MATHEMATICS 201-NYA-05 Differential Calculus Martin Huard Fall 2016 IX –Derivatives of Trigonometric Functions 1. Convert from degrees to radians. a) 135 b) 900 c) 315 2. Convert from radians to degrees. a) 83 b) 7 12 c) 3 3. Evaluate exactly (without the use of a calculator). a) sin 23 b) tan 4 c) cos 56 e) sec 74 d) sin 52 h) cot 34 g) csc 76 f) cot 4. Use identities to evaluate exactly. a) sin 75 b) cos 12 c) 5. Find the limit. sin 4x x0 2x sin x cos x sin x d) lim x0 x2 a) g) lim limsin3x csc12x x0 b) e) h) sin3x x0 sin7 x tan 2t lim t 0 3t 2x sin x lim x0 x lim c) f) i) cos 165 sin cos 0 sec cot x lim x0 csc2x sin x 1 lim 2 x1 x 2x 3 lim 6. Differentiate the function. a) f x 2cos x 5sin x b) f x sin x x c) f x sec x 5tan x d) f x sec x tan x e) f t t3 csct t cot t f) f x g) f x h) f x j) f x x sin x csc x tan x cos x x k) x2 1 cos x 1 3cos f 2cos sin i) l) cot x 1 csc x 1 sin x f x 1 2sin x sin x sec x f x 1 x tan x IX – Derivatives of Trig Functions Math NYA 7. Find the equation for the tangent and normal lines to the graph of each function at the given point. a) f x 2sin x at 6 ,1 . f x 3tan x at 34 , 3 . c) f x x cos x at , 1 . b) d) f x sec x csc x at e) f x 2cot x at ,2 3 . 5 6 4 ,2 2 . 8. For what values of x does the graph of f x x 2cos x have a horizontal tangent? 9. A mass on a spring vibrates horizontally on a smooth level surface (see the figure). Its equation of motion is x t 8sin t , where t is in seconds and x in centimeters. a) Find the velocity at time t. b) Find the position and velocity of the mass at time t 23 . In what direction is it moving at that time? 0 x 10. The force F (in Newtons) acting at an angle with the horizontal that is needed to drag a crate with weight W along a horizontal surface at a constant velocity is given by F W cos sin where is a constant called the coefficient of sliding friction between the crate and the surface (see the figure). Suppose that the crate weighs 50 N and that 0.4 . Find dF d when 30 . θ Fall 2016 Martin Huard 2 IX – Derivatives of Trig Functions Math NYA ANSWERS 3 4 1. a) 2. a) 480 3. a) 4. a) 3 2 6 2 4 5. a) 2 6. b) 5 c) b) 105 c) b) –1 c) 6 2 4 3 7 b) b) c) 7 4 540 3 2 d) 1 e) c) sin1 e) 23 d) 0 e) f t 3t 2 csct t3 csct cot t cot t t csc2 t a) yT 3x 3 3 3 6 x 1 3 18 i) 1 4 5 6 h) f x j) f x l) f x yN x 8 3 1 6 1 2x cos x 2x x2 sin x sin x cos x 12 sin x cos x x cos x 3 2 x 2x 2 1 1 x tan x2 c) yT x 1 yN x 1 e) yT 8x 203 2 3 2 n n 9. a) v t 8cost 10. 2.7 Newtons/degrees Fall 2016 x cos x sin x x2 d) f x sec x tan2 x sec3 x b) yT 6x 92 3 d) yT 2 2 xN 4 8. x 6 2 n, h) 3 csc3 x csc2 x csc x cot 2 x csc x 1 csc x 1 csc x2 csc x csc x sec2 x g) f x tan2 x 3cos x i) f x 1 2sin x2 3 k) f 2cos sin 2 yN h) –1 b) f x c) f x sec x tan x 5sec2 x 7. g) –2 g) 14 f) 2 a) f x 2sin x 5cos x f) f x f) 2 6 2 4 yN 81 x 548 2 3 b) Position: 4 3 cm Velocity: – 4 cm/s, moving towards the wall Martin Huard 3
© Copyright 2026 Paperzz