Thermodynamic modelling of systems containing water and hydrate inhibitors application to flow assurance and gas processing Antonin Chapoy Hydrates, Flow Assurance & Phase Equilibria Research Group Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, UK Outline • • • • Presentation of the research group I t d ti Introduction Thermodynamic Modelling Results – Discussions – HSZ in The Presence of High Concentration of Inhibitor(S) or Salt(S) – HSZ of Oil/Condensate in the Presence of Produced Water and Inhibitors – Hydrate Inhibitor Distribution in Multiphase Systems – Gas Hydrate in Low Water Content Gases • Remarks and Conclusions SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Hydrates, Flow Assurance & Phase Equilibria Research Group • Background – PVT and Phase Behaviour of Petroleum Reservoir Fluids research started in 1978 – Gas hydrate y research started in 1986 – Centre for Gas Hydrate Research Established in Feb 2001 – Centre C ffor Flow Fl A Assurance R Research h (C (C-FAR) FAR) started d in i 2007 • Areas A off Activities A ti iti – Research – Consultancy – Training (open and in-house courses) SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Hydrates, Flow Assurance & Phase Equilibria Research Group Research Interests • PVT andd Phase Ph B Behaviour h i off R Reservoir i Fl Fluids id and d CO2Rich Systems • Flow Assurance – – – – Gas Hydrates W Wax Salt (halite) Asphaltene • Gas Hydrates – Flow Assurance – Gas Hydrates in Sediments – Positive/other Applications pp of Gas Hydrates y SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 What are gas hydrates ? • Gas hydrates or clathrate hydrates are: – Ice-like crystalline compounds – Co Composed posed o of water a e + gas (e.g. methane, CO2) – Formed under low temperatures and elevated pressures – Stable St bl wellll above b th the iicepoint of water Methane hydrate: the b i snowball b ll burning SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Hydrate Structures and Stability Zone • The Th necessary conditions: diti – Presence of water or ice – Suitably sized gas/liquid molecules (such as C1, C2, C3, C4, CO2, N2, H2S, etc.) – Suitable S temperature and pressure conditions P Hydrates • T and P conditions is a function of gas/liquid and water compositions. • Can form anywhere that the above conditions are met No Hydrates T Hydrate y phase p boundaryy SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Gas Hydrate Formation • Not necessary: –Presence of a gas phase –Presence of a free water phase p –Very low temperature conditions –Very V hi h pressure conditions high diti SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Gas Hydrate Formation • The extent of hydrate formation and the resulting problems depends on: – The ea amount ou o of water ae a and d hydrate yd a e forming o g compounds – Pressure and temperature p conditions – Amount of thermodynamic or kinetic inhibitors – Presence of natural inhibitors – Other factors, such as, growth modifiers, local restriction, fluid type, pipe wall characteristics, etc. SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Where Can They Form? • They can form anywhere, such as: – Pipelines (offshore and onshore) – Processing facilities (separators, valves, etc) – Heat exchangers – Sediments (permafrost regions and subsea sediments) – Offshore drilling operations – Etc SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Interesting Properties – – – – – – – – – – – Capture large amounts of gas (up to 15 mole%) Remove light components from oil and gas Form at temperatures well above 0 °C Generallyy lighter g than water Need relatively large latent heat to decompose Non-stochiometric More than 85 mole% water in their structure Exclude salts and other impurities Result from physical combination of water and gas Hydrate composition is different from the HC phase Large g amounts of methane hydrates y exist in nature SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Hydrate Structures 6 Methane, ethane, carbon dioxide…. 2 51262 8 16 + Structure 1 Structure 2 Propane, iso-butane, natural gas…. P T and suitable guests 512 51264 3 2 1 Structure H Methane + neohexane, methane + mch…. 435663 51268 SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Hydrate former in Natural Gas • Methane – sII former f – Both small and large cages of SI • Ethane – sI former – Only large cages of SI • Propane – sII former – Only large cages of SII SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Hydrate Formers in Natural Gas • i-butane – sII former – Only large cages of sII • n-butane – Does not form hydrate on its own – Form F in i the th presence off another th hydrate former, i.e. methane – Only large cages of sII • Cyclo-propane – sI or sII former depending on T and P – Only large cages SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Hydrate Formers in Natural Gas: Non Hydrocarbons • Nitrogen – sII former – Small and large cages of sII • Carbon dioxide – sI former – Only large cages of sI • Hydrogen Sulphide – sI former – Small and large cages SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Other Hydrate Formers • Freons • Halogens (fluorine and chlorine) • Noble gases (argon (argon, krypton krypton, xenon xenon, radon not helium) – Very stable compound →good indication that no chemical bonding exist between the host and the guest • Ai Air (N2 + O2) • SO2 (very ( y soluble in water)) and small mercaptans p (methanethiol, ethanthiol and propanethiol) SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Avoiding Hydrate Problems - Current practice • • • • • • Increasing the system temperature - Insulation - Heating Hydrates Reducing the system pressure Injection of thermodynamic inhibitors - Methanol, ethylene glycol, ethanol Using Low Dosage Hydrate Inhibitors - Kinetic Inhibitors (KHI) - Anti-Aggglomerants ggg ((AA)) Wellhead conditions P • No Hydrates Water removal (dehydratation) Combinations of the above New Approach: Cold Flow SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Flow Assurance- Hydrates: The problems • Hydrate blockages are major flow assurance p problems in operations. offshore and deep p water • Currently the most common flow assurance strategy t t i to is t rely l upon injection i j ti off inhibitors i hibit in order to inhibit hydrate formation. • It is crucial for accurate knowledge of hydrate phase equilibrium in the presence of inhibitors to avoid gas hydrate formation problems problems. • Lack of experimental data, especially for real reservoir fluids. • Capability to accurately predict the hydrate stability zone is therefore essential to plan potential flow assurance issues issues. Gas hydrates G h d t removed d ffrom a subsea transfer line (Courtesy of Petrobras) SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Thermodynamic Modelling f f •Thermodynamic For VLE or VHE, we have: Modelling • CPA E EoS: S V P L or fV fH RT a (T ) 1 RT ln( g ) 1 xi 1 X Ai Vm b Vm (Vm b) 2 Vm i Ai f f V SRK part radial distribution function H Association part B AB X Ai 1 x j X j i j j BJ site fractions the association strength Ai B j 1 AB Ai B j 1 b g (d ) exp RT 1 simp i . g(d ) 1 1.9 SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Thermodynamic Modelling • For Hydrate: Solid solution theory of van der Waals and Platteeuw H fwH fw exp p w RT where H w w RT v m ln 1 C mj f j m j H w • Modeling of electrolyte solutions: Combining the EoS with the Debye Hückel electrostatic contribution lni lniEoS ln iEL i 1, 2,..., n SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Thermodynamic Modelling • BIPs between self-associating compounds using solubility data: 1 n x i , exp x i ,cal FOB N 1 x i , exp 400 0.004 0.003 Culberson et al. (1951) Duffy et al. (1961) Yokoyama et al. (1988) Wang et al al. (1995) Yang et al. (2001) Kim et al. (2003) Chapoy et al. (2004) 0.002 0.001 0 0 100 200 300 400 P / bar Solubility of methane in water at 25 oC. 5600 350 4900 300 4200 250 3500 200 2800 150 2100 100 1400 50 700 0 0.0001 P / Psia o 25 C P / bar CH4 Solubility / mole frract. • methane-water: 0 0.001 0.01 0.1 Water content / mole fraction Water content of methane in equilibrium with liquid water 0, 10, 25, 40 and 75oC. Haghighi H., Chapoy A., Tohidi B., 2009, J. Oil Gas Sci. Technol., 64, 141. SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Thermodynamic Modelling • methane-MEG: • methane-methanol: 0.03 0.35 o CH4 S Solubility / mole fract. 50 C 0.25 0.2 0.15 0.1 Schneider, 1978 Francesconi, 1978 Brunner, 1987 0.05 0 0 100 200 300 400 500 50 C 0.025 0.02 0.015 0.01 0.005 0 600 0 P / bar 300 100 150 200 250 300 350 400 450 Solubility of methane in MEG at 50 oC. 4350 200 3850 180 250 3350 2350 150 1850 100 2800 160 2400 140 2000 120 1600 100 80 1200 1350 60 800 850 40 350 20 50 -150 0.1 P / bar 2850 P / Psia 200 0.01 50 P / bar S l bilit off methane Solubility th iin methanol th l att 50 oC. C 0 0.001 Jou et al., 1994 Zheng et al., 1999 1 MeOH content / mole fraction Water content of methane in equilibrium with liquid methanol 10, 25, 50 and 75oC. P / Psia 0.3 P / bar CH4 Solubility / mole ffract. o 400 0 0.1 1 10 100 1000 0 10000 MEG content / ppm (mol.) Water content of methane in equilibrium with liquid MEG 5, 10, 40, 50 and 65oC. SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Thermodynamic Modelling • BIPs between cross-associating compounds (e.g. watermethanol and water-MEG) adjusted using VLE (bubble and dew point data) or SLE (freezing point depression data) : n xi , exp xi ,cal 1 FOB N 1 xi , exp 1 FOB N n Ti ,exp Ti ,calc For SLE data Objective Function: 1 Ti ,exp For VLE data SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Thermodynamic Modelling • SLE for water-methanol: 280 • SLE for water-MEG: 280 270 270 260 250 T/K T/K 260 Pushin and Glagoleva (1922) ICT (1926) Feldman and Dahlstrom ((1936)) Frank et al. (1940) Ross (1954) Ott et al. (1979) CRC Handbook (2004) Haghighi et al. (2009a) 240 230 220 10 ICT (1930) Olsen et al. (1930) Conrad et al. (1940) Spangler and Davies (1943) Ross (1954) Cordray et al. (1996) CRC Handbook (2004) 240 230 220 210 0 250 20 30 0 40 5 10 20 25 30 35 40 45 50 55 MEG G / mass% ass% M OH / mass% MeOH % • VLE for water-MEG: • VLE for water-methanol: 80 90 Kurihara et al. (1995) T = 333 K Kurihara et al. (1995) T = 328 K 80 Saturated Liquid (Bubble point) T=343.15 K Saturated Vapour (Dew point) T=343.15 K Saturated Liquid q ((Bubble p point)) T=363.15 K Saturated Vapour (Dew point) T=363.15 K Predictions: This work 70 0 70 60 60 50 P / kPa P / kPa 15 50 40 40 30 30 20 20 Bubble line predictions: This work Dew line predictions: This work 10 10 0 0 0 20 40 60 80 100 MeOH / mol% Haghighi H., Chapoy A., Burgess R., Mazloum S., Tohidi B., 2009, J. Fluid Phase Equilibr., 278, 109-116. 0 20 40 60 80 100 MEG / mole% Haghighi H., Chapoy A., Tohidi B., 2009, J. Fluid Phase Equilibr., 276, 24-30. SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Thermodynamic Modelling MEG / wt% 0 10 20 30 40 50 60 70 80 90 0 Pure MEG: T= -12.4 oC ((=+/-0.8oC)) -10 10 T/oC -20 -30 -40 -50 50 CRC Handbook Conrad et al. ((1940)) Spangler and Davies (1943) Cordray et al. (1996):lab1 Cordray et al. (1996):lab2 Cordray et al al. (1996):metastale Ross (1954) Zinchenko (2001) Gjertsen et al. (2001) GPA RR205 This work Thermodynamic Modelling -60 SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 100 Avoiding Hydrate Problems - Current practice • Increasing the system temperature - Insulation - Heating • • Reducing the system pressure • Using Low Dosage Hydrate Inhibitors - Kinetic Inhibitors (KHI) Injection of thermodynamic inhibitors - Methanol, ethylene glycol, ethanol - Anti-Aggglomerants Anti Aggglomerants (AA) • • • Water removal (dehydratation) Combinations off th the above C bi ti b New Approach: Cold Flow SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Experimental Equipment • Materials: M t i l – Distilled water – North Sea natural gas – Inhibitors • Equipments: – – – – Autoclave cells V = 300 to 2000 ml Max P = 400 – 2000 bar -80 < T < 50 oC SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Typical Experimental Procedures • Cell loaded with starting fluids at T = 20 C or higher – Depending D di on experiment: i water ± salts l ± Thermodynamic inhibitor (MEG, methanol) – Headspace left for further fluid injections: gas (G) (G), live oil… • To form hydrates, hydrates temperature reduced, reduced their presence being confirmed by pressure drop • Hydrate dissociation point is found by stepwise increase of T SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014 Hydrates: Experimental Methods 6.0 P/MPa a 5.5 Cooling cycle Heating cycle (non-equilibrium points) Heating cycle (equilibrium points) Dissociation point 5.0 4.5 4.0 C1 - 15 mass% K2CO3 3.5 250 255 260 265 T 270 275 280 285 T/K SFGP Seminar - La Thermodynamique des phases solides- Paris, December, 2014
© Copyright 2026 Paperzz