Finding Repeating Decimals Name: Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 ⁄22 = 2×11 6. T ⁄13 = 13 7. R 8. T 9. R 10. T 11. R 12. R 1) 1 2) 4 3) 4) 5) 6) 29 220 ÷ 29 = 3 52 ÷ 6 = 2×3×3 53 ÷ 18 = 2 18 ÷ 4 = ⁄26 = 7) 3 2×13 ⁄2 = 2 13. R ⁄7 = 7 14. R 15. R 8) 1 9) 4 10) 2×2 69 ÷ 12 = 11) 102 ÷ 21 = 7 12) 107 ÷ 19 = 19 13) 13 ⁄17 = ⁄11 = 14) 6 15) Answers 17 11 10 ÷ 3 = Math 3 www.CommonCoreSheets.com 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Answer Key Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 ⁄22 = 2×11 6. T ⁄13 = 13 7. R 8. T 9. R 10. T 11. R 12. R 1) 1 2) 4 3) 4) 5) 6) 29 220 ÷ 29 = 3 52 ÷ 6 = 2×3×3 53 ÷ 18 = 2 18 ÷ 4 = ⁄26 = 7) 3 2×13 ⁄2 = 2 13. R ⁄7 = 7 14. R 15. R 8) 1 9) 4 10) 2×2 69 ÷ 12 = 11) 102 ÷ 21 = 7 12) 107 ÷ 19 = 19 13) 13 ⁄17 = ⁄11 = 14) 6 15) Answers 17 11 10 ÷ 3 = Math 3 www.CommonCoreSheets.com 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. T 6. R 7. T 8. R 9. T 10. T A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) 10 2) 3) 4) 5) ⁄27 = 91 ÷ 9 = 2×2×3 3×3 13 240 ÷ 26 = 38 ÷ 5 = 5 ⁄23 = 23 11. R ⁄10 = 2×5 12. R ⁄29 = 29 13. T 14. R 15. T 7) 9 8) 6 ⁄2 = 9) 1 11) 3×3×3 127 ÷ 12 = 6) 6 10) Answers 2 2×2×2×2 87 ÷ 16 = 19 165 ÷ 19 = ⁄6 = 2×3 ⁄8 = 2×2 12) 5 13) 6 14) 222 ÷ 22 = 15) 23 ÷ 4 = Math 11 2×2 www.CommonCoreSheets.com 1 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Answer Key Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. T 6. R 7. T 8. R 9. T 10. T A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) 10 2) 3) 4) 5) ⁄27 = 91 ÷ 9 = 2×2×3 3×3 13 240 ÷ 26 = 38 ÷ 5 = 5 ⁄23 = 23 11. R ⁄10 = 2×5 12. R ⁄29 = 29 13. T 14. R 15. T 7) 9 8) 6 ⁄2 = 9) 1 11) 3×3×3 127 ÷ 12 = 6) 6 10) Answers 2 2×2×2×2 87 ÷ 16 = 19 165 ÷ 19 = ⁄6 = 2×3 ⁄8 = 2×2 12) 5 13) 6 14) 222 ÷ 22 = 15) 23 ÷ 4 = Math 11 2×2 www.CommonCoreSheets.com 1 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. T A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 ⁄24 = 3 6. T ⁄13 = 13 7. T 8. R 9. T 10. T 11. R 12. R 13. R 14. R 15. R 1) 8 2) 4 3) 4) 5) 6) 7) 78 ÷ 11 = 62 ÷ 10 = 7 5 2 18 ÷ 4 = 2×2 273 ÷ 28 = ⁄27 = 3×3 24 ÷ 5 = 5 10) 15 ⁄16 = 2×2×2×2 ⁄22 = 11 ⁄18 = 3×3 11) 8 12) 8 ⁄9 = 13) 6 14) 11 159 ÷ 21 = 8) 24 9) Answers 3 157 ÷ 15 = ⁄7 = 15) 6 3×5 7 Math www.CommonCoreSheets.com 2 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Answer Key Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. T A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 ⁄24 = 3 6. T ⁄13 = 13 7. T 8. R 9. T 10. T 11. R 12. R 13. R 14. R 15. R 1) 8 2) 4 3) 4) 5) 6) 7) 78 ÷ 11 = 62 ÷ 10 = 7 5 2 18 ÷ 4 = 2×2 273 ÷ 28 = ⁄27 = 3×3 24 ÷ 5 = 5 10) 15 ⁄16 = 2×2×2×2 ⁄22 = 11 ⁄18 = 3×3 11) 8 12) 8 ⁄9 = 13) 6 14) 11 159 ÷ 21 = 8) 24 9) Answers 3 157 ÷ 15 = ⁄7 = 15) 6 3×5 7 Math www.CommonCoreSheets.com 2 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. R 6. R 7. R 8. R 9. T 10. T 11. T 12. R 29 13. R 5×5 14. T 15. T A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) ⁄11 = 4) 7) 11 23 202 ÷ 23 = 11 216 ÷ 22 = 5) 11 6) 2×7 270 ÷ 28 = 2) 8 3) ⁄19 = 19 2×2×2×3 193 ÷ 24 = 3 230 ÷ 30 = 8) 22 ⁄29 = ⁄25 = 9) 9 10) 19 ⁄20 = 2×2×5 11) 13 ÷ 5 = 5 12) 71 ÷ 9 = 3×3 13) 12 14) Answers ⁄27 = 3×3 42 ÷ 8 = ⁄2 = 15) 1 2×2 2 Math www.CommonCoreSheets.com 3 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Answer Key Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. R 6. R 7. R 8. R 9. T 10. T 11. T 12. R 29 13. R 5×5 14. T 15. T A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) ⁄11 = 4) 7) 11 23 202 ÷ 23 = 11 216 ÷ 22 = 5) 11 6) 2×7 270 ÷ 28 = 2) 8 3) ⁄19 = 19 2×2×2×3 193 ÷ 24 = 3 230 ÷ 30 = 8) 22 ⁄29 = ⁄25 = 9) 9 10) 19 ⁄20 = 2×2×5 11) 13 ÷ 5 = 5 12) 71 ÷ 9 = 3×3 13) 12 14) Answers ⁄27 = 3×3 42 ÷ 8 = ⁄2 = 15) 1 2×2 2 Math www.CommonCoreSheets.com 3 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. T 4. R 5. T 6. R 7. R 8. R 9. T 10. T 11. T 12. R 13. T 14. T 15. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) 96 ÷ 11 = 3×7 13 ÷ 2 = 2 ⁄23 = 4) 3 5) ⁄18 = ⁄14 = 7) 6 9) 10) 23 54 ÷ 20 = 6) 15 8) 11 ⁄21 = 2) 13 3) Answers 2×5 2×3 7 2×7 150 ÷ 28 = 2 42 ÷ 4 = 61 ÷ 16 = 11) 264 ÷ 25 = 12) 61 ÷ 15 = 2×2×2×2 5×5 3×5 ⁄24 = 2×2 14) 41 ÷ 5 = 5 15) 65 ÷ 29 = 13) 18 Math 29 www.CommonCoreSheets.com 4 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Answer Key Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. T 4. R 5. T 6. R 7. R 8. R 9. T 10. T 11. T 12. R 13. T 14. T 15. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) 96 ÷ 11 = 3×7 13 ÷ 2 = 2 ⁄23 = 4) 3 5) ⁄18 = ⁄14 = 7) 6 9) 10) 23 54 ÷ 20 = 6) 15 8) 11 ⁄21 = 2) 13 3) Answers 2×5 2×3 7 2×7 150 ÷ 28 = 2 42 ÷ 4 = 61 ÷ 16 = 11) 264 ÷ 25 = 12) 61 ÷ 15 = 2×2×2×2 5×5 3×5 ⁄24 = 2×2 14) 41 ÷ 5 = 5 15) 65 ÷ 29 = 13) 18 Math 29 www.CommonCoreSheets.com 4 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. T 6 2. T A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. R 6. R 7. T 8. T 9. T 10. R 11. T 12. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) ⁄25 = ⁄28 = 6) 7) 2×2×7 3 3 60 ÷ 18 = 5 42 ÷ 10 = ⁄20 = 2×2×5 13. R ⁄30 = 2×5 14. R ⁄29 = 29 15. T 9) 3 10) 6 2 13 ÷ 2 = ⁄22 = 12) 5 ⁄7 = 13) 2 14) 12 15) 3×3 17 ÷ 3 = 8) 3 11) 5×5 61 ÷ 9 = 4) 1 5) 2 78 ÷ 12 = 2) 12 3) Answers 2×11 7 ⁄13 = 13 60 ÷ 24 = Math 2 www.CommonCoreSheets.com 5 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Answer Key Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. T 6 2. T A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. R 6. R 7. T 8. T 9. T 10. R 11. T 12. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) ⁄25 = ⁄28 = 6) 7) 2×2×7 3 3 60 ÷ 18 = 5 42 ÷ 10 = ⁄20 = 2×2×5 13. R ⁄30 = 2×5 14. R ⁄29 = 29 15. T 9) 3 10) 6 2 13 ÷ 2 = ⁄22 = 12) 5 ⁄7 = 13) 2 14) 12 15) 3×3 17 ÷ 3 = 8) 3 11) 5×5 61 ÷ 9 = 4) 1 5) 2 78 ÷ 12 = 2) 12 3) Answers 2×11 7 ⁄13 = 13 60 ÷ 24 = Math 2 www.CommonCoreSheets.com 5 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. T 5. R 6. R 7. T 8. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 ⁄17 = 1) 1 2×7 52 ÷ 7 = 7 4) 12 5) 25 6) 7) 8) 9) ⁄15 = 5 9. R ⁄26 = 2×13 10. R 11. R 12. R 13. R 14. R 15. T 38 ÷ 9 = 11 ÷ 5 = 29 ÷ 6 = 57 ÷ 21 = ⁄11 = 10) 7 11) 17 ⁄28 = 2) 10 3) Answers 3×3 5 2×3 7 11 188 ÷ 30 = ⁄18 = 12) 2 3×5 3×3 13) 116 ÷ 14 = 7 14) 226 ÷ 22 = 11 ⁄8 = 15) 5 2×2×2 Math www.CommonCoreSheets.com 6 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Answer Key Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. T 5. R 6. R 7. T 8. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 ⁄17 = 1) 1 2×7 52 ÷ 7 = 7 4) 12 5) 25 6) 7) 8) 9) ⁄15 = 5 9. R ⁄26 = 2×13 10. R 11. R 12. R 13. R 14. R 15. T 38 ÷ 9 = 11 ÷ 5 = 29 ÷ 6 = 57 ÷ 21 = ⁄11 = 10) 7 11) 17 ⁄28 = 2) 10 3) Answers 3×3 5 2×3 7 11 188 ÷ 30 = ⁄18 = 12) 2 3×5 3×3 13) 116 ÷ 14 = 7 14) 226 ÷ 22 = 11 ⁄8 = 15) 5 2×2×2 Math www.CommonCoreSheets.com 6 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. T 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. T 4. R 5. T 6. R 7. R 8. R 9. R 10. T 11. R 12. R 13. R 14. R 15. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) 2) 5) 8) ⁄20 = 2×2×5 13 106 ÷ 13 = 2×2 76 ÷ 16 = ⁄21 = 3 3 69 ÷ 9 = 156 ÷ 28 = ⁄3 = 9) 1 10) 2×13 283 ÷ 26 = 6) 14 7) 2 21 ÷ 2 = 3) 17 4) Answers 3 102 ÷ 25 = 11) 15 7 ⁄17 = 5×5 17 12) 123 ÷ 18 = 2×3 13) 201 ÷ 29 = 29 14) 14 ⁄23 = 23 15) 19 ⁄30 = 2×3×5 Math www.CommonCoreSheets.com 7 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Answer Key Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. T 6 2. R A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. T 4. R 5. T 6. R 7. R 8. R 9. R 10. T 11. R 12. R 13. R 14. R 15. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) 2) 5) 8) ⁄20 = 2×2×5 13 106 ÷ 13 = 2×2 76 ÷ 16 = ⁄21 = 3 3 69 ÷ 9 = 156 ÷ 28 = ⁄3 = 9) 1 10) 2×13 283 ÷ 26 = 6) 14 7) 2 21 ÷ 2 = 3) 17 4) Answers 3 102 ÷ 25 = 11) 15 7 ⁄17 = 5×5 17 12) 123 ÷ 18 = 2×3 13) 201 ÷ 29 = 29 14) 14 ⁄23 = 23 15) 19 ⁄30 = 2×3×5 Math www.CommonCoreSheets.com 7 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. T A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. T 6. R 7. R 8. R 9. R 10. R 11. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) 2) 3) Answers 17 158 ÷ 17 = 5×5 213 ÷ 25 = 2×11 119 ÷ 22 = ⁄28 = 4) 8 5) 13 7 ⁄16 = ⁄3 = 6) 1 2×2×2×2 3 ⁄29 = 29 12. T ⁄18 = 3 13. R 14. R 15. R 7) 3 8) 6 ⁄6 = 9) 4 10) 12 11) 15 ⁄27 = 3×3 ⁄19 = 19 ⁄14 = 12) 7 3 2 13) 68 ÷ 11 = 14) 116 ÷ 13 = 15) 24 ÷ 7 = Math 11 13 7 www.CommonCoreSheets.com 8 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Answer Key Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. T A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. T 6. R 7. R 8. R 9. R 10. R 11. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) 2) 3) Answers 17 158 ÷ 17 = 5×5 213 ÷ 25 = 2×11 119 ÷ 22 = ⁄28 = 4) 8 5) 13 7 ⁄16 = ⁄3 = 6) 1 2×2×2×2 3 ⁄29 = 29 12. T ⁄18 = 3 13. R 14. R 15. R 7) 3 8) 6 ⁄6 = 9) 4 10) 12 11) 15 ⁄27 = 3×3 ⁄19 = 19 ⁄14 = 12) 7 3 2 13) 68 ÷ 11 = 14) 116 ÷ 13 = 15) 24 ÷ 7 = Math 11 13 7 www.CommonCoreSheets.com 8 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. T A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. T 5. R 6. R 2×2 7. R 13 8. R 9. R 10. T 11. T 12. R 13. T 14. R 15. T A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) ⁄4 = 3) 12 ⁄13 = ⁄2 = 4) 1 6) 7) 2×3×3 133 ÷ 18 = 7 3×5 242 ÷ 30 = 10) 19 ⁄20 = ⁄25 = 11) 8 2×2×5 5×5 47 ÷ 12 = ⁄5 = 13) 3 14) 17 3×3 20 ÷ 9 = ⁄28 = 12) 2 112 ÷ 17 = 8) 8 9) 2×2×2×3 193 ÷ 24 = 2) 3 5) Answers 5 296 ÷ 29 = ⁄8 = 15) 2 2×2×3 29 2×2 Math www.CommonCoreSheets.com 9 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Answer Key Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. R 6 2. T A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. T 5. R 6. R 2×2 7. R 13 8. R 9. R 10. T 11. T 12. R 13. T 14. R 15. T A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) ⁄4 = 3) 12 ⁄13 = ⁄2 = 4) 1 6) 7) 2×3×3 133 ÷ 18 = 7 3×5 242 ÷ 30 = 10) 19 ⁄20 = ⁄25 = 11) 8 2×2×5 5×5 47 ÷ 12 = ⁄5 = 13) 3 14) 17 3×3 20 ÷ 9 = ⁄28 = 12) 2 112 ÷ 17 = 8) 8 9) 2×2×2×3 193 ÷ 24 = 2) 3 5) Answers 5 296 ÷ 29 = ⁄8 = 15) 2 2×2×3 29 2×2 Math www.CommonCoreSheets.com 9 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. T 6 2. T A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. T 6. R 7. R 8. T 9. R 10. T 3×7 11. R 2×3×5 12. R 13. R 14. T 15. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) 11 ⁄16 = ⁄4 = 2) 2 3) 4) 2×2×2×2 2 11 108 ÷ 22 = 68 ÷ 12 = ⁄20 = 5) 5 6) 20 ⁄30 = 5 49 ÷ 5 = ⁄11 = 9) 3 10) 14 3 2×2 ⁄21 = 7) 1 8) Answers 11 ⁄25 = 5×5 11) 167 ÷ 19 = 12) 89 ÷ 13 = 13 13) 40 ÷ 15 = 3 14) 33 ÷ 8 = 15) 212 ÷ 27 = Math 19 2×2×2 3×3×3 www.CommonCoreSheets.com 10 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0 Finding Repeating Decimals Name: Answer Key Determine if each problem when converted to a decimal will result in a repeating (R) or terminating (T) decimal. 1. T 6 2. T A fraction will result in a repeating decimal if the prime factors of the simplified denominator contain any prime factor other than 2 or 5. 3. R 4. R 5. T 6. R 7. R 8. T 9. R 10. T 3×7 11. R 2×3×5 12. R 13. R 14. T 15. R A fraction will result in a terminating decimal if the prime factors of the simplified denominator contain only 2s or 5s (or only 2s and 5s). ⁄40 = 3⁄20 = 2×2×5 = 0.15 ⁄42 = 2×3×7 = 0.1190476 5 1) 11 ⁄16 = ⁄4 = 2) 2 3) 4) 2×2×2×2 2 11 108 ÷ 22 = 68 ÷ 12 = ⁄20 = 5) 5 6) 20 ⁄30 = 5 49 ÷ 5 = ⁄11 = 9) 3 10) 14 3 2×2 ⁄21 = 7) 1 8) Answers 11 ⁄25 = 5×5 11) 167 ÷ 19 = 12) 89 ÷ 13 = 13 13) 40 ÷ 15 = 3 14) 33 ÷ 8 = 15) 212 ÷ 27 = Math 19 2×2×2 3×3×3 www.CommonCoreSheets.com 10 1-10 93 87 80 73 67 60 53 47 40 33 11-15 27 20 13 7 0
© Copyright 2026 Paperzz