Functions – Derivatives and Antiderivatives Function Derivative Power Function: f x = x n f ʹ′ x = nx n−1 () () () () () n ≠ −1 n = −1 f ʹ′ x = lnb bx bx F x = lnb f ʹ′ x = e x € 1 f ʹ′ x = lnb x F x = e x () ( ) () () € () ( ) f ʹ′ x = ( ) € 1 x € f ʹ′ x = cos x () f ʹ′ x = −sin x () f ʹ′ x = sec2 x () f ʹ′ x = sec x tan x () € f ʹ′ x = −csc x cot x € f ʹ′(x ) = −csc2 x € () () () () F x = 1 lnb (x ln x − x ) F x = x ln x − x () F x = −cos x () € F x = sin x () € € () () Note: A€ ll the antiderivatives would have € “+ C” for completeness. () () () ⎧⎪ 1 x n+1 F x = ⎨ n+1 ⎪⎩ln x () Exponential Function: f = bx € € Natural Exponential: f x = e x € € Logarithm Function: f x = log b x € € Natural Logarithm: f x = ln x € € f x = sin x € € f x = cos x € € f x = tan x € € f x = sec x € € f x = csc x € € f x = cot x € € () Antiderivative € F x = −lncos x () F x = lnsec x + tan x () F x = −lncsc x + cot x () F x = lnsin x ()
© Copyright 2026 Paperzz