4.3: Graphing Secant and Cosecant

4.3: Graphing Secant and Cosecant
Graph y = sin 2x (warm­up)
Graph y = csc(2x)
Graph y = 3sec(3x)
31) Graph y = sec(1/2 x)
from ­2π≤x≤2π
State the:
• amplitude
• period
• phase shift
• vertical shift
(Label all units!)
33) Graph y = ­csc(2πx)
from ­1≤x≤1
hw ­ 4.3: 31­41 odd
35) Graph y = 2sec(3x)
from 0≤x≤2π
37) Graph y = ­3csc(x ­ π/2)
for at least one period
39) Graph y = 1/2 sec(x ­ π)
over at least one period
41) Graph y = 2sec(2x ­ π)
from ­2π≤x≤2π
0
4.3b: Tangent & Cotangent
1. Graph y = tan x
π/4
π/2
3π/4
π
5π/4
3π/2
7π/4
2π
2. Graph y = cot x
0
π/4
π/2
3π/4
π
5π/4
3π/2
7π/4
2π
3. Graph y = 2 tan (3x)
for y = A tan(Bx):
• period =
π
B
• va's @ Bx =
and Bx =
­ π2
π
2
• find x­int and 2 more points
4. Graph 2 periods of y = ­3 cot (2x + π)
for y = A cot(Bx):
• period =
π
B
• va's @ Bx = 0
and Bx = π
• find x­int and 2 more points
5. Graph 2 periods of y = 2 tan (3x) + 1
for y = A tan(Bx):
• period =
π
B
• va's @ Bx =
and Bx =
­ π2
π
2
• find x­int and 2 more points
4.3:
1-8 all, 19-29 odd, 31-41 odd (earlier)