Coefficients and Roots of the Polynomials which Define the Derivatives of the Exponential of (-e/T) By Edwin S. Campbell, E. M. Fishbach, and J. O. Hirschfelder The w-th derivative (1) of exp (—t/T) d" exp 1-e/rydT* Wnlt/r\ can be shown to be of the form = T~" exp l-e/T]WJ[t/T] = ¿ bn,i[e/Ty. The b„,i are constant coefficients in a homogeneous polynomial of the w-th order in [e/7"]. These polynomials attain added importance from their relation to the Laguerre polynomials [1] (2) WJMT] = (-mL.it/T2 - «Ln-i[e/r]} L„[e/r]: the w-th order Laguerre polynomial. The zeros of these polynomials are of interest since they locate the extreme values of the derivatives of exp (—t/T). Furthermore, an accurate, simple computation of the Wn for values of (t/T) which occur in physical problems sometimes requires use of the polynomial roots. This occurs whenever the direct evaluation of Wn[t/T~\ by synthetic division introduces at intermediate steps of the calculation numbers which are larger than the value of the polynomial. In such cases the subtraction of these larger numbers can require the use of considerably more than the usual guard figures which allow for the effect of ordinary round-off error. Fortunately the occurrence of this disastrous subtraction in synthetic division does not imply the occurrence when the polynomial is calculated using its roots (3) WJL</r\= fi &/Ï - r..,] r„,j: the Z-th root of WnThe polynomial coefficients, bn,i, are integers. Table I lists all of their non-zero digits which were computed from the recursion relations (4) bn,i = i-iy-H\ K.i = -in + l- l)bn^i,i + Bb-t.t-i(2 < I < n - 1) b»,n = 1. The values in the Table were checked numerically (5)_ in - l)bn,i = -»(« by the distinct relations - l)bn^,i. Received 16 September 1957. 1 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use coefficients Table I. l ßn.l and roots Exact Values of the Coefficients,bn_i Pn.t 1+1 0 , _, ¿2-4-1+1 n n "5 1+6 2-6 3+1 0 0 0 1 -2.4 2 +3-6 3 -I-2 4+l 1 1 1 0 1+12 2 _2'4 3 j-l'î 4_2' 5+1 T ? % 7 7 0 U 1 -7.2 2 +1.8 3 -1.2 4+3 5-3 6+1 2 3 3 2 1 0 1 2 +5.04 -1.512 , , -, 3 4 4 I42 f 5 6 7 +6^3 -4.2 +1 1 2 3 4 5 6 7 8+1 -4.032 +1.4112 -1.4112 +5.88 -1.176 +1.176 -5.6 4 S 5 4 4 3 1 O« 9 1 2 3 4 5 +3.6288 -1.4515 2 +1.6934 4 -8.4672 +2.1168 S 6 6 S 5 7 ó o I2 0164 _7,° ., "•" 1 1 9 4 1 l ßn,, 8 4 6 4 88 7 8 8 87 7 6 5 3 2 0 12 l 2 3 4 S 6 7 8 9 10 -4.7900 +2.6345 -4.3908 +3.2931 -1.3172 +3.0735 -4.3908 +3.9204 ~2178 +7.26 16 088 48 36 544 936 48 8 9 9 9 9 8 7 6 5 3 H 12 -1-32 +1 13 14 1 2 3 4 5 6 7 8 +6.2270 -3.7362 +6.8497 -5.7081 +2.5686 -6.8497 +1.1416 -1.2231 9 10 11 12 13 +8.4942 -3.7752 1 2 3 4 5 6 7 208 1248 2288 024 4608 2288 2048 648 65 4 2 0 +1.0296 -1.56 +1 -8.7178 +5.6665 -1.1333 +1.0388 -5.1943 +1.5583 -2.9682 +3.7102 -3.0918 +1-7177 -6.2462 +1-4196 -1.82 +1 10 11 12 12 11 11 10 9 8 7 5 4 2 0 ' 2 43 +1-3076 74368 -9.1537 20576 +1.9833 06124 8 -1.9833 06124 12 12 13 13 67 , S +10908 4, 7. ill2 88 +1.2700 77 89 -1.1130 79968 +1.08216108 TH!0.2 4 +6.3504 -6°48 +3-24 -? +1 6 S 4 3 1 Ô 9 10 10 10 10 9 9 8 2912 88928 17785 6 74636 8 73184 11955 2 13248 6656 888 16 4 9 10 » 12 13 14 1S 2 0 T3-6288 £, +í-6^ 6 7 8 .?. 10 i>„,, 1 +3.9916 2 -1.9958 3 +2-9937 4 -1-9958 +6.9854 6 -1.3970 7 +1.6632 8-1.188 9 +4.95 10 -1.1 11 +1 2J. ^ < «8« n 11 2 1 0 8 10 of polynomials 67 10 n 12 13 14 ¡5 18368 64 -3.6360 59776 61228 8 +7.7915 -7.2144 072 +3.2792 76 -9.9372 +1.911 -2.1 +Ï" License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 12 11 11 10 8 7 S 5 4 0 coefficients Table I. Exact A.,1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 -2 +1 -3 +3 -2. +8 -2 +3 -3 +2 -1 +5 -1 +2, -2. +1 0922 78988 8 5692 09241 6 6614 88230 4 9666 12249 6 3799 67349 76 7265 46949 12 0777 49273 6 3392 39904 7102 6656 8857 6288 5740 5248 9623 2 5288 52 4 and roots of polynomials 3 Values of the Coefficients, &„,r—Continued Pn.i n I 13 14 14 14 14 13 13 12 11 10 9 19 1 2 3 4 5 6 7 8 9 10 11 7 6 4 2 0 +3 .5568 74280 96 -2 .8454 99424 768 +7 .1137 48561 92 -8 .2993 73322 24 +5 3945 92659 456 -2 1578 37063 7824 +5 6514 78024 192 -1 0091 92504 32 +1 2614 90630 4 -1 1213 25004 8 +7 1357 04576 -3 2435 0208 + 1 0395 84 -2 2848 +3 264 -2 72 +1 14 15 15 15 15 15 14 14 13 12 10 9 8 6 -6 .4023 73705 728 +5 .4420 17649 8688 -1 .4512 04706 63168 + 1 .8140 05883 2896 -1 .2698 04118 30272 +5 5024 84512 64512 -1 5721 38432 18432 +3 0881 29063 2192 -4 2890 68143 36 +4 2890 68143 36 -3 1193 22286 08 + 1 6541 86060 -6 3622 5408 +1 7478 72 -3 3292 +4 1616 -3 06 +1 15 16 17 17 12 13 14 15 16 17 18 19 20 6 7 8 9 10 11 12 13 14 15 16 4 2 0 17 16 16 15 14 13 12 11 9 8 6 4 2 0 1 2 3 4 5 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 /3..i + 1.2164 51004 08832 -1.0948 05903 67948 8 +3.1019 50060 42521 6 -4.1359 33413 90028 8 +3.1019 50060 42521 6 -1.4475 76694 86510 08 +4.4805 94531 72531 2 -9.6012 73996 55424 + 1.4668 61305 02912 -1.6298 45894 4768 + 1.3335 10277 2992 -8.0818 80468 48 +3.6264 84825 6 -1.1955 44448 +2.8465 344 -4.7442 24 +5.2326 -3.42 +1 -2.4329 02008 17664 +2.3112 56907 76780 8 -6.9337 70723 30342 4 +9.8228 41858 01318 4 -7.8582 73486 41054 72 +3.9291 36743 20527 36 -1.3097 12247 73509 12 +3.0404 03432 24217 6 -5.0673 39053 73696 +6.1934 14399 01184 -5.6303 76726 3744 +3.8388 93222 528 -1.9686 63191 04 +7.5717 81504 -2.1633 66144 +4.5070 128 -6.6279 6 +6.498 -3.8 +1 +5.1090 -5.1090 + 1.6178 -2.4268 +2.0627 -1.1001 +3.9291 -9.8228 + 1.7735 -2.3647 +2.3647 -1.7914 + 1.0335 -4.5430 + 1.5143 -3.7858 +6.9593 -9.0972 + 7.98 -4.2 +1 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 94217 17094 4 94217 17094 4 79835 43746 56 19753 15619 84 96790 18276 864 58288 09747 6608 36743 20527 36 41858 01318 4 68668 80793 6 58225 07724 8 58225 07724 8 83503 8464 48175 296 68902 4 56300 8 90752 58 17 18 18 18 18 18 17 16 16 15 14 12 11 10 8 6 4 2 0 18 19 19 19 19 19 19 18 17 16 15 14 13 11 10 8 6 4 2 0 19 20 21 21 21 21 20 19 19 18 17 16 15 13 12 10 8 6 4 2 0 coefficients Table I. Exact and roots of polynomials Values of the Coefficients, b„,¡—Continued I ßn.l Pn.l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 -1.1240 00727 77760 768 +1.1802 00764 16648 8064 -3.9340 02547 22162 688 +6.2288 37366 43424 256 -5.6059 53629 79081 8304 +3.1767 07056 88146 37056 -1.210174116 90722 42688 +3.2415 37813 14435 072 -6.3029 90192 22512 64 +9.1043 19166 54740 48 -9.9319 84545 32444 16 +8.2766 53787 77036 8 -5.3055 47299 8528 +2.6236 22291 136 -9.9947 51585 28 +2.9151 35879 04 -6.4304 46792 +1.0507 266 -1.2289 2 +9.702 -4.62 +1 21 22 22 22 22 22 22 21 20 19 18 17 16 15 13 12 10 9 7 4 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 +2.5852 -2.8437 +9.9530 -1.6588 +1.5758 -9.4553 +3.8271 -1.0934 +2.2780 -3.5436 +4.1879 -3.8072 +2.6846 -1.4750 +6.3216 -2.1072 +5.4230 -1.0633 +1.5545 -1.6364 +1.1688 -5.06 +1 01673 88849 7664 21841 27734 74304 26444 47071 60064 37740 74511 93344 95853 70786 33676 8 75122 24718 02060 8 75644 71909 67500 8 78755 63402 76428 8 80740 90422 4256 81152 51768 2176 86816 61180 6208 60742 37436 928 06933 72551 68 58754 79424 80377 6896 26792 5632 10127 92 35319 2 838 04 6 22 23 23 24 24 23 23 23 22 21 20 19 18 17 15 14 12 11 9 7 5 2 0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 -6.2044 +7.1351 -2.6162 +4.5783 -4.5783 +2.8996 -1.2427 +3.7725 -8.3833 +1.3972 -1.7782 +1.7513 -1.3471 +8.1423 -3.8772 +1.4539 -4.2764 +9.7826 -1.7162 +2.2582 84017 33239 43936 56619 93225 35526 4 24093 97515 96359 68 92164 45652 93629 44 92164 45652 93629 44 48370 82246 85965 312 06444 63820 08270 848 01706 93739 53679 36 37126 52754 52620 8 22854 42125 75436 8 83632 89978 23283 2 39941 49220 98688 84570 37862 2976 24326 46420 48 97298 31628 8 86486 86860 8 30843 7312 84936 64 60515 2 3752 23 24 25 25 25 25 25 24 23 23 22 21 20 18 17 16 14 12 11 9 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use coefficients Table « I. Exact and roots of polynomials 5 Values of the Coefficients, bn,t—Continued l ßn.l Pn.l 24 21 22 23 24 -2.1507 024 +1.3965 6 -5.52 +1 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 +1.5511 21004 33309 85984 -1.8613 45205 19971 83180 8 +7.1351 56619 93225 35526 4 -1.308112046 98757 98179 84 +1.3735 17649 33695 88088 832 -9.1567 84328 91305 87258 88 +4.1423 54815 46066 94236 16 -1.3314 71190 68378 66004 48 +3.1437 51422 44782 94732 8 -5.5888 91417 68503 01747 2 +7.6212 15569 57049 56928 -8.0831 07422 27173 7856 +6.7359 22851 89311 488 -4.4412 67814 43502 08 +2.3263 78378 98977 28 -9.6932 43245 79072 +3.2073 23132 7984 -8.3851 58517 12 +1.7162 60515 2 -2.7098 85024 +3.2260 536 -2.7931 2 +1.656 -6 +1 25 26 26 27 27 26 26 26 25 24 23 22 21 20 19 17 16 14 13 11 9 7 5 2 0 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 -4.0329 +5.0411 -2.0164 +3.8648 -4.2513 +2.9759 -1.4171 +4.8080 -1.2020 +2.2704 -3.3025 +3.7528 -3.3679 +2.4056 -1.3746 +6.3006 -2.3164 +6.8129 -1.5936 +2.9357 -4.1938 +4.5388 -3.588 +1.95 -6.5 +1 14611 26605 63558 43264 08257 04448 57305 63302 81779 76502 46330 40076 64152 70963 44084 54906 89674 40859 21384 23654 48028 90410 80256 27238 22602 70064 06809 87138 43454 35084 26746 81388 14668 71303 19759 2576 61425 94655 744 86732 81896 96 78133 03941 12 08109 76396 8 00040 3544 41295 16 70478 4 08776 6968 2 26 27 28 28 28 28 28 27 27 26 25 24 23 22 21 19 18 16 15 13 11 9 7 5 2 0 1 2 3 4 5 6 7 8 9 +1.0888 -1.4155 +5.8981 -1.1796 +1.3565 -9.9481 +4.9740 -1.7764 +4.6878 86945 04183 53028 55438 37618 97660 27523 79532 71652 36461 92117 34054 96058 67027 62878 09652 88150 53249 27 7 5 2 0 4 2 8 48 136 16 4 6 8 8 52160 768 57808 9984 74204 16 14840 832 97066 9568 45157 6832 22578 8416 58063 872 86557 44 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 28 29 29 30 30 29 29 29 28 coefficients Table I. Exact and roots of polynomials Values of the Coefficients, 6„,¡—Continued I ßn.l Pn.l 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 -9.3757 +1.4489 -1.7563 +1.6887 -1.2990 +8.0418 -4.0209 +1.6261 -5.3140 +1.3984 -2.9440 +4.9068 -6.3725 +6.2969 -4.563 +2.2815 -7.02 +1 76301 06499 73114 88 83610 16459 04935 936 43769 89647 33255 68 92086 43891 66592 70835 72224 3584 67078 28055 552 33539 14027 776 12828 32878 88 94210 2248 45844 796 96515 36 27525 6 0328 4 27 27 26 25 24 22 21 20 18 17 15 13 11 9 7 5 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 -3.0488 +4.1159 -1.7835 +3.7158 -4.4589 +3.4185 -1.7906 +6.7150 -1.8652 +3.9378 -6.4437 +8.2987 -8.5115 +7.0149 -4.6766 +2.5331 -1.1175 +4.0174 -1.1746 +2.7821 -5.2993 +8.0293 -9.5209 +8.6240 -5.7493 +2.6535 -7.56 +1 83446 11713 86050 1504 92652 25813 71167 70304 96815 97852 60839 33798 4 26699 95526 26748 6208 92039 94631 52098 34496 60563 95884 16608 73113 6 74581 12129 80128 38297 6 29679 20486 75481 43616 86022 00135 20967 0656 26046 44729 88708 2496 15348 73194 36068 0448 24312 76083 64633 088 12115 65213 99623 68 82512 90011 53536 55008 60007 69024 88129 65837 49888 82998 37869 4848 55222 92994 88 94509 62864 71207 0152 73727 648 54132 8 7328 7 8 6 29 30 31 31 31 31 31 30 30 29 28 27 26 25 24 23 22 20 19 17 15 13 11 9 7 5 2 0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 +8.8417 -1.2378 +5.5703 -1.2069 +1.5086 -1.2069 +6.6092 -2.5964 +7.5730 -1.6829 +2.9068 -3.9638 +4.3195 -3.7974 +2.7124 -1.5822 +7.5623 -2.9656 +9.5385 61993 73970 19545 43616 46679 12355 82736 36106 24 10056 05601 22313 62478 08 00512 14546 93167 95203 584 25640 18183 66459 94004 48 00512 14546 93167 95203 584 17090 32042 72110 21352 96 78142 62588 21186 15531 52 61249 32548 95126 28633 6 02499 85010 87805 84140 8 31590 65018 78937 36243 2 61259 97752 89460 03968 92398 69346 10309 0176 43866 98326 24447 488 59904 98804 46033 92 68277 90969 26853 12 11622 36250 18048 12400 92647 1296 19418 18455 68 30 32 32 33 33 33 32 32 31 31 30 29 28 27 26 25 23 22 20 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use coefficients Table » I. Exact 7 and roots of polynomials Values of the Coefficients, bn,i—Continued / ßn.i P..I 29 20 21 22 23 24 25 26 27 28 29 -2.5101 +5.3788 -9.3140 +1.2885 -1.4005 +1.1671 -7.1823 +3.0693 -8.12 +1 36688 99593 6 64333 56272 50794 048 05050 56 48968 2414 024 6 19 17 15 14 12 10 7 5 2 0 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 -2.6525 +3.8461 -1.7948 +4.0384 -5.2500 +4.3750 -2.5000 +1.0267 -3.1374 +7.3206 -1.3310 +1.9158 -2.2106 +2.0648 -1.5732 +9.8326 -5.0609 +2.1500 -7.5441 +2.1838 -5.1995 +1.0129 -1.6014 +2.0307 -2.0307 +1.5621 -8.9011 +3.5322 -8.7 +1 28598 12191 05863 63084 8 66467 27677 03502 26472 96 77684 72915 94967 72354 048 74790 64060 88677 37796 608 17227 83279 15280 59135 5904 14356 52732 62733 82612 992 08203 72990 07276 47207 424 89083 67478 06559 97960 192 11089 00627 42266 60433 92 25874 34797 31955 41012 48 22886 24508 60355 52911 36 66275 65580 56572 35251 2 14933 44900 65275 79136 60102 67214 89543 3216 26744 89306 58699 6736 67155 58166 16872 96 31624 19644 35155 2 68990 67169 16896 01721 65505 856 18919 42646 432 68855 77729 6 03023 85272 27705 696 96003 6 96003 6 50772 44 32 33 34 34 34 34 34 34 33 32 32 31 30 29 28 26 25 24 22 21 19 18 16 14 12 10 7 5 2 0 Legend: Wn(x) = 2 b„,, xl i-i b..t = ßn,I X ÎO*"".', 1 g ft.,1 < 10 Table n I II. Roots of Wn (t/T) rn_i C e„,i 2 1 2.00000 00000 0000 0 0 3 3 1 2 1.26794 91924 3112 4.73205 08075 6888 0 0 5 5 4 4 4 1 2 3 0.93582 22275 2409 3.30540 72893 3227 7.75877 04831 4363 0 0 0 5 5 5 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use coefficients 8 Table » 5 5 5 5 / 8 8 8 8 8 8 8 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 9 9 9 9 9 9 9 9 II. and roots of polynomials Roots of Wn (t/T)—Continued r„,i 0.46102 1.56358 3.35205 5.91629 9.42069 14.19416 21.09217 19279 8143 50076 4627 87516 8905 43126 8321 08532 7825 59585 7838 31510 1760 69712 0486 30659 2081 81217 1117 98096 4345 15204 7699 65667 0471 04290 8311 35523 8068 42198 0496 61896 5431 05025 3674 72490 2042 93830 2156 55480 0748 69079 5447 1 2 3 4 5 6 7 8 0.40938 1.38496 2.95625 5.18194 8.16170 12.07005 17.24973 24.58595 10 10 10 10 10 10 10 10 10 1 2 3 4 5 6 7 8 9 11 11 11 11 11 11 11 11 11 11 1 2 3 4 5 6 7 8 9 10 6 6 6 6 6 0.74329 2.57163 5.73117 10.95389 C e„,i 0 0 0 1 5 5 50 6 0 0 0 0 1 0 0 0 0 1 1 50 50 50 50 10 50 50 50 50 6 16 0 0 0 0 0 1 1 50 50 50 50 50 10 22 35732 0319 31848 0312 45561 6887 31010 4007 96881 4582 51268 3715 55261 4898 52436 5281 0 0 0 0 0 1 1 1 5 5 5 5 5 7 15 30 0.36817 1.24335 2.64603 4.61688 7.22178 10.56732 14.83591 20.38218 28.11834 84529 4174 79621 4047 38413 8420 25146 3485 65393 9663 08077 4184 45152 6107 19854 4899 33810 4993 0 0 0 0 0 1 1 1 1 5 5 5 50 50 56 110 207 39 0.33452 1.12825 2.39586 4.16684 6.48735 9.42835 13.10172 17.69648 23.57778 31.68280 86763 2476 33558 7666 99247 4731 09879 2878 30313 8081 48133 3561 35803 6780 75668 4621 70883 6019 09748 3192 0 0 0 0 0 0 1 1 1 1 5 5 5 5 5 5 9 16 28 50 0.61703 2.11296 4.61083 8.39906 14.26010 0.52766 1.79629 3.87664 6.91881 11.23461 17.64596 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use coefficients Table ' II. and roots 9 of polynomials Roots of Wn (t/T)—Continued r».i C 12 12 12 12 12 12 12 12 12 12 12 1 2 3 4 5 6 7 8 9 10 11 0.30652 1.03279 2.18961 3.79904 5.89491 8.52729 11.77100 15.74226 20.63580 26.82634 35.27439 67021 3005 73987 7972 19419 6840 76060 5497 11715 0275 20080 7027 65654 9068 02870 2615 56686 4129 99493 7082 07009 6510 0 0 0 0 0 0 5 5 5 5 5 5 7 12 213 36 62 13 13 13 13 13 13 13 13 13 13 13 13 1 2 3 4 5 6 7 8 9 10 11 12 0.28285 0.95232 2.01649 3.49235 5.40549 7.79281 10.70738 14.22715 18.47199 23.64178 30.12005 38.88928 83482 60413 21385 40697 10200 39404 86889 23637 66342 37524 86261 43760 3992 6462 7771 7799 1572 1242 8909 8996 2982 0122 0650 9550 0 0 0 0 0 0 5 5 50 50 5 5 6 10 171 279 455 76 14 14 14 14 14 14 14 14 14 14 14 14 14 1 2 3 4 5 6 7 8 9 10 11 12 13 0.26258 0.88355 1.86903 3.23241 4.99357 7.18061 9.83280 13.00562 16.77961 21.27791 26.70503 33.45278 42.52444 83981 7108 03073 8774 38151 9979 86994 5120 56070 7419 04941 0079 82510 2000 24002 5865 36411 7585 17554 4831 40989 2773 49657 6721 75660 1840 0 0 0 0 0 0 0 5 5 50 15 15 1 2 3 4 5 6 0.24503 0.82408 1.74187 3.00913 4.64163 6.66134 9.09830 11.99370 15.40498 19.41499 24.14975 29.81810 36.81962 46.17743 30150 9310 22200 4784 24007 6449 24590 1792 40665 9064 14966 2717 27037 7053 34331 8574 80310 5145 28281 6615 79520 2928 51196 7132 42569 9721 00169 8345 0 0 0 0 0 0 0 15 15 15 15 15 15 15 15 15 15 15 15 7 8 9 10 11 12 13 14 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 50 5 5 5 85 141 226 357 559 91 5 50 50 50 50 5 5 7 119 1890 2920 4460 6760 1060 coefficients Table 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 of polynomials Roots of Wn (t/T)~ -Continued C rn.l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0.22968 0.77214 1.63105 2.81514 4.33716 6.21464 8.47116 11.13833 14.25891 17.89205 22.12262 27.07931 32.97497 40.21658 49.84622 05054 2513 49103 7539 30990 6745 45900 1225 40773 3756 27645 5924 39813 4671 19657 5080 00216 2446 34381 6953 01748 2668 14990 4742 35524 0162 37114 8568 17085 5745 0 0 0 0 0 0 0 1 2 3 4 5 6 03052 3945 82432 5183 31603 7353 09986 1195 81608 8018 55151 0563 41853 0666 82899 5104 10707 0697 32168 6805 60200 3371 70253 3575 29201 6784 45436 3216 51841 5001 11602 5465 0 0 0 0 0 0 0 12 13 14 15 16 0.21614 0.72638 1.53359 2.64497 4.07097 5.82585 7.92850 10.40380 13.28466 16.61517 20.45600 24.89384 30.05986 36.17069 43.64036 53.52915 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0.20410 0.68576 1.44719 2.49443 3.83615 5.48411 7.45372 9.76498 12.44386 15.52434 19.05171 23.08800 27.72155 33.08585 39.40115 47.08820 57.22481 91085 7933 75894 9453 86793 8049 08859 6248 60319 9932 54208 4047 29495 8128 43667 5180 10519 8395 30012 1457 87593 8568 07008 7174 63462 7824 98280 6407 37933 0861 96546 0141 18319 1492 0 0 0 0 0 0 0 0 7 8 9 10 11 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 II. and roots License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use e.,i 5 5 50 50 5 5 5 6 102 1600 2450 3680 5450 8060 1240 5 50 50 50 50 50 5 5 88 1380 2090 30900 45000 65600 9540 14300 5 5 50 50 50 5 5 5 77 1200 1810 26700 38500 54800 77500 1 11000 16300 coefficients Table I 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 21 21 21 21 21 21 1 2 3 4 5 6 21 21 21 21 21 21 21 21 8 9 10 11 12 13 14 17 18 19 7 II. and roots 11 of polynomials Roots of Wn (t/T)—Continued en,i ?n,l 0.19334 0.64946 1.37007 2.36027 3.62737 5.18117 7.03443 9.20350 11.70932 14.57876 17.84675 21.55965 25.78070 30.59981 36.15265 42.66288 50.55778 60.93200 77686 7901 18107 9655 54867 1706 76257 7508 58656 5560 49562 2015 06230 6566 66842 8214 47926 7879 11306 9283 98274 1882 87534 0514 10050 5240 44865 1918 02790 4671 77797 8564 33977 1778 77265 0073 0 0 0 0 0 0 0 0 1 1 1 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 69 1060 15900 12 17 23 33 45 64 93 0.18366 0.61681 1.30079 2.23994 3.44047 4.91064 6.66116 8.70559 11.06110 13.74939 16.79812 20.24308 24.13156 28.52794 33.52361 39.25629 45.95295 54.04709 64.64971 51730 9616 63821 2673 94029 6677 93990 0886 19428 8150 58796 7473 06120 5821 71771 2802 86835 7575 41200 8341 30059 5300 49633 0246 72676 0267 79713 1414 76172 8890 42907 8263 06486 3834 30247 0194 24378 1605 0 0 0 50 50 500 500 500 50 50 50 612 9450 14100 10 15 20 28 39 53 0.17490 0.58730 1.23822 2.13139 3.27213 4.66749 6.32653 8.26067 10.48416 13.01484 15.87508 19.09325 22.70589 26.76117 67523 8661 30806 3812 51018 3420 62600 7712 31335 1677 44658 8837 61976 7362 09520 1371 73812 0829 87721 5828 70127 1499 19076 0624 38881 7321 02293 7952 0 0 0 0 0 1 1 1 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 73 105 50 50 500 500 500 500 500 50 55 8470 1 26000 18 26 357 coefficients Table II. and roots of polynomials Roots of Wn (t/T)- -Continued C fn.l 21 21 21 21 21 21 15 16 17 18 19 20 31.32451 36.48870 42.39342 49.26881 57.55442 68.37703 61370 0729 33461 4824 27457 7640 38498 6849 09713 1555 78145 5231 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 1 2 3 4 5 6 61390 1971 08612 5406 07583 5136 74520 5904 20402 1490 50426 1758 21681 1509 77586 0933 88709 4385 86988 9685 02175 9276 77154 4042 84662 6343 63492 4893 42999 0910 02974 6011 82536 2833 99787 8368 92435 3047 57571 7212 96312 7984 0 0 0 0 0 0 0 0 0 19 20 21 0.16694 0.56049 1.18142 2.03295 3.11969 4.44769 6.02471 7.86043 9.96688 12.35891 15.05493 18.07788 21.45678 25.22887 29.44311 34.16593 39.49140 45.56112 52.60828 61.07827 72.11320 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0.15967 0.53602 1.12962 1.94327 2.98097 4.24798 5.75098 7.49829 9.50013 11.76904 14.32037 17.17304 20.35054 23.88244 27.80661 32.17279 37.04832 42.52855 48.75689 55.96946 64.61735 75.85754 90124 6359 44507 2533 03228 4296 26194 9229 42342 9980 60975 3645 94501 8811 71042 4725 87408 1857 61305 3152 80923 6802 70973 6204 65523 0563 31429 7127 96348 6417 15883 7417 56128 1149 84501 9839 07697 4619 93367 7959 31062 9634 84527 5272 0 0 0 0 0 0 0 0 0 7 8 9 10 11 12 13 14 15 16 17 18 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 490 666 898 1210 1650 235 50 50 500 500 500 500 50 50 50 765 11300 63000 230 318 4310 5830 7810 10400 13900 1860 259 50 50 500 500 500 500 500 50 5 69 1030 14700 10 284 3850 5170 68600 90600 19000 15600 20800 2870 coefficients Table I 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 II. and roots of polynomials 13 Roots of Wn (t/T)— Continued r..i C 0.15301 0.51360 1.08218 1.86121 2.85418 4.06569 5.50154 7.16891 9.07661 11.23531 13.65799 16.36046 19.36209 22.68683 26.36479 30.43444 34.94620 39.96833 45.59738 51.97849 59.35068 68.17050 79.60945 84895 9942 83707 0681 80942 3753 64108 9897 83431 3952 47966 6047 23910 2483 89382 1722 44660 1974 54871 5978 92756 6470 86713 7067 01881 5387 57294 7187 43150 0290 26913 9403 46462 8518 92266 7395 43134 3094 53322 1339 02360 3490 51810 0240 44050 8424 0 0 0 0 0 0 0 0 0 16257 8146 48461 2182 20353 8078 95467 3969 45322 0507 82901 4203 15403 0644 56382 7667 61931 4098 14241 0897 36754 8216 13581 6414 24144 4275 28735 8341 20017 9402 24031 5677 73051 8389 10435 6086 51864 7370 32211 6803 77787 5012 41754 7154 59637 8361 49267 2194 0 0 0 0 0 0 0 0 0 67262 5809 45378 8442 34056 2151 16871 9240 0 0 0 0 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 17 18 19 20 21 22 23 24 0.14689 0.49299 1.03859 1.78584 2.73784 3.89860 5.27322 6.86794 8.69039 10.74977 13.05715 15.62591 18.47224 21.61592 25.08136 28.89913 33.10826 37.75986 42.92302 48.69545 55.22399 62.75044 71.73671 83.36839 26 26 26 26 1 2 3 4 0.14123 0.47397 0.99838 1.71638 1 1 1 1 5 5 50 50 50 50 50 5 5 63 933 13400 88000 2580 3470 46300 61100 80000 04000 36000 77000 23100 3140 5 5 50 50 50 50 50 50 5 58 852 12200 1 71000 2340 3140 21 27 36 46 59 76 98 129 174 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 5 5 50 50 coefficients Table » I II. and roots of polynomials Roots of Wn (t/T)—Continued r„,i C e»,i 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2.63069 3.74487 5.06340 6.59177 8.33662 10.30594 12.50927 14.95806 17.66600 20.64967 23.92920 27.52942 31.48133 35.82451 40.61069 45.90978 51.82061 58.49167 66.16744 75.31508 87.13389 31145 8470 77262 0273 83123 3855 56068 7320 63598 0514 30256 1368 80113 1609 12826 7794 89930 4484 47456 6110 78044 9273 09021 3584 78942 1101 67628 4751 00156 5943 68582 2976 58754 0514 48142 7643 93598 1048 13581 0590 48199 8148 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 50 50 50 50 5 5 78 11200 1 56000 2140 14 19 25 32 414 526 672 854 110 141 189 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0.13600 0.45636 0.96118 1.65214 2.53167 3.60294 4.86990 6.33740 8.01127 9.89850 12.00738 14.34778 16.93144 19.77239 22.88750 26.29727 30.02688 34.10778 38.58003 43.49597 48.92632 54.97096 61.77999 69.60052 78.90479 90.90552 12570 4444 93581 3000 10273 0921 28929 8375 76794 9454 55780 8908 60826 2376 31557 2642 62543 8048 34830 7608 61381 8993 78810 5506 76204 2762 41164 6035 43962 7852 10029 7123 18438 7846 47142 1721 51906 4629 58235 1797 26588 5339 30253 0608 23077 3237 54573 4751 29547 6498 80995 1289 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 5 5 50 50 50 50 50 50 5 5 72 10300 143 1950 13 17 23 292 374 472 598 758 952 1210 156 206 28 28 28 28 1 2 3 4 0.13114 0.44002 0.92665 1.59256 02048 4340 68410 2122 89979 7975 14353 9651 0 0 0 0 5 5 5 5 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use coefficients 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 and roots Table I II. 5 6 7 8 9 2.43989 88598 8214 3.47148 98767 8727 4.69085 73686 2107 6.10229 80663 5926 7.71097 27209 1486 9.52302 14214 8264 11.54571 07983 2683 13.78762 26083 0963 16.25889 71483 2334 18.97155 08191 9327 21.93989 61709 5973 25.18110 69743 2692 28.71599 40224 8103 32.57009 65076 4767 36.77526 28337 6414 41.37202 26709 0563 46.41330 39270 2954 51.97058 20538 3640 58.14479 02456 7904 65.08757 79811 6239 73.04862 35108 1621 82.50512 46756 5939 94.68291 12582 9295 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 15 of polynomials Roots of Wn (t/T)—Continued r».i 0.12661 47772 6314 0.42481 56894 2803 0.89453 69967 2982 1.53714 63597 6714 2.35458 60074 0362 3.34938 08943 4731 4.52468 00068 0930 5.88431 36574 5907 7.43286 73847 3363 9.17577 57820 5631 11.11944 12276 9518 13.27138 44455 9570 15.64043 65527 0260 18.23698 62111 4301 21.07330 14271 4752 24.16395 46279 8314 27.52639 39971 5279 31.18172 74331 4674 35.15582 50255 9695 39.48091 56524 1023 44.19798 25434 6970 49.36051 71053 0558 55.04072 95577 5849 61.34056 90221 6674 68.41319 89167 3268 76.51079 93357 6897 86.11542 16992 4401 98.46569 76629 3931 e».i 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 5 5 5 5 5 5 7 10 132 1800 12 16 21 266 338 430 5380 6760 8480 10600 1330 171 224 5 5 5 5 5 5 5 5 5 5 6 9 123 1670 11 15 19 244 308 3900 4880 6100 7580 9440 11700 14700 1860 242 16 coefficients Table I 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 II. and roots of polynomials Roots of Wn (t/T)- -Continued 0.12239 0.41062 0.86457 1.48547 2.27507 3.23564 4.37001 5.68161 7.17453 8.85361 10.72452 12.79390 15.06949 17.56035 20.27709 23.23221 26.44052 29.91973 33.69122 37.78117 42.22218 47.05567 52.33567 58.13511 64.55692 71.75574 79.98619 89.73509 102.25357 25 26 27 28 29 C r*,i 13636 8232 22202 4781 25660 9784 36509 1174 48206 5174 71256 6498 73777 7174 56855 1702 65183 2250 57459 8089 73673 4938 50612 0659 56117 3280 39915 4328 38755 2512 33320 6006 46096 4200 14194 9155 07222 7026 59363 7412 88741 5065 82251 9296 93797 4686 50396 8783 28253 1261 28866 9527 96989 1509 12115 8820 28564 7799 5 5 5 5 5 5 5 5 5 5 6 8 11 1540 10 14 18 224 284 3580 4440 55200 68400 84800 1 04000 12900 16000 2020 260 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Legend: r»,i: the Ith root of the n-th order polynomial, W„. The estimated error bound is | r„., - root | g e„,, X 10-» The significance of 0: the root was 1: the root was 2: the root was the numbers in column C is: computed explicitly computed as rn,i = 10/V„,i computed as rn.i = 20/f„j The formulae of equation (4) can be verified by formal construction of successive derivatives of exp tions have been established they can be used with a establish the correctness of explicit formulae which poses, albeit not for calculations ,,, (6) r (-!)-'/(/+ *-•=-prnn-• l)t ... induction based on the actual (—t/T) [1]. After these relasimple induction argument to are convenient for other pur- (n- l)'n The roots were located by the method of false position [2], which depends upon evaluation of the polynomials for successive approximations to the roots. The evaluations were computed by synthetic division using double precision arithmetic on the ORDVACcomputer at the Aberdeen Proving Ground. The polynomials were calculated in one of three forms as described in the legend to Table II. This was necessary since the original form of the polynomial was relatively insensitive to changes in approximations for certain roots; that is, the remainder was too small License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 17 COEFFICIENTS AND ROOTS OF POLYNOMIALS Table III. Symmetric Function Check on Roots n in.n-l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 812 870 dn 0 0 1 4 10 +11 6 +1 28 + 5 + 20 + 47 + 94 - 371 - 1263 -13059 +21289 + 927 + 27 - 6267 +39096 - 2411 -55267 - 5915 +23010 + 1762 + 223 - 4329 -18880 Legend: fc„.„_i - 2 r„,¡ = dn X 10"» i=i compared with the largest term in the synthetic division schema. When this occurred, one of the other forms of the polynomial was used in order to define the root more accurately. The error estimates of Table II were based upon locating the root between two approximate values which gave remainders of opposite sign. Although this method of locating roots is inherently self-checking, a further numerical test was made by computing the symmetric function summations of Table III. Edwin S. Campbell New York University, New York E. M. Fischbach Ballistic Research Laboratories, Aberdeen, Maryland J. O. Hirschfelder University of Wisconsin Milwaukee, Wisconsin 1. J. O. Hirschfelder Propagation (CM-784), 17 ff. 2. F. B. Hildebrand, & Edwin S. Campbell, Analytical (power series) Solutions of Flame University of Wisconsin Naval Research Laboratory, May 27, 1953, p. Introduction to Numerical Analysis, McGraw-Hill 1956, p. 446. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use Book Co., New York,
© Copyright 2026 Paperzz