Math Apps 12. Sinusoidal Functions. Third Assignment 1. Describe how the given functions differ from y = sin(x) (For example: shifted up by 7, period is half the length) a) y = 5 sin (x) + 2 _____________________________________________________ b) y = sin (3x) – 4 _____________________________________________________ c) y = 2sin(x – 3) _____________________________________________________ d) y = 1.2sin (πx +π) – 1 _____________________________________________________ 2. For each graph fill in the table. a) b) Amp Period Amp Period Horiz Shft Verti Shft Horiz Shft Verti Shft 3. Determine the equation of a sine function have the indicated amplitude, period, and phase shifts. a) Amplitude is 5, vertical shift is – 1, horizontal shift is 2. b) Period is π, vertical shift is 3. c) Amplitude is 0.5, period is 4π, horizontal shift is π. 4. For the following equations determine the value. All x values are in radians unless otherwise specified. y = sin(x) find y if, a) x = π b) x = 135° c) x = 1.7 d) x = – 2.53 y = 3sin(2x – 4 ) + 1 find y if, a) x = π b) x = 1.7 c) x = – 2.53 y = -2sin(4x + 320°) – 7 find y if, a) x = 90° b) x = 135° c) x = 57° d) x = – 117° 5. For the following graphs determine the corresponding y and x values for the values given a) x = 2, y = b) x = 5, y = _____ _____ c) Y = -1, x = ________________ d) Y = -3, x = ________________ a) x = 0, y = ________ b) x = 3.7, y = ______ c) y = 2 , x = ______________ d) y = 1.2, x = ____________ a) x = 5, y = ______ b) x = 3.25, y = ______ c) y = 0.3 , x = _________ 6. For the following equations determine the value. All x values are in radians unless otherwise specified. y = sin(x) find all x’s where x is between zero and two pi ( 0 ≤ x <2π ) a) y = 1 b) y = 0 c) y = 0.866 d) x = -0.4 y = 3sin(x + π/2 ) + 1 find all x’s where x is between zero and two pi ( 0 ≤ x <2π ) a) y = 4 b) y = -2 c) y = 0 y = -2sin(4x ) find all x’s where x is between zero and half pi ( 0 ≤ x <π/2 ) a) y = 1 b) y = - 0.5 c) y = 1.6 d) y = 8
© Copyright 2026 Paperzz