy = dx 49 x 6 2 x sec 2 2 x β 3 tan 2 x dy = dx 7x 4 29 6 Numerical methods Locating the roots of f(x) = 0 A quick sketch of the graph of y = f (x) can give a rough idea of the roots of f (x) = 0. y=f(x) If y = f (x) changes sign between x = a and x = b and if f (x) is continuous in this region then a root of f (x) = 0 lies between x = a and x = b. x a b The iteration xn + 1 = g(xn) Example: (a) Show that a root, Ξ±, of the equation f (x) = x3 β 8x β 7 = 0 lies between 3 and 4. (b) Show that the equation x3 β 8x β 7 = 0 can be reβarranged as x = (c) Starting with x1 = 3, use the iteration xn + 1 = iterations for x. 3 3 8x + 7 . 8 x n + 7 to find the first four (d) Show that your value of x4 is correct to 3 S.F. Solution: (a) f (3) = 27 β 24 β 7 = β4, Thus f (x) changes sign and f (x) is continuous β there is a root between 3 and 4. (b) x3 β 8x β 7 = 0 (c) x1 = 3 (d) β and f (4) = 64 β 32 β 7 = +25 x3 = 8x + 7 β x2 = β x3 = 3β 17912997899 β x4 = 3β 18905898325 3 8× 3 + 7 β x= β 3 8x + 7 . = 3β 14138065239 x4 = 3β 19 to 3 S.F. f (3β 185) = 3β 1853 β 8 × 3β 185 β 7 = β 0β 17 β¦ f (3β 195) = 3β 1953 β 8 × 3β 195 β 7 = + 0β 05 β¦ f (x) changes sign and f (x) is continuous 30 β there is a root in the interval [3β 185, 3β 195] β Ξ± = 3β 19 to 3 S.F. C3 JUNE 2016 SDB Conditions for convergence If an equation is rearranged as x = g(x) and if there is a root x = Ξ± then the iteration xn+1 = g(xn), starting with an approximation near x = Ξ± will converge if β1 < g β²(Ξ±) < 1 (i) y y y=x y=x y=g(x) y=g(x) x x X1 X2 X3 X4 X1 (a) will converge without oscillating if 0 < g β²(Ξ±) < 1, (ii) will diverge if g β²(Ξ±) < β1 or g β²(Ξ±) > 1. (b) X3 X4 X2 will oscillate and converge if β1 < g β²(Ξ±) < 0, y y=g(x) y=x x X1 X 2 X3 C3 JUNE 2016 SDB X4 31 7 Appendix Derivatives of sin x and cos x π¬π’π§ π π₯π’π¦π‘βπ οΏ½ π οΏ½ = π C A OAB is a sector of a circle with centre O and radius r. The area of the triangle OAB, 1 2 r 2 sin h, is less than the area of the sector OAB, β β 1 2 r 2 sin β β sin h < <1 1 2 rh 2 r 1 2 rh 2 1 2 rh 2 < B r r tan h is less than the area of the triangle OBC, 1 2 rh 2 h O β¦β¦.I Also the area of the sector OAB, β r tan h 1 2 r 2 I and II β cos h < and as β β 0, β tan h sin β β cos h < sin β β 1 < lim οΏ½ οΏ½<1 ββ0 β β lim οΏ½ ββ0 tan h, sin β <1 lim cos β = 1 ββ0 1 2 r 2 β β¦β¦..II sin β οΏ½ =1 β h must be in RADIANS, as the formula for the area of sector is only true if h is in radians. Alternative formula for derivative y R The gradient of the curve at P will be nearly equal to the gradient of the line QR. y = f (x) P Q S QM = f (x β h) and RN = f (x + h) β RS = f (x + h) β f (x β h) QS = MN = 2h β gradient of QR = M π (π₯ + β) β π (π₯ β β) 2β xβh N x x+h and as h β 0, the gradient of QR β f β²(x) = gradient of the curve at P β f β²(x) = limit π (π₯ + β) β π (π₯ β β) ββ0 2β In C2 we used the formula f β²(x) = 32 limit π(π₯+β)βπ(π₯) ββ0 β C3 JUNE 2016 SDB x Derivatives of sin x and cos x limit π (π₯ + β) β π (π₯ β β) ββ0 2β f (x) = sin x and f β²(x) = β f β²(x) limit sin (π₯ + β) β sin (π₯ β β) ββ0 2β = limit (sin π₯ cos β +cos π₯ sin β ) β (sin π₯ cos ββcos π₯ sin β ) ββ0 2β = limit 2cos π₯ sin β ββ0 2β = = but β f β²(x) = π limit ββ0 ππ₯ limit ββ0 cos π₯ sin β sin β οΏ½ β β οΏ½ = 1 (sin π₯) = cos x Similarly, we can show that π ππ₯ (cos π₯) = β sin x x must be in RADIANS. C3 JUNE 2016 SDB 33 Index algebraic fractions adding and subtracting, 3 equations, 4 multiplying and dividing, 3 chain rule, 23 further examples, 27 cosecant, 14 cotangent, 14 curves sketching, 13 derivative ax, 26 ex, 25 ln x, 25 differentiation ππ¦ππ₯ = 1 ππ₯ππ¦, 26 proof of results for sin x and cos x, 32 trigonometric functions, 27 equations graphical solutions, 30 exponential eax + b = p, 22 graph of y = e(ax + b) + c, 21 graph of y = ex, 21 functions, 5 combining functions, 7 defining functions, 6 domain, 5 modulus functions, 10 range, 5 34 graphs combining transformations, 12 standard functions, 11 inverse functions domain and range, 9 finding inverse, 7 graphs, 7 iteration conditions for convergence, 31 iteration equation, 30 justification of accuracy, 30 locating the roots, 30 logarithm graph of ln x, 21 natural logarithm, 21 product rule, 23 further examples, 28 quotient rule, 24 further examples, 28 R cos(x + Ξ±), 19 secant, 14 trigonometrical identities, 16 trigonometry finding exact values, 17 graphs of sec, cosec and cot, 14 harder equations, 18 inverse functions, 15 proving identities, 17 C3 JUNE 2016 SDB
© Copyright 2026 Paperzz