10350 Tutorial Week 06 - Set 01 Name Section 1. A differentiable function g(x) is such that g 0 (2) = 3, g(2) = −2, 1a. If C(x) = [g(x)]4 g(3) = 10 ? C 0 (2) = find and g 0 (3) = −4 −96 C 0 (x) = 4 · [g(x)]3 · g 0 (x) C 0 (2) = 4 · [g(2)]3 · g 0 (2) = 4 · (−2)3 · 3 = −96 1b. If P (x) = x · eg(x) ? P 0 (3) = find −11e10 P 0 (x) = eg(x) + x · eg(x) · g 0 (x) P 0 (3) = eg(3) + 3 · eg(3) · g 0 (3) = e10 + 3 · e10 · (−4) = −11e10 1c. If Q(x) = 3 (g(x) + 1)4 Q0 (x) = ( find ? Q0 (2) = 36 3 )0 (g(x) + 1)4 = (3 · (g(x) + 1)−4 )0 = 3 · (−4) · (g(x) + 1)−5 · g 0 (x) = 3 · (−4) · g 0 (x) (g(x)+1)5 Q0 (2) = 3 · (−4) · g 0 (2) (g(2)+1)5 = −12 · 3 (−2+1)5 = 36 1 10350 Tutorial Week 06 - Set 02 Name Section sin x 2. Assuming the limit lim = 1, find the values of the following limits showing your steps VERY x→0 x CLEARLY. sin(5x) = x→0 7x 2a. lim lim x→0 sin(5x) sin(5x) 1 sin(5x) 5 1 = lim · = lim · · x→0 x→0 7x x 7 5x 1 7 = lim x→0 5 sin(5x) 5 · = 5x 7 7 sin(2x) = x→0 sin(3x) 2b. lim sin(2x) sin(2x) 1 sin(2x) 3x 1 = lim · = lim · 2x · · x→0 sin(3x) x→0 x→0 1 sin(3x) 2x sin(3x) 3x lim sin(2x) 3x 2x 2 2 · · = 1·1· = x→0 2x sin(3x) 3x 3 3 = lim tan(6x) = x→0 tan x 2c. lim tan(6x) sin(6x) cos x sin(6x) 1 cos x = lim · = lim · · x→0 tan x x→0 cos(6x) sin x x→0 1 sin x cos(6x) lim = lim x→0 sin(6x) x 1 cos x sin(6x) 6x x cos x · 6x · · · = lim · · · x→0 6x sin x x cos(6x) 6x x sin x cos(6x) = 1·6·1·1 = 6 x2 2d. lim = x→0 sin 5x x2 x 5x 1 = lim x · = lim x · · x→0 x→0 sin 5x sin 5x sin 5x 5 = 0·1· 1 = 0 5 2 10350 Tutorial Week 06 - Set 03 Name Section 3. Consider the function sin(x − 1) +2 (x − 1) f (x) = −1 x 6= 1 x=1 3a. Using limits describe the kind of discontinuity at x = 1. sin(x − 1) +2 x→1 (x − 1) lim f (x) = lim x→1 z =x−1 = sin z +2 z→0 z lim =3 So, we have lim f (x) = 3, x→1 f (1) = −1 Thus, removable discontinuity. 3b. Is it possible to redefine f (1) so that f (x) is continuous for all x? Yes, redefine f (1) = 3. 3 10350 Tutorial Week 06 - Set 04 Name Section Find the derivatives of the following functions: 4. f (x) = (2x2 + π)4 f 0 (x) = 4(2x2 + π)3 · 4x = 16x(2x2 + π)3 5. g(x) = ex 2 +2x g 0 (x) = ex 2 +2x · (2x + 2) = (2x + 2)ex 2 +2x 6. h(x) = x cos(2x) h0 (x) = cos(2x) + x · (− sin(2x)) · 2 = cos(2x) − 2x sin(2x) 7. y = e2x − 1 . e2x + 1 y0 = Simplify the expression you get. 2 · e2x · (e2x + 1) − (e2x − 1) · 2 · e2x (e2x + 1)2 = 2e4x + 2e2x − 2e4x + 2e2x (e2x + 1)2 = 4e2x (e2x + 1)2 4
© Copyright 2026 Paperzz