On this section, 22 = 4, 32 = 9, 52 = 25, 62 = 36, 72 = 49, 1. Properties of exponentials use this table; do not use a calculator. 23 = 8, 24 = 16, 25 = 32, 26 = 64, 3 4 5 3 = 27, 3 = 81, 3 = 243, 36 = 729, 3 4 5 5 = 125, 5 = 625, 5 = 3125, 56 = 15625, 3 4 5 6 = 216, 6 = 1296, 6 = 7776, 73 = 343, 74 = 2401, 75 = 16807. (73 )4 77 2. 75 7−3 3 7 3. 3 4. 35 25 5. 6251/2 6. 7−4 7. 100 8. 4log4 15 9. log8 86 10. log6 7776 √ 11. log7 343 12. log5 (25 · 125) 13. log6 216 1296 14. log3 (2434 ) 1 2401 16. log10 100 15. log7 ln 16 ln 2 18. log8 128 17. 1 27 = 128, 37 = 2187, Calculus review Evaluate the following derivatives. d (7x5 ) dx d 8 20. (x − 3x4 ) dx 3 d √ x+ 5 21. dx x 19. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. d (12e−4x ) dx d x (2 ) dx 2 d (4e−x ) dx d ln x dx d ln(8x) dx d ln(x2 + 1) dx d ln(ex + 1) dx d sin(x) dx d (3 cos x) dx d tan(5x) dx d cot(2x − 3) dx d sec(x2 ) dx d csc(ex ) dx d 3 arcsin x dx d arctan(x/3) dx d arcsec(x + 3) dx d 2 3x (x e ) dx d 4 (x cos(2x)) dx d sin x dx x 41. Let f (x) = x7 g(x), where g(1) = 5 and g 0 (1) = 3. Find f 0 (1). 42. Let f (x) = 3e−2x g(x), where g(0) = 2 and g 0 (0) = 4. Find f 0 (0). 43. Suppose that y = y(x) is defined by the relation dy y 5 + y = x. Use implicit differentiation to find . dx 44. Suppose that y = y(x) is defined by the relation dy y +x2 y 3 = x4 . Use implicit differentiation to find . dx Evaluate the following integrals. Z 32 √ 5 45. x dx 1 Z 46. Z 47. Z 2x3 + 3 dx x5 3e7x dx −1 48. −e 9 dx x Z 49. 3 sin(5x) dx Z 50. 8 cos(2x) dx Use u-substitution to evaluate the following integrals. Z π 51. cos4 x sin x dx 0 Z 52. Z 53. esin 3x cos 3x dx e7x dx e7x + 5 Z 54. tan x dx Z 55. cot x dx Z 56. 2 sec2 x + sec x tan x dx sec x + tan x Z csc2 x + csc x cot x dx csc x + cot x sec x dx = Z 57. Z csc x dx = Use integration by parts to evaluate the following integrals. Z 58. x sin(3x) dx Z 59. Z 60. Z 61. x2 ln x dx ex sin x dx cos2 x dx Use trigonometric substitution to evaluate the following integrals. Z 1 dx 62. 4 + x2 Z p 63. 9 − x2 dx Z 64. √ 1 dx x2 − 1 Z 65. Use 66. 67. 68. 1 dx (x + 3)2 + 16 partial fractions to evaluate the following integrals. Z 1 dx 9 − x2 Z 4x2 dx (x + 1)(x2 + 1) Z x+5 dx (x + 1)(x + 2)2 3 Answers 1. (73 )4 = 16807. 77 2. 75 7−3 = 49. 3 7 343 3. = . 3 27 4. 35 25 = 1296. 5. 6251/2 = 25. 1 . 6. 7−4 = 2401 7. 100 = 1. 8. 4log4 15 = 15. 9. log8 86 = 6. 10. log6 7776 = 5. √ 3 11. log7 343 = . 2 12. log5 (25 · 125) = 5. 13. log6 216 = −1. 1296 14. log3 (2434 ) = 20. 1 = −4. 2401 16. log10 100 = 2. 15. log7 17. ln 16 = 4. ln 2 18. log8 128 = 7 . 3 d (7x5 ) = 35x4 . dx d 8 20. (x − 3x4 ) = 8x7 − 12x3 . dx d √ 3 1 15 21. x + 5 = √ − 6. dx x 2 x x 19. 22. 23. 24. 25. 26. d (12e−4x ) = −48e−4x . dx d x (2 ) = 2x ln 2. dx 2 2 d (4e−x ) = −8xe−x . dx d 1 ln x = . dx x d 1 ln(8x) = . dx x 4 27. 28. 29. 30. 31. 32. 33. 34. 35. d 2x ln(x2 + 1) = 2 . dx x +1 d ex ln(ex + 1) = x . dx e +1 d sin(x) = cos x. dx d (3 cos x) = −3 sin x. dx d tan(5x) = 5 sec2 (5x). dx d cot(2x − 3) = −2 csc2 (2x − 3). dx d sec(x2 ) = 2x sec(x2 ) tan(x2 ). dx d csc(ex ) = −ex csc(ex ) cot(ex ). dx 3 d 3 arcsin x = √ . dx 1 − x2 d 3 arctan(x/3) = . dx 9 + x2 d 1 p . 37. arcsec(x + 3) = dx |x + 3| (x + 3)2 − 1 36. d 2 3x (x e ) = 2xe3x + 3x2 e3x . dx d 4 39. (x cos(2x)) = 4x3 cos(2x) − 2x4 sin(2x). dx x cos x − sin x d sin x = . 40. dx x x2 38. 41. f 0 (x) = 7x6 g(x) + x7 g 0 (x), so f 0 (1) = 7g(1) + g 0 (1) = 38. 42. f 0 (x) = −6e−2x g(x) + 3e−2x g 0 (x), so f 0 (0) = −6g(0) + 3g 0 (0) = 0. 43. If y 5 + y = x, then dy 1 = 4 . dx 5y + 1 44. If y + x2 y 3 = x4 , then Z 32 45. 1 Z 46. Z 47. Z 3 1 3 dx = x4 − 4 + C. x5 2 4x 3 7x e + C. 7 −1 9 dx = 9 ln |x| = 9 ln 1 − 9 ln e = −9. x −e 3e7x dx = −1 −e 49. 32 5 315 5 6/5 5 . x dx = x = 326/5 − = 6 6 6 6 1 2x3 + 48. Z √ 5 dy 4x3 − 2xy 3 = . dx 3x2 y 2 + 1 3 3 sin(5x) dx = − cos(5x) + C. 5 5 Z 50. 8 cos(2x) dx = 4 sin(2x) + C. Z 51. 0 Z 52. π π 1 1 1 2 cos4 x sin x dx = − cos5 x = − cos5 π + cos5 0 = . 5 5 5 5 0 esin 3x cos 3x dx = 1 sin 3x e + C. 3 1 e7x dx = ln(e7x + 5) + C. +5 7 Z Z Z sin x 54. tan x dx = dx. Using the substitution u = cos x, we see that cos x ln | sec x| + C. Z Z Z cos x dx. Using the substitution u = sin x, we see that 55. cot x dx = sin x Z 56. sec x dx = ln | sec x + tan x| + C. Z 53. e7x sin x dx = − ln | cos x| + C = cos x cos x dx = ln | sin x| + C. sin x Z csc x dx = − ln | csc x + cot x| + C. 57. Z 58. Z 59. Z 60. Z 61. 1 1 x sin(3x) dx = − x cos(3x) + sin(3x) + C. 3 9 1 3 1 x ln x − x3 + C. 3 9 x2 ln x dx = ex sin x dx = cos2 x dx = 1 x 1 e sin x − ex cos x + C. 2 2 1 1 sin x cos x + x + C. 2 2 Z 1 1 x dx = arctan + C. 4 + x2 2 2 Z p p x 1 9 9 − x2 dx = x 9 − x2 + arcsin + C. 63. 2 2 3 Z 1 1 p 2 1 p 2 √ 64. dx = x x − 1 − ln x − 1 + x + C. 2 2 x2 − 1 Z 1 x+3 1 65. dx = arctan + C. (x + 3)2 + 16 4 4 Z Z 1 1/6 1/6 1 1 66. dx = + dx = − ln |3 − x| + ln |3 + x| + C. 9 − x2 3−x 3+x 6 6 Z Z 4x2 2 2x − 2 67. dx = + dx = 2 ln |x + 1| + ln(x2 + 1) − 2 arctan x + C. (x + 1)(x2 + 1) x + 1 x2 + 1 Z Z x+5 4 4 3 3 68. dx = − − dx = 4 ln |x + 1| − 4 ln |x + 2| + + C. (x + 1)(x + 2)2 x + 1 x + 2 (x + 2)2 x+2 62. 6
© Copyright 2026 Paperzz