4.3: Graphing Secant and Cosecant Graph y = sin 2x (warmup) Graph y = csc(2x) Graph y = 3sec(3x) 31) Graph y = sec(1/2 x) from 2π≤x≤2π State the: • amplitude • period • phase shift • vertical shift (Label all units!) 33) Graph y = csc(2πx) from 1≤x≤1 hw 4.3: 3141 odd 35) Graph y = 2sec(3x) from 0≤x≤2π 37) Graph y = 3csc(x π/2) for at least one period 39) Graph y = 1/2 sec(x π) over at least one period 41) Graph y = 2sec(2x π) from 2π≤x≤2π 0 4.3b: Tangent & Cotangent 1. Graph y = tan x π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π 2. Graph y = cot x 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π 3. Graph y = 2 tan (3x) for y = A tan(Bx): • period = π B • va's @ Bx = and Bx = π2 π 2 • find xint and 2 more points 4. Graph 2 periods of y = 3 cot (2x + π) for y = A cot(Bx): • period = π B • va's @ Bx = 0 and Bx = π • find xint and 2 more points 5. Graph 2 periods of y = 2 tan (3x) + 1 for y = A tan(Bx): • period = π B • va's @ Bx = and Bx = π2 π 2 • find xint and 2 more points 4.3: 1-8 all, 19-29 odd, 31-41 odd (earlier)
© Copyright 2026 Paperzz