DICTRA Examples Guide Version 2015b - Thermo

DICTRA Examples Guide
Version 2015b
© 1995-2015 Foundation of Computational Thermodynamics
Stockholm, Sweden
exa1
One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially a linear Ni-concentration profile.
exa2a
One-phase problem. Simple homogenization of a binary Fe-Ni alloy. We have put together a Ni rich and a Ni lean alloy.
exa2b
One-phase problem. Simple homogenization of a binary Fe-Ni alloy. We have put together a Ni rich and a Ni lean alloy. This example is
identical to a2a. However, in this example implicit time integration is used instead of the trapetzoidal method for solving the PDEs.
exa3
One-phase problem. Setup file for the simulation of uphill diffusion in a ternary single phase austenite matrix due to the classical darken
experiment published by L.S. Darken: Trans. Aime, v.180 (1949), pp. 430-438. In this setup two pieces of austenite (3.80 wt%Si, 0.49 wt%C)
and (0.05 wt%Si, 0.45 wt%C) are put together and are subsequently annealed at 1050 C for 13 days. As both pieces are austenite they must be
entered into the same region. we can accomplish this by giving the compositions of Si and C in each gridpoint individually. For convenience
we store these data on file.
exa4
One-phase problem. This is a simple binary simulation with just one single phase region. We will compare our numerical simulation with an
analytical erf-solution. For this reason a special database erf.tdb is created in which the diffusion coefficient is set to a concentration
independent value.
exa5
One-phase problem. Simulation of carburization of a binary Fe-0.15 wt% C alloy. A mixture of 40% N2 and 60% cracked methanol was used as
carrier gas. The carburizing "carbon potential" in the gas is 0.85 wt%. A surface reaction controles the flux of C at the surface.
exa6
One-phase problem. A simple, perhaps not realistic, example on diffusion through a tube wall. The tube-material is an Fe-0.6%Mn-0.7%Si-0.05%C
alloy. On the inside wall a carbon activity of 0.9 is maintained whereas on the outside the C-activity is very low. This example demonstrates
the use of the command SET-FIRST-INTERFACE as well as the use of MIXED boundary conditions.
exa7
DICTRA simulation of a homogenization heat treatment
exb1a
Moving boundary problems. Setup file for calculating a ferrite(BCC)/austenite(FCC) transformation in a binary Fe-C alloy. The initial state
is an austenite of 2 mm thichness. The composition of the austenite is Fe-0.15wt%C. After austenitisation the specimen has been quenched down
to 1050K. The system is assumed closed, so we do not set any boundary conditions (closed system is default). Ferrite is expected to grow into
the austenite. For this reason we start with a thin region with ferrite adjacent to the austenite.
exb1b
Moving boundary problem. Same problem as in exb1a but now we set up the problem with ferrite as an inactive phase adjacent to the initial
austenite.
exb1c
Moving boundary problems. Same problem as in exb1a and exb1b but now we start the simulation at a higher temperature and we assume a gradual
cooling down to 1050 K. When we reach 1050 K we keep the temperature constant and thus have an isothermal transformation. As in exb1b we have
ferrite as an inactive phase adjacent to the initial austenite.
exb2
Moving boundary problems. Setup file for calculating the dissolution of a spherical cementite particle in an austenite matrix. This case is
from Z.-K. Liu, L. Höglund, B. Jönsson and J. Ågren: Metall. Trans.A, v.22A (1991), pp. 1745-1752.
exb3
exb3_setup.DCM
exb4a
Moving boundary problems. This examples demonstrates the solidification path of an Fe-18%Cr-8%Ni alloy. A eutectic reaction is assumed,
LIQUID -> BCC + FCC. Hence the BCC and FCC regions should be on separate sides of the liquid region. Comparison is made with both a ScheilGulliver simulation and equilibrium solidification conditions, both made with Thermo-Calc.
exb4b
Moving boundary problems. The same as exb4a but now a peritectic reaction is assumed, LIQUID + BCC -> FCC. Hence the FCC region should appear
inbetween the LIQUID and the BCC. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both
made with Thermo-Calc.
exb4c
Moving boundary problems. Same as exb4b but, now the diffusivity data is amended for the LIQUID and a very high value for the diffusivity is
used in order to simulate a case where we assume that the composition in the LIQUID is always homogeneous. This case should be considered
less realistic than exb4b. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both made
with Thermo-Calc.
exb4d
Moving boundary problems. Same as exb4b but instead of controlling the temperature the amount of heat extracted is given. Comparison is made
with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both made with Thermo-Calc.
exb5
Moving boundary problems. This example demonstrates the evaluation of a ternary Fe-Cr-Ni diffusion couple. A thin slice of ALPHA phase
(38%Cr, 0%Ni) is clamped between two thicker slices of GAMMA phase (27%Cr, 20%Ni). The assembly is subsequently heat treated at 1373K. This
setup corresponds to diffusion couple A in M. Kajihara, C.-B. Lim and M. Kikuchi: ISIJ International 33 (1993), pp. 498-507. See also M.
Kajihara and M. Kikichi: Acta Metall.Mater. 41 (1993), pp.2045-2059.
exb6
Moving boundary problems. This example illustrates the effect of microsegregation of phosphorus during peritectic solidification in steel.
exb7
Moving boundary problems. This example shows how to enter dispersed phases on either side of a phase interface. The particular case shows how
the kinetics of a ferrite to austenite transformation is affected by simultaneous precipitation of niobium carbide. The transformation is
caused by carburization.
exc1
Cell calculations. This example simulates what happens to a FERRITE plate that has inherited the carbon content of its parent AUSTENITE. The
FERRITE plate formed is embedded in an AUSTENITE matrix. This setup corresponds to a proposed mechanism for formation of WIDMANNSTÄTTEN
FERRITE or for the FERRITE phase of the BAINITE structure. It is assumed that the phase boundary between FERRITE and AUSTENITE is immobile,
this is achieved in the simulation by putting the FERRITE and the AUSTENITE in two different cells. See also M. Hillert, L. Höglund and J.
Ågren: Acta Metall. Mater. 41 (1993), pp.1951-1957.
exc2
Cell calculations. Setup file for calculating the dissolution of CEMENTITE particles in an AUSTENITE matrix. This case is identical to exb2
except that we here have three different particle sizes. Altogether six particles are considered using three different cells. This is in
order to represent some size distribution among the CEMENTITE particles. See also Z.-K. Liu, L. Höglund, B. Jönsson and J. Ågren:
Metall.Trans.A, v. 22A (1991), pp. 1745-1752.
exd1a
Diffusion in dispersed systems. Setup file for carburization of a Ni-25Cr alloy. In this case the M3C2 and M7C3 carbides are entered as
spheroid phases in a FCC matrix. This case is from A. Engström, L. Höglund and J. Ågren: Metall.Trans.A v. 25A (1994), pp. 1127-1134. This
simulation can be run with either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. In this example the DISPERSED SYSTEM MODEL is used,
which requires that the default HOMOGENIZATION MODEL is disabled. With the DISPERSED SYSTEM MODEL the command ENTER_LABYRINTH_FUNCTION is
used to take into account the impeding effect of dispersed phases on long-range diffusion. For the HOMOGENIZATION MODEL the command
ENTER_HOMOGENIZATION_FUNCTION should be used.
exd1b
Diffusion in dispersed systems. Setup file for carburization of a Ni-25Cr alloy. In this case the M3C2 and M7C3 carbides are entered as
spheroid phases in a FCC matrix. This case is from A. Engström, L. Höglund and J. Ågren: Metall.Trans. A, v.25A (1994), pp. 1127-1134. This
simulation can be run with either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. The default HOMOGENIZATION MODEL is used and then
ENTER_HOMOGENIZATION_FUNCTION should be used instead of ENTER_LABYRINTH_FUNCTION.
exd2a
Diffusion in dispersed systems. Setup file for calculating the interdiffusion in a diffusion couple between a two-phase (FCC+BCC) and a
single-phase (FCC) Fe-Ni-Cr alloy.@@ This case is from A. Engström: Scand. J. Met., v. 24, 1995, pp.12-20. This simulation can be run with
either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. In this example the DISPERSED SYSTEM MODEL is used, which requires that the
default HOMOGENIZATION MODEL is disabled. With the DISPERSED SYSTEM MODEL the command ENTER_LABYRINTH_FUNCTION is used to take into account
the impeding effect of dispersed phases on long-range diffusion. For the HOMOGENIZATION MODEL the command ENTER_HOMOGENIZATION_FUNCTION
should be used.
exd2b
Diffusion in dispersed systems. Setup file for calculating the interdiffusion in a diffusion couple between a two-phase (FCC+BCC) and a
single-phase (FCC) Fe-Ni-Cr alloy. This case is from A. Engström: Scand. J. Met., v. 24, 1995, pp.12-20. This simulation can be run with
either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. Here the default HOMOGENIZATION MODEL is used and then
ENTER_HOMOGENIZATION_FUNCTION should be used instead of ENTER_LABYRINTH_FUNCTION.
exd3
Diffusion in dispersed systems. This example shows the use of the homogenization model. It is taken from H. Larsson and A. Engström, Acta.
Mater. v.54 (2006), pp. 2431-2439. Experimental data from A. Engström, Scand J Metall, v.243 (1995), p.12. The homogenization model can be
used for multiphase simulations like the dispersed system model, but unlike the dispersed system model there is no need to have a single
continuous matrix phase and, furthermore, there is no need to limit the size of time-steps. The set-up is performed in the same manner as for
the dispersed system model, which means that a certain phase is entered as the matrix phase and the other phases are entered as spheroidal,
but the choice of matrix phase will not affect the simulation.
exe1
Cooperative growth. This is an example file for a setup and a calculation of PEARLITE growth in an Fe-0.50wt%C - 0.91wt%Mn steel.
exf1
Coarsening. Setup file for calculating the Ostwald-ripening of a spherical M6C carbide in an AUSTENITE matrix.
exg1
Kinetic data. A file for checking mobilities and diffusivities in an Fe-Ni alloy.
exg2
Kinetic data. A file for reading thermodynamic data and setting up the kinetic parameters which are needed for an optimization of the FCC
phase in the binary Ni-Al system. See also A. Engström and J. Ågren: ("Assessment of Diffusional Mobilities in Face-Centered Cubic Ni-Cr-Al
Alloys" in Z. METALLKUNDE, Feb. 1996).
exh1
Deviation from local equilibrium. Setup file for calculating the growth of FERRITE into AUSTENITE with a limited interface mobility. This is
achieved by adding a Gibbs-energy contribution to the FERRITE using the SET-SURFACE-ENERGY command.
exh2
Deviation from local equilibrium Setup file for calculation of the growth of FERRITE into AUSTENITE in an Fe-2.02%Ni-0.0885%C alloy using the
para-equilibrium model. The results are compared with experimental information from Hutchinson, C. R., A. Fuchsmann, and Yves Brechet. "The
diffusional formation of ferrite from austenite in Fe-C-Ni alloys." Metall. Mat. Trans. A 35.4 (2004): 1211-1221.
exh3
Deviation from local equilibrium. This calculation shows how a temperature gradient induces diffusion.
exi1
Diffusion in complex phases. Diffusion in including effects from chemical ordering. The datafile AlFeNi-data.TDB contains both a
thermodynamic and kinetic description for the ordered and disordered BCC.
exi2
Diffusion in complex phases. This example demonstrates the use of the model for calculation of diffusion through a stoichiometric phase. The
flux of a component in the stoichiometric phase is assumed to be proportional to the difference in chemical potential at each side of the
stoichiometric phase multiplied with the mobility for the component in the phase. The mobility is assessed from experimental information and
is basically the tracer diffusivity for the component. This calculation is compared with experimental data where a sample of pure iron has
been exposed to a gas atmosphere with a certain carbon activity. The weight gain is then measured as a function of time. The experimental
data is obtained from Ozturk B., Fearing V. L., Ruth A. Jr. and Simkovich G., Met. Trans A, vol 13A (1982), pp. 1871-1873.
exi3a
Diffusion in complex phases. Oxidation of iron sample and consequent growth of an oxide layer.
exi3b
Diffusion in complex phases. Oxidation of iron sample and consequent growth of an oxide layer using the grain boundary diffusion contribution
model.
One-phase problems
Example a1
Homogenisation of a binary Fe-Ni alloy
(Initially we assume a linear concentration profile)
T = 1400 K
50% Ni
FCC
●
●
●
10% Ni
1E-4
●
●
Results
exa1-setup
MACRO exa1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa1\setup.DCM"SYS: @@
SYS: @@ One-phase problem.
SYS: @@ Simple homogenization of a binary Fe-Ni alloy. It is assumed
SYS: @@ there is initially a linear Ni-concentration profile.
SYS: @@
SYS:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE.
SYS: @@
SYS: goto_module
MODULE NAME: data
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ LET US USE THE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: switch_database
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE8/: tcfe7
Current database: Steels/Fe-Alloys
v7.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH
TDB_TCFE7: @@
TDB_TCFE7: define_system
ELEMENTS: fe ni
FE
NI DEFINED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED
TDB_TCFE7: @@
TDB_TCFE7: reject
ELEMENTS, SPECIES, PHASES, CONSTITUENT OR SYSTEM: /PHASES/: phase
PHASES: *
LIQUID:L
BCC_A2
FCC_A1
HCP_A3
A1_KAPPA
KAPPA
LAVES_PHASE_C14
NBNI3
NI3TI
REJECTED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ RESTORE THE THERMODYNAMIC DATA FOR THE FCC PHASE
TDB_TCFE7: @@
TDB_TCFE7: restore
ELEMENTS, SPECIES, PHASES OR CONSTITUENTS: /ELEMENTS/: phase
PHASES: fcc
FCC_A1 RESTORED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_TCFE7: @@
TDB_TCFE7: get_data
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA
TDB_TCFE7: @@
TDB_TCFE7: append_database
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE7/: mobfe2
Current database: Steels/Fe-Alloys Mobility
v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: define_system
ELEMENTS: fe ni
FE
NI DEFINED
APP: reject
ELEMENTS, SPECIES, PHASES, CONSTITUENT OR SYSTEM: /PHASES/: phase
PHASES: *
BCC_A2
FCC_A1
HCP_A3
LIQUID:L REJECTED
APP:
APP: restore
ELEMENTS, SPECIES, PHASES OR CONSTITUENTS: /ELEMENTS/: phase
PHASES: fcc
FCC_A1 RESTORED
APP:
APP: get_data
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: goto_module
MODULE NAME: dictra_monitor
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set_condition
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: global
VARIABLE : T
LOW TIME LIMIT /0/: 0
T(TIME,X)= 1400;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
DIC>
DIC> @@
DIC> @@ WE START BY ENTERING A REGION
DIC> @@
DIC> enter_region
REGION NAME : austenite
DIC>
DIC> @@
DIC> @@ ENTER GRID INTO THE REGION
DIC> @@
DIC> @@ FOR SIMPLICITY WE USE AN EQUIDISTANT GRID
DIC> @@
DIC> enter_grid_coordinates
REGION NAME : /AUSTENITE/: austenite
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: linear
NUMBER OF POINTS /50/: 60
DIC>
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASE INTO REGION
DIC> @@
DIC> enter_phase_in_region
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> @@
DIC> @@ ENTER INITIAL NI COMPOSITION INTO THE PHASE. WE ASSUME A LINEAR
DIC> @@ VARIATION IN THE REGION.
DIC> @@
DIC> enter_compositions
REGION NAME : /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: weight_percent
PROFILE FOR /NI/: ni
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 10
VALUE OF LAST POINT : /10/: 50
DIC>
DIC> @@
DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set_simulation_time
END TIME FOR INTEGRATION /.1/: 1E6
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /100000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON FILE
DIC> @@
DIC> save_workspaces exa1 Y
DIC>
DIC> set_interactive
--OK--DIC>
exa1-run
MACRO exa1\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa1\run.DCM"DIC>
DIC>
DIC> @@ exa1_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE a1
DIC> @@
DIC> goto_module
MODULE NAME: dictra_monitor
TIME STEP AT TIME 0.00000E+00
DIC>
DIC> read_workspaces exa1
OK
DIC>
DIC> @@
DIC> @@ Start the simulation
DIC> @@
DIC> simulate_reaction
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967
TOTAL SIZE OF SYSTEM: 1E-04 [m]
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
TIME = 0.40010010
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
CPU time used in timestep
TIME =
502.56581
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
seconds
0
seconds
0
seconds
0
seconds
0
seconds
0
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093967
1E-04 [m]
CPU time used in timestep
TIME =
428052.66
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093967
1E-04 [m]
CPU time used in timestep
TIME =
328052.66
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT =
64277.211
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093966
1E-04 [m]
CPU time used in timestep
TIME =
228052.66
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
32138.606
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093967
1E-04 [m]
CPU time used in timestep
TIME =
128052.66
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
1
DT =
16069.303
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093967
1E-04 [m]
CPU time used in timestep
TIME =
63775.446
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
8034.6514
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093967
1E-04 [m]
CPU time used in timestep
TIME =
31636.840
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT =
4017.3257
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093967
1E-04 [m]
CPU time used in timestep
TIME =
15567.537
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
2008.6628
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093967
1E-04 [m]
CPU time used in timestep
TIME =
7532.8858
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT =
1004.3314
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093967
1E-04 [m]
CPU time used in timestep
TIME =
3515.5601
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
502.16571
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093967
1E-04 [m]
CPU time used in timestep
TIME =
1506.8972
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT = 0.40000000
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093967
1E-04 [m]
0
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093967
1E-04 [m]
CPU time used in timestep
0
seconds
TIME =
528052.66
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .709680021906033 NI = .290319978093967
1E-04 [m]
CPU time used in timestep
TIME =
628052.66
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .709680021906035 NI = .290319978093966
1E-04 [m]
CPU time used in timestep
TIME =
728052.66
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0
0
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .709680021906036 NI = .290319978093964
1E-04 [m]
CPU time used in timestep
TIME = 1000000.00
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .709680021906035 NI = .290319978093965
1E-04 [m]
CPU time used in timestep
TIME =
928052.66
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .709680021906034 NI = .290319978093966
1E-04 [m]
CPU time used in timestep
TIME =
828052.66
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
0
seconds
DT =
71947.343
SUM OF SQUARES =
0.0000000
FE = .709680021906036 NI = .290319978093964
1E-04 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
0.0000000
0.10000000E-06
0.10010000E-03
0.40010010
502.56581
1506.8972
3515.5601
7532.8858
15567.537
31636.840
63775.446
128052.66
228052.66
328052.66
428052.66
528052.66
628052.66
728052.66
828052.66
KEEPING TIME-RECORD FOR TIME
928052.66
AND FOR TIME
1000000.00
WORKSPACE RECLAIMED
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set_interactive
--OK--DIC>
exa1-plot
MACRO exa1\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa1\plot.DCM"DIC>
DIC>
DIC> @@ exa1_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE a1
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> goto_module
MODULE NAME: dictra_monitor
TIME STEP AT TIME 1.00000E+06
DIC> read_workspaces exa1
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post_processor
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1: @@
POST-1: @@ PLOT SOME CONCENTRATION PROFILES
POST-1: @@
POST-1: set_diagram_axis
AXIS (X, Y OR Z) : x
VARIABLE : distance
INFO: Distance is set as independent variable
DISTANCE : /GLOBAL/: global
POST-1:
POST-1: set_diagram_axis
AXIS (X, Y OR Z) : y
VARIABLE : weight-percent
FOR COMPONENT : ni
POST-1:
POST-1: set_plot_condition
CONDITION /TIME/: time
VALUE(S) /LAST/: 0 1e5 3e5 1e6
POST-1:
POST-1: plot_diagram
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: set_interactive
--OK--POST-1:
Example a2
Homogenisation of a binary Fe-Ni alloy
(Initially we have a step-profile)
T = 1400 K
FCC
FCC
●
● ● ● ●
●
●
50% Ni
10% Ni
1E-4
exa2a-setup
MACRO exa2a\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa2a\setup.DCM"SYS: @@
SYS: @@ One-phase problem.
SYS: @@ Simple homogenization of a binary Fe-Ni alloy. We have put together a
SYS: @@ Ni rich and a Ni lean alloy.
SYS: @@
SYS:
SYS: @@ exa2a_setup.DCM
SYS:
SYS: @@
SYS: @@ IN exa1 WE WROTE OUT ALL THE COMMANDS IN FULL BUT FROM NOW ON WE WILL
SYS: @@ START USING ABBREVIATED COMMANDS.
SYS: @@
SYS:
SYS: @@
SYS: @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE
SYS: @@
SYS: set_log_file setup
Heading:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE.
SYS: @@
SYS: go da
... the command in full is GOTO_MODULE
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ LET US USE THE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw TCFE7
... the command in full is SWITCH_DATABASE
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH
TDB_TCFE7: @@
TDB_TCFE7: def-system fe ni
... the command in full is DEFINE_SYSTEM
FE
NI DEFINED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED
TDB_TCFE7: @@
TDB_TCFE7: rej ph * all
... the command in full is REJECT
LIQUID:L
BCC_A2
FCC_A1
HCP_A3
A1_KAPPA
KAPPA
LAVES_PHASE_C14
NBNI3
NI3TI
REJECTED
TDB_TCFE7: res ph fcc
... the command in full is RESTORE
FCC_A1 RESTORED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_TCFE7: @@
TDB_TCFE7: get
... the command in full is GET_DATA
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
... the command in full is AMEND_PHASE_DESCRIPTION
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA
TDB_TCFE7: @@
TDB_TCFE7: app
... the command in full is APPEND_DATABASE
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
v8.0
v7.0
v6.2
v5.0
v4.1
v3.1
v2.1
v1.0
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE7/: mobfe2
Current database: Steels/Fe-Alloys Mobility
v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe ni
... the command in
FE
APP: rej ph * all
... the command in
BCC_A2
LIQUID:L REJECTED
APP: res ph fcc
... the command in
FCC_A1 RESTORED
APP: get
... the command in
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
full is DEFINE_SYSTEM
NI DEFINED
full is REJECT
FCC_A1
HCP_A3
full is RESTORE
full is GET_DATA
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: go d-m
... the command in full is GOTO_MODULE
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond
... the command in full is SET_CONDITION
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: glob
VARIABLE : T
LOW TIME LIMIT /0/: 0
T(TIME,X)= 1400;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
DIC>
DIC> @@
DIC> @@ WE START BY ENTERING A REGION
DIC> @@
DIC> enter-region
REGION NAME : austenite
DIC>
DIC> @@
DIC> @@ ENTER GRID INTO THE REGION.
DIC> @@ IN THIS CASE WE WANT SEVERAL POINTS IN THE MIDLE OF THE REGION,
DIC> @@ THUS WE CONSTRUCT A DOUBLE GEOMETRIC GRID.
DIC> @@
DIC> enter-grid
... the command in full is ENTER_GRID_COORDINATES
REGION NAME : /AUSTENITE/: austenite
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 60
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.9
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.11
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGIONS
DIC> @@
DIC> enter-phase
... the command in full is ENTER_PHASE_IN_REGION
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> @@
DIC> @@ ENTER INITIAL NI COMPOSITION INTO THE PHASE. READ DATA FROM
DIC> @@ THE FILE ni.dat WHICH CONTAINS THE NI-PROFILE.
DIC> @@
DIC> enter-composition
... the command in full is ENTER_COMPOSITIONS
REGION NAME : /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /NI/: ni
TYPE /LINEAR/: read a2ani.dat
... the command in full is CREATE_NEW_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
DIC>
DIC> @@
DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 1E6
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /100000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON FILE
DIC> @@
DIC> save exa2a Y
... the command in full is SAVE_WORKSPACES
DIC>
DIC> set-inter
... the command in full is SET_INTERACTIVE
--OK--DIC>
exa2a-run
MACRO exa2a\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-ConsoleExamples\examples\exa2a\run.DCM"
... the command in full is MACRO_FILE_OPEN
DIC>
DIC>
DIC> @@ exa2a_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE a2a
DIC> @@
DIC>
DIC> @@
DIC> @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE
DIC> @@
DIC> @@set-log-file run
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AN READ SETUP FROM FILE
DIC> @@
DIC> go d-m
... the command in full is GOTO_MODULE
TIME STEP AT TIME 0.00000E+00
DIC>
DIC> read exa2a
... the command in full is READ_WORKSPACES
... the command in full is DEFINE_COMPONENTS
... the command in full is SELECT_EQUILIBRIUM
OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> simulate
... the command in full is SIMULATE_REACTION
... the command in full is SET_NUMERICAL_LIMITS
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
2 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUSTENITE
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
TIME = 0.40010010
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
seconds
0
seconds
0
seconds
0
seconds
DT =
640.52562
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
2552.4944
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
320.26281
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
1271.4431
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT =
160.13141
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
630.91751
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
80.065703
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
310.65470
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT =
40.032851
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
150.52329
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
20.016426
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
70.457590
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT =
10.008213
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
30.424739
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 0.40000000
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
10.408313
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0
seconds
DT =
1281.0512
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
0
seconds
TIME =
5114.5969
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
DT =
2562.1025
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
10238.802
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT =
5124.2050
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
20487.212
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0
0
0
0
1
0
0
0
0
0
0
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .291111754593831
1E-04 [m]
CPU time used in timestep
TIME = 1000000.00
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
963964.95
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .291111754593831
1E-04 [m]
CPU time used in timestep
TIME =
863964.95
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406168 NI = .291111754593832
1E-04 [m]
CPU time used in timestep
TIME =
763964.95
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .291111754593832
1E-04 [m]
CPU time used in timestep
TIME =
663964.95
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406168 NI = .291111754593832
1E-04 [m]
CPU time used in timestep
TIME =
563964.95
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406168 NI = .291111754593832
1E-04 [m]
CPU time used in timestep
TIME =
463964.95
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
363964.95
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
81987.280
SUM OF SQUARES =
0.0000000
FE = .708888245406172 NI = .291111754593828
1E-04 [m]
CPU time used in timestep
TIME =
263964.95
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
40993.640
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
163964.95
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
20496.820
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
81977.671
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
10248.410
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .291111754593831
1E-04 [m]
CPU time used in timestep
TIME =
40984.032
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
0
seconds
DT =
36035.049
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .291111754593831
1E-04 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
0.0000000
0.10000000E-06
0.10010000E-03
0.40010010
10.408313
30.424739
70.457590
150.52329
310.65470
630.91751
1271.4431
2552.4944
5114.5969
10238.802
20487.212
40984.032
81977.671
163964.95
263964.95
363964.95
463964.95
563964.95
663964.95
763964.95
DELETING TIME-RECORD FOR TIME
863964.95
KEEPING TIME-RECORD FOR TIME
963964.95
AND FOR TIME
1000000.00
WORKSPACE RECLAIMED
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
... the command in full is SET_INTERACTIVE
--OK--DIC>
exa2a-plot
MACRO exa2a\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-ConsoleExamples\examples\exa2a\plot.DCM"
... the command in full is MACRO_FILE_OPEN
DIC>
DIC>
DIC> @@ exa2a_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE a2a
DIC> @@
DIC>
DIC> @@
DIC> @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE
DIC> @@
DIC> set-log-file plot
AMBIGUOUS COMMAND, USE HELP
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
... the command in full is GOTO_MODULE
TIME STEP AT TIME 1.00000E+06
DIC>
DIC> read exa2a
... the command in full is READ_WORKSPACES
... the command in full is DEFINE_COMPONENTS
... the command in full is SELECT_EQUILIBRIUM
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
... the command in full is POST_PROCESSOR
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1: @@
POST-1: @@ PLOT SOME NI-CONCENTRATION PROFILES
POST-1: @@
POST-1: s-d-a
... the command in full is SET_DIAGRAM_AXIS
AXIS (X, Y OR Z) : x
VARIABLE : dist
INFO: Distance is set as independent variable
... the command in full is SET_INDEPENDENT_VARIABLE
DISTANCE : /GLOBAL/: glo
POST-1:
POST-1: s-d-a
... the command in full is SET_DIAGRAM_AXIS
AXIS (X, Y OR Z) : y
VARIABLE : weight-percent
FOR COMPONENT : ni
POST-1:
POST-1: s-p-c
... the command in full is SET_PLOT_CONDITION
CONDITION /TIME/: time
VALUE(S) /LAST/: 0 1e5 3e5 1e6
POST-1:
POST-1: @@
POST-1: @@ SET SCALING ON Y-AXIS BEFORE PLOTTING
POST-1: @@
POST-1: s-s-s
... the command in full is SET_SCALING_STATUS
AXIS (X, Y OR Z) : y
AUTOMATIC SCALING (Y OR N) /N/: n
MIN VALUE : 0
MAX VALUE : 60
POST-1:
POST-1: plot
... the command in full is PLOT_DIAGRAM
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: set-inter
... the command in full is SET_INTERACTIVE_MODE
--OK--POST-1:
exa2b-setup
MACRO exa2b\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa2b\setup.DCM"SYS: @@
SYS: @@ One-phase problem.
SYS: @@ Simple homogenization of a binary Fe-Ni alloy. We have put together a
SYS: @@ Ni rich and a Ni lean alloy. This example is identical to a2a. However,
SYS: @@ in this example implicit time integration is used instead of the trapetzoidal
SYS: @@ method for solving the PDEs.
SYS: @@
SYS:
SYS: @@ exa2b_setup.DCM
SYS:
SYS: @@
SYS: @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE
SYS: @@
SYS: set_log_file setup
Heading:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE.
SYS: @@
SYS: go da
... the command in full is GOTO_MODULE
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ LET US USE THE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw tcfe7
... the command in full is SWITCH_DATABASE
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH
TDB_TCFE7: @@
TDB_TCFE7: def-system fe ni
... the command in full is DEFINE_SYSTEM
FE
NI DEFINED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED
TDB_TCFE7: @@
TDB_TCFE7: rej ph * all
... the command in full is REJECT
LIQUID:L
BCC_A2
FCC_A1
HCP_A3
A1_KAPPA
KAPPA
LAVES_PHASE_C14
NBNI3
NI3TI
REJECTED
TDB_TCFE7: res ph fcc
... the command in full is RESTORE
FCC_A1 RESTORED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_TCFE7: @@
TDB_TCFE7: get
... the command in full is GET_DATA
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
... the command in full is AMEND_PHASE_DESCRIPTION
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA
TDB_TCFE7: @@
TDB_TCFE7: app
... the command in full is APPEND_DATABASE
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
v8.0
v7.0
v6.2
v5.0
v4.1
v3.1
v2.1
v1.0
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE7/: mobfe2
Current database: Steels/Fe-Alloys Mobility
v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe ni
... the command in
FE
APP: rej ph * all
... the command in
BCC_A2
LIQUID:L REJECTED
APP: res ph fcc
... the command in
FCC_A1 RESTORED
APP: get
... the command in
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
full is DEFINE_SYSTEM
NI DEFINED
full is REJECT
FCC_A1
HCP_A3
full is RESTORE
full is GET_DATA
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: go d-m
... the command in full is GOTO_MODULE
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond
... the command in full is SET_CONDITION
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: glob
VARIABLE : T
LOW TIME LIMIT /0/: 0
T(TIME,X)= 1400;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
DIC>
DIC> @@
DIC> @@ WE START BY ENTERING A REGION
DIC> @@
DIC> enter-region
REGION NAME : austenite
DIC>
DIC> @@
DIC> @@ ENTER GRID INTO THE REGION.
DIC> @@ AS IN EXAMPLE a2a WE WANT SEVERAL POINTS IN THE MIDLE OF THE REGION,
DIC> @@ THUS WE CONSTRUCT A DOUBLE GEOMETRIC GRID ALSO NI THIS CASE.
DIC> @@
DIC> enter-grid
... the command in full is ENTER_GRID_COORDINATES
REGION NAME : /AUSTENITE/: austenite
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 60
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.9
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.11
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGIONS
DIC> @@
DIC> enter-phase
... the command in full is ENTER_PHASE_IN_REGION
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> @@
DIC> @@ ENTER INITIAL NI COMPOSITION INTO THE PHASE. READ DATA FROM
DIC> @@ THE FILE ni.dat WHICH CONTAINS THE NI-PROFILE.
DIC> @@
DIC> enter-composition
... the command in full is ENTER_COMPOSITIONS
REGION NAME : /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /NI/: ni
TYPE /LINEAR/: read a2bni.dat
... the command in full is CREATE_NEW_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
DIC>
DIC> @@
DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ AFTER THE SIMULATION IN exa2a THE PROFILES HAD SOME FLUCTUATIONS WE
DIC> @@ NOW TRY TO GET RID OF THEM USING IMPLICIT (1) TIME INTEGRATION
DIC> @@ INSTEAD OF THE MORE ACCURATE BUT LESS STABLE TRAPETZOIDAL METHOD
DIC> @@ WHICH IS THE DEFAULT METHOD.
DIC> @@
DIC> s-s-c
... the command in full is SET_SIMULATION_CONDITION
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/:
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: 1.0
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: @@
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 1E6
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /100000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON FILE
DIC> @@
DIC> save exa2b Y
... the command in full is SAVE_WORKSPACES
DIC>
DIC> set-inter
... the command in full is SET_INTERACTIVE
--OK--DIC>
exa2b-run
MACRO exa2b\run.DCM
... the command in full is MACRO_FILE_OPEN
DIC>
DIC>
DIC> @@ exa2b_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE a2b
DIC> @@
DIC>
DIC> @@
DIC> @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE
DIC> @@
DIC> set-log-file run
AMBIGUOUS COMMAND, USE HELP
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AN READ SETUP FROM FILE
DIC> @@
DIC> go d-m
... the command in full is GOTO_MODULE
TIME STEP AT TIME 0.00000E+00
DIC> read exa2b
... the command in full is READ_WORKSPACES
... the command in full is DEFINE_COMPONENTS
... the command in full is SELECT_EQUILIBRIUM
OK
DIC>
DIC> @@
DIC> @@ Start the simulation
DIC> @@
DIC> simulate
... the command in full is SIMULATE_REACTION
... the command in full is SET_NUMERICAL_LIMITS
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
2 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUSTENITE
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
TIME = 0.40010010
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
seconds
0
seconds
0
seconds
0
seconds
DT =
640.21472
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
2551.2556
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
320.10736
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
1270.8262
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT =
160.05368
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
630.61147
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
80.026840
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
310.50411
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT =
40.013420
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
150.45043
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
20.006710
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
70.423585
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT =
10.003355
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
30.410165
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 0.40000000
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
10.403455
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0
seconds
DT =
1280.4294
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
0
seconds
TIME =
5112.1145
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
DT =
2560.8589
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
10233.832
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
CPU time used in timestep
TIME =
20477.268
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0
0
0
0
0
0
0
0
0
0
0
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406166 NI = .291111754593834
1E-04 [m]
CPU time used in timestep
TIME = 1000000.00
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406166 NI = .291111754593834
1E-04 [m]
CPU time used in timestep
TIME =
963885.37
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406165 NI = .291111754593835
1E-04 [m]
CPU time used in timestep
TIME =
863885.37
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406166 NI = .291111754593834
1E-04 [m]
CPU time used in timestep
TIME =
763885.37
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406164 NI = .291111754593836
1E-04 [m]
CPU time used in timestep
TIME =
663885.37
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406166 NI = .291111754593834
1E-04 [m]
CPU time used in timestep
TIME =
563885.37
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406167 NI = .291111754593833
1E-04 [m]
CPU time used in timestep
TIME =
463885.37
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 100000.000
SUM OF SQUARES =
0.0000000
FE = .708888245406172 NI = .291111754593828
1E-04 [m]
CPU time used in timestep
TIME =
363885.37
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
81947.484
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .291111754593831
1E-04 [m]
CPU time used in timestep
TIME =
263885.37
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
40973.742
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .291111754593831
1E-04 [m]
CPU time used in timestep
TIME =
163885.37
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
20486.871
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
81937.881
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
10243.436
SUM OF SQUARES =
0.0000000
FE = .70888824540617 NI = .29111175459383
1E-04 [m]
CPU time used in timestep
TIME =
40964.139
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
5121.7178
SUM OF SQUARES =
0.0000000
FE = .708888245406169 NI = .291111754593831
1E-04 [m]
0
seconds
DT =
36114.635
SUM OF SQUARES =
0.0000000
FE = .708888245406167 NI = .291111754593833
1E-04 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
0.0000000
0.10000000E-06
0.10010000E-03
0.40010010
10.403455
30.410165
70.423585
150.45043
310.50411
630.61147
1270.8262
2551.2556
5112.1145
10233.832
20477.268
40964.139
81937.881
163885.37
263885.37
363885.37
463885.37
563885.37
663885.37
763885.37
863885.37
KEEPING TIME-RECORD FOR TIME
963885.37
AND FOR TIME
1000000.00
WORKSPACE RECLAIMED
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
... the command in full is SET_INTERACTIVE
--OK--DIC>
exa2b-plot
MACRO exa2b\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-ConsoleExamples\examples\exa2b\plot.DCM"
... the command in full is MACRO_FILE_OPEN
DIC>
DIC>
DIC> @@ exa2b_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE a2b
DIC> @@
DIC>
DIC> @@
DIC> @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE
DIC> @@
DIC> set-log-file plot
AMBIGUOUS COMMAND, USE HELP
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
... the command in full is GOTO_MODULE
TIME STEP AT TIME 1.00000E+06
DIC> read exa2b
... the command in full is READ_WORKSPACES
... the command in full is DEFINE_COMPONENTS
... the command in full is SELECT_EQUILIBRIUM
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
... the command in full is POST_PROCESSOR
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1: @@
POST-1: @@ PLOT SOME CONCENTRATION PROFILES
POST-1: @@
POST-1: s-d-a
... the command in full is SET_DIAGRAM_AXIS
AXIS (X, Y OR Z) : x
VARIABLE : dist
INFO: Distance is set as independent variable
... the command in full is SET_INDEPENDENT_VARIABLE
DISTANCE : /GLOBAL/: glo
POST-1:
POST-1: s-d-a
... the command in full is SET_DIAGRAM_AXIS
AXIS (X, Y OR Z) : y
VARIABLE : w-p
FOR COMPONENT : ni
POST-1:
POST-1: s-p-c
... the command in full is SET_PLOT_CONDITION
CONDITION /TIME/: time
VALUE(S) /LAST/: 0 1e5 3e5 1e6
POST-1:
POST-1: @@
POST-1: @@ SET SCALING ON Y-AXIS BEFORE PLOTTING
POST-1: @@
POST-1: s-s-s
... the command in full is SET_SCALING_STATUS
AXIS (X, Y OR Z) : y
AUTOMATIC SCALING (Y OR N) /N/: n
MIN VALUE : 0
MAX VALUE : 60
POST-1:
POST-1: plot
... the command in full is PLOT_DIAGRAM
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: set-inter
... the command in full is SET_INTERACTIVE_MODE
--OK--POST-1:
Example a3
Uphill diffusion in an Fe-Si-C alloy
T = 1323 K
FCC
FCC
●
● ● ● ●
●
●
0.05% Si
0.45% C
3.8% Si
0.49% C
5E-2
exa3-setup
MACRO exa3\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa3\setup.DCM"SYS: @@
SYS: @@ One-phase problem.
SYS: @@ Setup file for the simulation of uphill diffusion in a ternary single phase
SYS: @@ austenite matrix due to the classical darken experiment published by
SYS: @@ L.S. Darken: Trans. Aime, v.180 (1949), pp. 430-438.
SYS: @@ In this setup two pieces of austenite (3.80 wt%Si, 0.49 wt%C) and
SYS: @@ (0.05 wt%Si, 0.45 wt%C) are put together and are subsequently annealed
SYS: @@ at 1050 C for 13 days. As both pieces are austenite they must be entered
SYS: @@ into the same region. we can accomplish this by giving the compositions
SYS: @@ of Si and C in each gridpoint individually. For convenience we store
SYS: @@ these data on file.
SYS: @@
SYS:
SYS: @@ darken_setup.DCM
SYS:
SYS: @@
SYS: @@ FROM NOW ON WE STOP USING LOG-FILES AS WE USED IN EXAMPLES a2a and a2b
SYS: @@
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ USE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
HIGH_SIGMA
TDB_TCFE7: def-sys fe si
FE
DEFINED
TDB_TCFE7: rej ph * all
GAS:G
FCC_A1
GRAPHITE
M7C3
A1_KAPPA
FECN_CHI
CR3SI
M5SI3
SIC REJECTED
TDB_TCFE7: res ph fcc
FCC_A1 RESTORED
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_BCC
DICTRA_FCC_A1
c
SI
LIQUID:L
HCP_A3
CEMENTITE
M5C2
KAPPA
LAVES_PHASE_C14
FE2SI
AL4C3
B2_VACANCY
REJECTED
C
BCC_A2
DIAMOND_FCC_A4
M23C6
KSI_CARBIDE
FE4N_LP1
M3SI
MSI
FE8SI2C
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'J. Lacaze and B. Sundman, Metall. Mater. Trans. A, 22A (1991), 2211-2223;
Fe-Si and Fe-Si-C'
'J. Miettinen and B. Hallstedt, Calphad, 22 (1998), 231-256; Fe-Si and Fe
-Si-C'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_TCFE7: @@
TDB_TCFE7: app mobfe2
Current database: Steels/Fe-Alloys Mobility v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe si c
FE
DEFINED
APP: rej ph * all
BCC_A2
FE4N_LP1
REJECTED
APP: res ph fcc
FCC_A1 RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
SI
C
CEMENTITE
HCP_A3
FCC_A1
LIQUID:L
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'D. Bergner et al., Defect and Diffusion Forum 66-69(1989)409. Impurity
diffusion of Si in fcc Fe.'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1323; * N
DIC>
DIC> @@
DIC> @@ ENTER REGION austenite
DIC> @@
DIC> enter-region
REGION NAME : austenite
DIC>
DIC> @@
DIC> @@ ENTER GRID
DIC> @@ N.B. GRIDPOINT DISTANCES ARE SMALLEST AROUND THE MIDDLE
DIC> @@
DIC> enter-grid
REGION NAME : /AUSTENITE/: austenite
WIDTH OF REGION /1/: 50E-3
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 50
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.9
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.11
DIC>
DIC> @@
DIC> @@ ENTER PHASE INTO REGION (BOTH PIECES ARE AUSTENITIC)
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> @@
DIC> @@ ENTER COMPOSITIONS INTO THE PHASE
DIC> @@
DIC> enter-composition
REGION NAME : /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /SI/: FE
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C func 0.49-0.04*HS(X-25E-3);
PROFILE FOR /SI/: SI func 3.80-3.75*HS(X-25E-3);
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 1e10
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /1E+09/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC> save exa3 Y
DIC>
DIC> set-inter
--OK--DIC>
exa3-run
MACRO exa3\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa3\run.DCM"DIC>
DIC>
DIC> @@ darken_run.DCM
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC>
DIC> @@
DIC> @@ READ SETUP FROM FILE AND START SIMULATION
DIC> @@
DIC> read exa3
OK
DIC>
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = .0215326239970656 FE = .963089414810838
SI = .0369105851891616
TOTAL SIZE OF SYSTEM: .05 [m]
U-FRACTION IN SYSTEM: C = .0215326239970656 FE = .963089414810838
SI = .0369105851891616
TOTAL SIZE OF SYSTEM: .05 [m]
4 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUSTENITE
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326239970656 FE = .963089414810838
SI = .0369105851891616
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
0
seconds
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326239970656 FE = .963089414810838
SI = .0369105851891616
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
TIME = 0.40010010
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
0
seconds
0
seconds
0
seconds
0
seconds
DT =
58356.945
SUM OF SQUARES =
0.0000000
C = .0215326239972062 FE = .963089414810839
SI = .0369105851891616
.05 [m]
CPU time used in timestep
TIME =
232972.27
U-FRACTION IN SYSTEM:
0
DT =
29178.473
SUM OF SQUARES =
0.0000000
C = .0215326239971033 FE = .963089414810839
SI = .0369105851891616
.05 [m]
CPU time used in timestep
TIME =
116258.38
U-FRACTION IN SYSTEM:
seconds
DT =
14589.236
SUM OF SQUARES =
0.0000000
C = .0215326239970727 FE = .963089414810839
SI = .0369105851891616
.05 [m]
CPU time used in timestep
TIME =
57901.432
U-FRACTION IN SYSTEM:
0
DT =
7294.6182
SUM OF SQUARES =
0.0000000
C = .0215326239970661 FE = .963089414810839
SI = .0369105851891616
.05 [m]
CPU time used in timestep
TIME =
28722.959
U-FRACTION IN SYSTEM:
seconds
DT =
3647.3091
SUM OF SQUARES =
0.0000000
C = .0215326239970655 FE = .963089414810838
SI = .0369105851891616
.05 [m]
CPU time used in timestep
TIME =
14133.723
U-FRACTION IN SYSTEM:
0
DT =
1823.6545
SUM OF SQUARES =
0.0000000
C = .0215326239970656 FE = .963089414810839
SI = .0369105851891616
.05 [m]
CPU time used in timestep
TIME =
6839.1046
U-FRACTION IN SYSTEM:
seconds
DT =
911.82727
SUM OF SQUARES =
0.0000000
C = .0215326239970656 FE = .963089414810839
SI = .0369105851891616
.05 [m]
CPU time used in timestep
TIME =
3191.7955
U-FRACTION IN SYSTEM:
0
DT =
455.91364
SUM OF SQUARES =
0.0000000
C = .0215326239970656 FE = .963089414810838
SI = .0369105851891616
.05 [m]
CPU time used in timestep
TIME =
1368.1410
U-FRACTION IN SYSTEM:
seconds
DT = 0.40000000
SUM OF SQUARES =
0.0000000
C = .0215326239970656 FE = .963089414810838
SI = .0369105851891616
.05 [m]
CPU time used in timestep
TIME =
456.31374
U-FRACTION IN SYSTEM:
0
0
seconds
DT =
116713.89
SUM OF SQUARES =
0.0000000
C = .0215326239974973 FE = .963089414810838
SI = .0369105851891616
.05 [m]
CPU time used in timestep
TIME =
466400.05
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
CPU time used in timestep
TIME =
933255.61
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
1
seconds
DT =
466855.56
SUM OF SQUARES =
0.0000000
C = .0215326239974399 FE = .963087589566776
SI = .0369124104332238
.05 [m]
CPU time used in timestep
TIME =
1866966.7
U-FRACTION IN SYSTEM:
0
DT =
233427.78
SUM OF SQUARES =
0.0000000
C = .0215326239975114 FE = .963089414810838
SI = .0369105851891616
.05 [m]
0
seconds
DT =
933711.13
SUM OF SQUARES =
0.0000000
C = .0215326239967894 FE = .963085134899492
SI = .0369148651005078
output ignored...
... output resumed
CPU time used in timestep
TIME =
59757057.
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
seconds
DT =
29878756.
SUM OF SQUARES =
0.0000000
C = .0215326239987765 FE = .963085134899492
SI = .0369148651005077
.05 [m]
CPU time used in timestep
0
seconds
TIME = 0.11951457E+09 DT =
59757512.
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326239989405 FE = .963085134899492
SI = .0369148651005077
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
0
seconds
TIME = 0.23902959E+09 DT = 0.11951502E+09 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326239990903 FE = .963085134899492
SI = .0369148651005077
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
0
seconds
TIME = 0.47805964E+09 DT = 0.23903005E+09 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326239992442 FE = .963085134899492
SI = .0369148651005077
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
0
seconds
TIME = 0.95611974E+09 DT = 0.47806010E+09 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326239994041 FE = .963085134899492
SI = .0369148651005077
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
0
seconds
TIME = 0.19122399E+10 DT = 0.95612019E+09 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326239995618 FE = .963085134899492
SI = .0369148651005077
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
0
seconds
TIME = 0.29122399E+10 DT = 0.10000000E+10 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326239996491 FE = .963085134899492
SI = .0369148651005077
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
1
seconds
TIME = 0.39122399E+10 DT = 0.10000000E+10 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326240001231 FE = .963085134899492
SI = .0369148651005077
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
0
seconds
TIME = 0.49122399E+10 DT = 0.10000000E+10 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326240008828 FE = .963085134899492
SI = .0369148651005077
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
0
seconds
TIME = 0.59122399E+10 DT = 0.10000000E+10 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326240014694 FE = .963085134899492
SI = .0369148651005077
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
0
seconds
TIME = 0.69122399E+10 DT = 0.10000000E+10 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326240019108 FE = .963085134899492
SI = .0369148651005078
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
0
seconds
TIME = 0.79122399E+10 DT = 0.10000000E+10 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326240022539 FE = .963085134899492
SI = .0369148651005077
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
0
seconds
TIME = 0.89122399E+10 DT = 0.10000000E+10 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326240025594 FE = .963085134899492
TOTAL SIZE OF SYSTEM:
SI = .0369148651005077
.05 [m]
CPU time used in timestep
0
seconds
TIME = 0.99122399E+10 DT = 0.10000000E+10 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0215326240028067 FE = .963085134899492
SI = .0369148651005077
TOTAL SIZE OF SYSTEM: .05 [m]
CPU time used in timestep
0
seconds
TIME = 0.10000000E+11 DT =
87760071.
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .021532624002806 FE = .963085134899493
SI = .0369148651005077
TOTAL SIZE OF SYSTEM: .05 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-06
0.10010000E-03
0.40010010
456.31374
1368.1410
3191.7955
6839.1046
14133.723
28722.959
57901.432
116258.38
232972.27
466400.05
933255.61
1866966.7
3734389.0
7469233.5
14938922.
29878300.
59757057.
0.11951457E+09
0.23902959E+09
0.47805964E+09
0.95611974E+09
0.19122399E+10
0.29122399E+10
0.39122399E+10
0.49122399E+10
0.59122399E+10
0.69122399E+10
0.79122399E+10
0.89122399E+10
0.99122399E+10
0.10000000E+11
exa3-plot
MACRO exa3\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa3\plot.DCM"DIC>
DIC>
DIC> @@ darken_plot.DCM
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+10
DIC> read exa3
OK
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
TITLE :
POST-1:
POST-1:
@@
@@ PLOT THE CONCENTRATION PROFILE FOR Si AT TIMES 0, 1E5, 1123200, 1E7,
@@ 1E8, 1E9 AND 1E10 S
@@
@@ SET DISTANCE IN SYSTEM AS X-AXIS, WEIGHT-% SI ON Y-AXIS AND SPECIFY
@@ FOR WHICH SIMULATION TIMES WE SHALL PLOT THE PROFILES.
@@
set-diagram-axis x distance global
Distance is set as independent variable
set-diagram-axis y weight-percent si
set-plot-condition time 0 1E5 1123200 1e7 1E8 1E9 1E10
@@
@@ PLOT THE DIAGRAM
@@
set-title
Figure a3.1
plot
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1: @@
POST-1: @@ PLOT THE CONCENTRATION PROFILES FOR C
POST-1: @@
POST-1: @@ WE ONLY NEED TO CHANGE Y-AXIS
POST-1: @@
POST-1: set-diagram-axis y w-p c
POST-1: set-title Figure a3.2
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1: @@
POST-1: @@ COMPARE WITH DARKENS EXPERIMENTS
POST-1: @@
POST-1: append_experimental_data yes exa3.exp 0; 1
POST-1:
POST-1: set-plot-condition time 1123200
POST-1:
POST-1: s-s-s
AXIS (X, Y OR Z) : y
AUTOMATIC SCALING (Y OR N) /N/: n
MIN VALUE : 0.25
MAX VALUE : 0.75
POST-1:
POST-1: set-title Figure a3.3
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1: set-inter
--OK--POST-1:
Example a4
Carburization of a binary Fe-C alloy
(Comparison with an analytical erf-solution)
T = 1200 K
FCC
●● ● ●
●
●
●
X(C) = 0.005
1E-4
X(C) = 0.03
exa4-setup
MACRO exa4\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa4\setup.DCM"SYS: @@
SYS: @@ One-phase problem.
SYS: @@ This is a simple binary simulation with just one single phase region.
SYS: @@ We will compare our numerical simulation with an analytical erf-solution.
SYS: @@ For this reason a special database erf.tdb is created in which
SYS: @@ the diffusion coefficient is set to a concentration independent value.
SYS: @@
SYS:
SYS: @@ exa4_setup.DCM
SYS:
SYS:
SYS: @@
SYS: @@ READ DATA FROM DATABASES
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1
TDB_TCFE8: sw FEDEMO
Current database: Iron Demo Database
VA
/- DEFINED
TDB_FEDEMO: def-system fe,c
FE
C DEFINED
TDB_FEDEMO: rej-ph *
GAS:G
LIQUID:L
CEMENTITE
DIAMOND_FCC_A4
GRAPHITE
HCP_A3
LAVES_PHASE_C14
M23C6
M7C3 REJECTED
TDB_FEDEMO: rest-ph fcc
FCC_A1 RESTORED
TDB_FEDEMO: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
REJECTED
BCC_A2
FCC_A1
KSI_CARBIDE
M5C2
List of references for assessed data
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
-OKTDB_FEDEMO:
TDB_FEDEMO: append user exa4.TDB
Current database: User defined Database
This database does not support the DATABASE_INFORMATION command
VA DEFINED
TDB_APP: def-system fe,c
FE
C DEFINED
TDB_APP: rej-ph *
FCC_A1 REJECTED
TDB_APP: rest-ph fcc
FCC_A1 RESTORED
TDB_APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
-OKTDB_APP:
TDB_APP: @@
TDB_APP: @@ GOTO DICTRA MODULE AND SETUP THE PROBLEM
TDB_APP: @@
TDB_APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1200; * N
DIC>
DIC> @@
DIC> @@ ENTER REGION steel
DIC> @@
DIC> enter-region
REGION NAME : steel
DIC>
DIC> @@
DIC> @@ ENTER GRID
DIC> @@ CARBON WILL ENTER THE SYSTEM FROM THE LOWER BOUNDARY AND CONSEQUENTLY
DIC> @@ WE REUIRE MORE POINTS AT THAT BOUNDARY. FOR THIS REASON WE USE A
DIC> @@ GEOMETRIC GRID IN THIS CASE.
DIC> @@
DIC> enter-grid
REGION NAME : /STEEL/: steel
WIDTH OF REGION /1/: 1E-4
TYPE /LINEAR/: geometric
NUMBER OF POINTS /50/: 32
VALUE OF R IN THE GEOMETRICAL SERIE : 1.11
DIC>
DIC> @@
DIC> @@ ENTER PHASE INTO REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /STEEL/: steel
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC>
DIC> @@
DIC> @@ INITIAL COMPOSITION IN FCC-PHASE
DIC> @@
DIC> enter-composition
REGION NAME : /STEEL/: steel
PHASE NAME: /FCC_A1/: fcc#1
COMPOSITION TYPE /MOLE_FRACTION/: mole-fraction
PROFILE FOR /C/: c
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 0.005
VALUE OF LAST POINT : /5E-3/: 0.005
DIC>
DIC>
DIC> @@
DIC> @@ SET A FIX COMPOSITION AS BOUNDARY VALUE
DIC> @@
DIC> set-condition
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary
BOUNDARY /LOWER/: lower
CONDITION TYPE /CLOSED_SYSTEM/: state-variable-value
State variable expression #1 : /N=1/: n=1
State variable expression #2 : x(c)=0.03
DIC>
DIC>
DIC> @@
DIC> @@ SET SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 100
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /10/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC>
DIC> save exa4 Y
DIC>
DIC> set-inter
--OK--DIC>
exa4-run
MACRO exa4\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa4\run.DCM"DIC>
DIC>
DIC> @@ exa4_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE a4
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exa4
OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = .0050251256281407 FE = 1
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: C = .0050251256281407 FE = 1
TOTAL SIZE OF SYSTEM: 1E-04 [m]
9 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: STEEL
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00508348834679686 FE = 1
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
1 GRIDPOINT(S) ADDED
TO
CELL #1
0 seconds
REGION: STEEL
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00508409543247046 FE = 1
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
0
0
CPU time used in timestep
0
0
TIME = 0.75641555
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
1
TIME =
1.5247360
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
TIME =
3.0613769
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0
0
0
32.281222
DT =
0
10.0000000
0.0000000
seconds
DT = 10.0000000
SUM OF SQUARES =
C = .00904285003239105 FE = 1
1E-04 [m]
CPU time used in timestep
TIME =
0.0000000
seconds
DT =
6.1465637
SUM OF SQUARES =
C = .00800905728756118 FE = 1
1E-04 [m]
CPU time used in timestep
TIME =
22.281222
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
DT =
3.0732818
SUM OF SQUARES =
C = .00713462772374615 FE = 1
1E-04 [m]
CPU time used in timestep
TIME =
12.281222
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
DT =
1.5366409
SUM OF SQUARES =
C = .00651606477943325 FE = 1
1E-04 [m]
CPU time used in timestep
TIME =
6.1346588
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
DT = 0.76832046
SUM OF SQUARES =
C = .00607832336005493 FE = 1
1E-04 [m]
CPU time used in timestep
0.0000000
seconds
DT = 0.38416023
SUM OF SQUARES =
C = .00576829415910515 FE = 1
1E-04 [m]
CPU time used in timestep
0.0000000
seconds
DT = 0.19208011
SUM OF SQUARES =
C = .0055483575543518 FE = 1
1E-04 [m]
CPU time used in timestep
0.0000000
seconds
DT = 0.96040057E-01 SUM OF SQUARES =
C = .00539181114486415 FE = 1
1E-04 [m]
CPU time used in timestep
TIME = 0.37225532
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
TIME = 0.84135150E-01 DT = 0.48020029E-01 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00527960440299711 FE = 1
TOTAL SIZE OF SYSTEM: 1E-04 [m]
TIME = 0.18017521
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
TIME = 0.36115121E-01 DT = 0.24010014E-01 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00519794167790874 FE = 1
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0.0000000
seconds
TIME = 0.12105107E-01 DT = 0.12005007E-01 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00513626829627971 FE = 1
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0.0000000
0.0000000
seconds
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
C = .00985903057950594
1E-04 [m]
CPU time used in timestep
TIME =
42.281222
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0
0
TIME =
72.281222
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
TIME =
82.281222
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0
0
0.0000000
0.10000000E-06
0.10010000E-03
0.12105107E-01
0.36115121E-01
0.84135150E-01
0.18017521
0.37225532
0.75641555
1.5247360
3.0613769
6.1346588
12.281222
22.281222
32.281222
42.281222
52.281222
62.281222
72.281222
82.281222
KEEPING TIME-RECORD FOR TIME
92.281222
AND FOR TIME
100.000000
WORKSPACE RECLAIMED
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
seconds
DT =
7.7187776
SUM OF SQUARES =
C = .0135276709358081 FE = 1
1E-04 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
0.0000000
seconds
DT = 10.0000000
SUM OF SQUARES =
C = .0131931583377927 FE = 1
1E-04 [m]
CPU time used in timestep
TIME = 100.000000
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
DT = 10.0000000
SUM OF SQUARES =
C = .0127382074556105 FE = 1
1E-04 [m]
CPU time used in timestep
TIME =
92.281222
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
DT = 10.0000000
SUM OF SQUARES =
C = .012254681140506 FE = 1
1E-04 [m]
CPU time used in timestep
0.0000000
seconds
DT = 10.0000000
SUM OF SQUARES =
C = .0117364077404952 FE = 1
1E-04 [m]
CPU time used in timestep
0.0000000
seconds
DT = 10.0000000
SUM OF SQUARES =
C = .0111746120989673 FE = 1
1E-04 [m]
CPU time used in timestep
TIME =
62.281222
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 10.0000000
SUM OF SQUARES =
C = .010556058900354 FE = 1
1E-04 [m]
CPU time used in timestep
TIME =
52.281222
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
FE = 1
0.0000000
exa4-plot
MACRO exa4\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa4\plot.DCM"DIC>
DIC>
DIC> @@ exa4_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE exa4
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+02
DIC> read exa4
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: @@ PLOTT A COMPOSITION PROFILE
POST-1: @@
POST-1: s-d-a x distance global
INFO: Distance is set as independent variable
POST-1: s-d-a y x(c)
POST-1: s-p-c time 25
POST-1:
POST-1: @@
POST-1: @@ ENTER THE ANALYTICAL SOLUTION, CALLED ERFSOL
POST-1: @@
POST-1: enter-symbol
Function or table /FUNCTION/: function
NAME: erfsol
FUNCTION: 0.03-0.025*erf(gd/sqrt(4*dc(fcc,c,c,fe)*25));
POST-1:
POST-1: @@
POST-1: @@ COMPARE THE ANALYTICAL AND NUMERICAL SOLUTIONS
POST-1: @@
POST-1: enter-symbol
Function or table /FUNCTION/: table
NAME: aaa
Variable(s) x(c) erfsol
POST-1:
POST-1: s-d-a y aaa
COLUMN NUMBER /*/: 1 2
POST-1:
POST-1: set-axis-text
AXIS (X, Y OR Z) : y
AUTOMATIC AXIS TEXT (Y OR N) /N/: n
AXIS TEXT : Mole-fraction C
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: @@
POST-1: @@ PLOT THE DIFFERENCE
POST-1: @@
POST-1: enter func diff=x(c)-erfsol;
POST-1: s-d-a y diff
POST-1: s-s-s y n -1e-2 1e-2
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: set-interactive
--OK--POST-1:
Example a5
Carburization of a binary Fe-C alloy
(A surface reaction controls the flux of C at the surface)
T = 1173 K
FCC
●● ● ●
●
●
0.15% C
3E-3
surf
JC = - 8.25E-9 (aC - 0.64)
●
exa5-setup
MACRO exa5\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa5\setup.DCM"SYS: ?@@
NO SUCH COMMAND, USE HELP
SYS: @@ One-phase problem.
SYS: @@ Simulation of carburization of a binary Fe-0.15 wt% C alloy.
SYS: @@ A mixture of 40% N2 and 60% cracked methanol was used as carrier gas.
SYS: @@ The carburizing "carbon potential" in the gas is 0.85 wt%.
SYS: @@ A surface reaction controles the flux of C at the surface.
SYS: @@
SYS:
SYS: @@ exa5_setup.DCM
SYS:
SYS: @@
SYS: @@ GOTO DATABASE AND READ THERMODYNAMIC AND KINETIC DATA.
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1
TDB_TCFE8: sw FEDEMO
Current database: Iron Demo Database
B2_VACANCY
REJECTED
VA
/- DEFINED
TDB_FEDEMO: def-sys fe,c
FE
C DEFINED
TDB_FEDEMO: rej-ph *
GAS:G
LIQUID:L
CEMENTITE
DIAMOND_FCC_A4
GRAPHITE
HCP_A3
LAVES_PHASE_C14
M23C6
M7C3 REJECTED
TDB_FEDEMO: rest-ph fcc graphite
FCC_A1
GRAPHITE RESTORED
TDB_FEDEMO: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
BCC_A2
FCC_A1
KSI_CARBIDE
M5C2
List of references for assessed data
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'B. Uhrenius (1993-1994), International journal of refractory metals and
hard mater, Vol. 12, pp. 121-127; Molar volumes'
-OKTDB_FEDEMO:@?
TDB_FEDEMO: append
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /FEDEMO/: mfedemo
Current database: Fe-Alloys Mobility demo database
VA DEFINED
APP: def-sys fe,c
FE
APP: rej-ph *
BCC_A2
APP: rest-ph fcc
FCC_A1 RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
C
DEFINED
FCC_A1
REJECTED
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
-OKAPP:@?
APP: @@
APP: @@ GOTO THE DICTRA MONITOR TO SETUP THE INITIAL STATE OF THE SPECIMEN
APP: @@
APP: go d-m
NO TIME STEP DEFINED
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC>
DIC> set-cond glob T 0 1173; * N
DIC>
DIC> @@
DIC> @@ SELECT REFERENCE STATE FOR THE C ACTIVITY
DIC> @@
DIC> set-ref-state
Component: c
Reference state: graph
Temperature /*/: *
Pressure /100000/: 1e5
DIC>
DIC> @@
DIC> @@ ENTER REGION ETC.
DIC> @@
DIC> enter-region
REGION NAME : steel
DIC>
DIC> enter-grid
REGION NAME : /STEEL/: steel
WIDTH OF REGION /1/: 3E-3
TYPE /LINEAR/: geo
NUMBER OF POINTS /50/: 60
VALUE OF R IN THE GEOMETRICAL SERIE : 1.11
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /STEEL/: steel
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> enter-composition
REGION NAME : /STEEL/: steel
PHASE NAME: /FCC_A1/: fcc#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: c
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 0.15
VALUE OF LAST POINT : /0.15/: 0.15
DIC>
DIC> @@
DIC> @@ NOW SET BOUNDARY CONDITIONS. WE ARE ONLY INTERESTED IN THE
DIC> @@ SURFACE REGION IT IS THUS ENOUGH TO SET CONDITIONS AT I.E.
DIC> @@ THE LOWER BOUNDARY.
DIC> @@
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
Specify the activity flux function which controls the uptake of C.
The functions f
and g
k
and the parameter N has to be specified.
k
N
V = f (variables)*(ACTIVITY -g (variables))
m
k
k k
J
k
(1)
f
and g
in equation 1 is the mass-transfer coefficient and
k
k
the activity of k in the gas respectively. ACTIVITY in eq. 1 means
the actual activity of species k at the surface.
The main carburizing reaction for our atmosphere is:
CO
+
H
2
->
<-
C
-
+
H O
2
(I)
Following Sproge and Ågren (J. Heat Treating, Vol. 6, No1, 1988 pp. 9-19)
we may callculate the mass-transfer coefficient for carbon, f in
eq. 1 above by means of eq. 3,4 and 12 in Sproges and Ågrens paper.
A *
f
K
=
K *
I
P
*
CO
sqrt( P
)
H
2
----------------------------- / gamma
a + B * K * P * sqrt( P )
C
I
CO
H
2
(2)
is the equilibrium constant for reaction (I)
I
A and B are constants defined in Sproges and Ågrens paper. gamma
is the activity coefficient for carbon in the steel.
We will here assume a constant value for
P
*
CO
sqrt( P
) = 0.14
H
2
The carbon activity in the gas will thus be controlled by the partial
pressure of water as can be understood from reaction (I).
We will here assume that the carbon activity, a
of the gas is 0.64
C
which corresponds to a carburizing "carbon potential" of 0.85 wt%.
In this way we may calculate f to 8.25E-9 mol/s.
set-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: bound
BOUNDARY /LOWER/: lower
CONDITION TYPE /CLOSED_SYSTEM/: activity_flux_function
ENTER THE EXPRESSION AS:
N
J V = f (variables)*(ACTIVITY -g (variables))
k m
k
k k
FLUX OF FCC_A1,C
LOW TIME LIMIT /0/: 0
f(T,P,TIME)= -8.25E-9;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
N /1/: 1
LOW TIME LIMIT /0/: 0
g(T,P,TIME)= 0.64;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
DIC>
DIC> @@
DIC> @@ Specify simulation time ...
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 18000
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /1800/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC> @@
DIC> @@ Save the setup on file
DIC> @@
DIC> Save exa5 Y
DIC>
DIC> set-inter
--OK--DIC>
exa5-run
MACRO exa5\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa5\run.DCM"DIC>
DIC>
DIC> @@ exa5_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE a5
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC> read exa5
OK
DIC>
DIC> @@
DIC> @@ Start the simulation
DIC> @@
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1
TOTAL SIZE OF SYSTEM: .003 [m]
U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1
TOTAL SIZE OF SYSTEM: .003 [m]
9 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: STEEL
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00698495916398348 FE = 1
TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
1 GRIDPOINT(S) ADDED
TO
CELL #1
0 seconds
REGION: STEEL
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00698495931637932 FE = 1
TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
0
CPU time used in timestep
DT =
2.1516503
C = .00699108630238
.003 [m]
CPU time used in timestep
TIME =
8.5730820
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0
0
0.0000000
seconds
0.0000000
seconds
DT =
34.426406
SUM OF SQUARES =
C = .00706852220082184 FE = 1
.003 [m]
CPU time used in timestep
0.0000000
seconds
DT =
17.213203
SUM OF SQUARES =
C = .00702942229331612 FE = 1
.003 [m]
CPU time used in timestep
TIME =
68.819292
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT =
8.6066014
SUM OF SQUARES =
C = .00700822016227207 FE = 1
.003 [m]
CPU time used in timestep
TIME =
34.392886
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
SUM OF SQUARES =
FE = 1
DT =
4.3033007
SUM OF SQUARES =
C = .00699696503140297 FE = 1
.003 [m]
CPU time used in timestep
TIME =
17.179683
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT =
1.0758252
SUM OF SQUARES =
C = .0069880525746046 FE = 1
.003 [m]
CPU time used in timestep
TIME =
4.2697813
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT = 0.53791259
SUM OF SQUARES =
C = .00698650077061368 FE = 1
.003 [m]
CPU time used in timestep
TIME =
2.1181309
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT = 0.26895629
SUM OF SQUARES =
C = .00698571203087749 FE = 1
.003 [m]
CPU time used in timestep
TIME =
1.0423057
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT = 0.13447815
SUM OF SQUARES =
C = .00698531294268508 FE = 1
.003 [m]
CPU time used in timestep
TIME = 0.50439315
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT = 0.67239073E-01 SUM OF SQUARES =
C = .00698511164116955 FE = 1
.003 [m]
CPU time used in timestep
TIME = 0.23543686
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
TIME = 0.33719637E-01 DT = 0.33619537E-01 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00698501030669505 FE = 1
TOTAL SIZE OF SYSTEM: .003 [m]
TIME = 0.10095871
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
0.0000000
TIME =
137.67210
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
DT =
68.852811
SUM OF SQUARES =
C = .00713870843155664 FE = 1
.003 [m]
CPU time used in timestep
TIME =
275.37772
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0
1
0
TIME =
4003.2564
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
TIME =
5803.2564
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
TIME =
7603.2564
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0
0
0
0
0
TIME =
18000.000
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
0.0000000
0.10000000E-06
0.10010000E-03
0.33719637E-01
0.10095871
0.23543686
0.50439315
1.0423057
2.1181309
4.2697813
8.5730820
17.179683
34.392886
68.819292
137.67210
275.37772
550.78897
1101.6115
2203.2564
4003.2564
5803.2564
7603.2564
9403.2564
11203.256
13003.256
14803.256
16603.256
18000.000
0.0000000
seconds
DT =
1396.7436
SUM OF SQUARES =
C = .0118645957846414 FE = 1
.003 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
0.0000000
seconds
DT =
1800.0000
SUM OF SQUARES =
C = .0116420719686607 FE = 1
.003 [m]
CPU time used in timestep
0.0000000
seconds
DT =
1800.0000
SUM OF SQUARES =
C = .0113415095977369 FE = 1
.003 [m]
CPU time used in timestep
TIME =
16603.256
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
DT =
1800.0000
SUM OF SQUARES =
C = .0110228177770633 FE = 1
.003 [m]
CPU time used in timestep
TIME =
14803.256
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
DT =
1800.0000
SUM OF SQUARES =
C = .0106822470518481 FE = 1
.003 [m]
CPU time used in timestep
TIME =
13003.256
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
DT =
1800.0000
SUM OF SQUARES =
C = .0103145419290457 FE = 1
.003 [m]
CPU time used in timestep
TIME =
11203.256
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
DT =
1800.0000
SUM OF SQUARES =
C = .00991191759849181 FE = 1
.003 [m]
CPU time used in timestep
TIME =
9403.2564
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
DT =
1800.0000
SUM OF SQUARES =
C = .00946192476382281 FE = 1
.003 [m]
CPU time used in timestep
0.0000000
seconds
DT =
1800.0000
SUM OF SQUARES =
C = .00894215174870194 FE = 1
.003 [m]
CPU time used in timestep
0.0000000
seconds
DT =
1101.6450
SUM OF SQUARES =
C = .00830224458781655 FE = 1
.003 [m]
CPU time used in timestep
0.0000000
seconds
DT =
550.82249
SUM OF SQUARES =
C = .00779310153791831 FE = 1
.003 [m]
CPU time used in timestep
TIME =
2203.2564
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
seconds
DT =
275.41124
SUM OF SQUARES =
C = .00746470580143571 FE = 1
.003 [m]
CPU time used in timestep
TIME =
1101.6115
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT =
137.70562
SUM OF SQUARES =
C = .00726063934605857 FE = 1
.003 [m]
CPU time used in timestep
TIME =
550.78897
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0.0000000
0.0000000
DIC> set-inter
--OK--DIC>
exa5-plot
MACRO exa5\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa5\plot.DCM"DIC>
DIC>
DIC> @@ exa5_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE a5
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.80000E+04
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC> read exa5
OK
DIC>
DIC> @@
DIC> @@ ENTER THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
POST-1:
@@
@@ PLOT SOME DIFFERENT CONCENTRATION PROFILES.
@@
s-d-a x dist glo
Distance is set as independent variable
s-d-a y w-p c
s-p-c time 100 1000 5000 18000
plot
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: @@
POST-1: @@ PLOT THE VARIATION OF THE C ACTIVITY AT THE SURFACE
POST-1: @@
POST-1: s-d-a y acr(c)
POST-1:
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1:
POST-1: s-p-c
CONDITION /TIME/: interface
INTERFACE : first
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: @@
POST-1: @@ LETS HAVE A LOGARITHMIC SCALE ON THE X-AXIS
POST-1: @@
POST-1: set-axis-type
AXIS (X, Y OR Z) : x
AXIS TYPE /LINEAR/: logarithmic
POST-1:
POST-1: s-s-s x n 0.001 2e4
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: @@
POST-1: @@ PLOT THE AVERAGE WEIGHT FRACTION OF C IN THE SPECIMEN
POST-1: @@
POST-1: s-d-a y iww(c)
POST-1:
POST-1: set-ax-ty
AXIS (X, Y OR Z) : x
AXIS TYPE /LINEAR/: linear
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
exa6-setup
MACRO exa6\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa6\setup.DCM"SYS: @@
SYS: @@ One-phase problem.
SYS: @@ A simple, perhaps not realistic, example on diffusion through a
SYS: @@ tube wall. The tube-material is an Fe-0.6%Mn-0.7%Si-0.05%C alloy. On
SYS: @@ the inside wall a carbon activity of 0.9 is maintained whereas on
SYS: @@ the outside the C-activity is very low. This example demonstrates
SYS: @@ the use of the command SET-FIRST-INTERFACE as well as the use of
SYS: @@ MIXED boundary conditions.
SYS: @@
SYS:
SYS: @@ setup.DCM
SYS:
SYS:
SYS: @@
SYS: @@ GO TO THE DATABASE MODULE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ LET'S USE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7: def-sys fe si mn c
FE
SI
C DEFINED
TDB_TCFE7: rej ph * all
GAS:G
LIQUID:L
FCC_A1
HCP_A3
GRAPHITE
CEMENTITE
M7C3
M5C2
A1_KAPPA
KAPPA
FECN_CHI
LAVES_PHASE_C14
G_PHASE
CR3SI
MSI
M5SI3
FE8SI2C
SIC REJECTED
TDB_TCFE7: res ph fcc,grap
FCC_A1
GRAPHITE RESTORED
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
MN
BCC_A2
DIAMOND_FCC_A4
M23C6
KSI_CARBIDE
FE4N_LP1
M3SI
FE2SI
AL4C3
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'W. Huang, Metall. Trans. A, 21A (1990), 2115-2123; TRITA-MAC 411 (Rev
1989); C-FE-MN'
'J. Lacaze and B. Sundman, Metall. Mater. Trans. A, 22A (1991), 2211-2223;
Fe-Si and Fe-Si-C'
'W. Huang, Calphad, 13 (1989), 243-252; TRITA-MAC 388 (rev 1989); FE-MN'
'J.E. Tibballs, SI Norway (1991) Rep. 890221-5; Mn-Si'
'J. Miettinen and B. Hallstedt, Calphad, 22 (1998), 231-256; Fe-Si and Fe
-Si-C'
'A. Forsberg and J. Agren, J. Phase Equil., 14 (1993), 354-363; Fe-Mn-Si'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
'B. Uhrenius (1993-1994), International journal of refractory metals and
hard mater, Vol. 12, pp. 121-127; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIVE KINETIC DATA
TDB_TCFE7: @@
TDB_TCFE7: app
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE7/: mobfe2
Current database: Steels/Fe-Alloys Mobility
v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe si mn c
FE
C DEFINED
APP: rej ph * all
BCC_A2
FE4N_LP1
REJECTED
APP: res ph fcc
FCC_A1 RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
SI
MN
CEMENTITE
HCP_A3
FCC_A1
LIQUID:L
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'Bae et al.: Z. Metallkunde 91(2000)672-674; fcc Fe-Mn
Mn-Ni'
'D. Bergner et al., Defect and Diffusion Forum 66-69(1989)409. Impurity
diffusion of Si in fcc Fe.'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR PROBLEM
APP: @@
APP: go d-m
NO TIME STEP DEFINED
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1273; * N
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
@@
@@ SET REFERENCE STATE FOR CARBON
@@
set-ref C grap * 101325
@@
DIC> @@ ENTER A REGION
DIC> @@
DIC> enter-region aus
DIC>
DIC> @@
DIC> @@ ENTER DOUBLE GEOMETRIC GRID INTO THE REGION
DIC> @@
DIC> enter-grid
REGION NAME : /AUS/: aus
WIDTH OF REGION /1/: 1e-2
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 80
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.02
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.98
DIC>
DIC> @@
DIC> @@ SET GEOMETRY (1 = CYLINDER)
DIC> @@
DIC> enter-geo
GEOMETRICAL EXPONENT /0/: 1
DIC>
DIC> @@
DIC> @@ SET FIRST INTERFACE => TUBE
DIC> @@
DIC> set-first-interface
COORDINATE FOR FIRST INTERFACE /0/: 2e-2
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASE IN REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc_a1#1
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITIONS INTO THE PHASE
DIC> @@
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /SI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: si lin 0.7 0.7
PROFILE FOR /MN/: mn lin 0.6 0.6
PROFILE FOR /SI/: c lin 5e-2 5e-2
DIC>
DIC> @@
DIC> @@ SET BOUNDARY CONDITIONS ON BOTH LOWER AND UPPER PART OF THE REGION
DIC> @@
DIC> @@ USE MIXED CONDITIONS, AN ACTIVITY CONDITION FOR C AND CLOSED
DIC> @@ SYSTEMS FOR MN AND SI.
DIC> @@
DIC> set-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary
BOUNDARY /LOWER/: lower
CONDITION TYPE /CLOSED_SYSTEM/: mixed
Dependent substitutional element:FE
Dependent interstitial element:VA
TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: activity
LOW TIME LIMIT /0/: 0
ACR(C)(TIME)= 0.9;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
TYPE OF CONDITION FOR COMPONENT MN /ZERO_FLUX/: zero_flux
TYPE OF CONDITION FOR COMPONENT SI /ZERO_FLUX/: zero_flux
DIC>
DIC> set-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary
BOUNDARY /UPPER/: upper
CONDITION TYPE /CLOSED_SYSTEM/: mixed
Dependent substitutional element:FE
Dependent interstitial element:VA
TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: activity
LOW TIME LIMIT /0/: 0
ACR(C)(TIME)= 1e-5;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
TYPE OF CONDITION FOR COMPONENT MN /ZERO_FLUX/: zero_flux
TYPE OF CONDITION FOR COMPONENT SI /ZERO_FLUX/: zero_flux
DIC>
DIC> @@
DIC> @@ SET SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 1e9
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /100000000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> @@
DIC> @@ SAVE ON FILE
DIC> @@
DIC> save exa6 y
DIC>
DIC> set-inter
--OK--DIC>
exa6-run
MACRO exa6\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa6\run.DCM"DIC>
DIC>
DIC> @@ run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING exa6
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC> read exa6
OK
DIC>
DIC> @@
DIC> @@ Start the simulation
DIC> @@
DIC> simulate
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = .00115488575879621 FE = .490055682684517
MN = .00302988813183617 SI = .00691442924890044
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
U-FRACTION IN SYSTEM: C = .00115488575879621 FE = .490055682684517
MN = .00302988813183617 SI = .00691442924890044
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .00125366195459931 FE = .490055682684517
MN = .00302988813183617 SI = .00691442924890044
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
CPU time used in timestep
0
seconds
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0012541227432527 FE = .490055682684517
MN = .00302988813183617 SI = .00691442924890044
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
CPU time used in timestep
TIME = 0.40010010
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
CPU time used in timestep
TIME =
160.87030
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
1
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
0
82000.674
seconds
DT =
20540.186
SUM OF SQUARES =
0.0000000
C = .00486019233189309 FE = .490055682689761
MN = .0030298881323684 SI = .00691442924312399
.00314159265359 [m^2]
CPU time used in timestep
TIME =
seconds
DT =
10270.093
SUM OF SQUARES =
0.0000000
C = .0037491613580386 FE = .490055682688229
MN = .00302988813221057 SI = .00691442924481427
.00314159265359 [m^2]
CPU time used in timestep
TIME =
40920.302
U-FRACTION IN SYSTEM:
seconds
DT =
5135.0465
SUM OF SQUARES =
0.0000000
C = .00297316977084057 FE = .490055682687126
MN = .00302988813209826 SI = .00691442924602937
.00314159265359 [m^2]
CPU time used in timestep
TIME =
20380.116
U-FRACTION IN SYSTEM:
seconds
DT =
2567.5233
SUM OF SQUARES =
0.0000000
C = .00242787670585282 FE = .490055682686336
MN = .00302988813201827 SI = .00691442924689948
.00314159265359 [m^2]
CPU time used in timestep
TIME =
10110.023
U-FRACTION IN SYSTEM:
seconds
DT =
1283.7616
SUM OF SQUARES =
0.0000000
C = .00204188977019142 FE = .490055682685768
MN = .00302988813196098 SI = .00691442924752467
.00314159265359 [m^2]
CPU time used in timestep
TIME =
4974.9764
U-FRACTION IN SYSTEM:
seconds
DT =
641.88082
SUM OF SQUARES =
0.0000000
C = .00176551489262203 FE = .490055682685355
MN = .00302988813191944 SI = .00691442924797909
.00314159265359 [m^2]
CPU time used in timestep
TIME =
2407.4532
U-FRACTION IN SYSTEM:
seconds
DT =
320.94041
SUM OF SQUARES =
0.0000000
C = .0015631121798786 FE = .490055682685047
MN = .00302988813188851 SI = .00691442924831815
.00314159265359 [m^2]
CPU time used in timestep
TIME =
1123.6915
U-FRACTION IN SYSTEM:
seconds
DT =
160.47020
SUM OF SQUARES =
0.0000000
C = .00140660867390162 FE = .490055682684802
MN = .00302988813186406 SI = .00691442924858674
.00314159265359 [m^2]
CPU time used in timestep
TIME =
481.81071
U-FRACTION IN SYSTEM:
seconds
DT = 0.40000000
SUM OF SQUARES =
0.0000000
C = .00125473479150122 FE = .490055682684518
MN = .0030298881318363 SI = .00691442924889893
.00314159265359 [m^2]
DT =
1
41080.372
seconds
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
C = .00646111106297823
MN = .0030298881325897
.00314159265359 [m^2]
CPU time used in timestep
TIME =
164161.42
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
0
seconds
DT =
82160.744
SUM OF SQUARES =
0.0000000
C = .0087824743281453 FE = .490055682694715
MN = .00302988813290127 SI = .00691442923763758
.00314159265359 [m^2]
CPU time used in timestep
TIME =
328482.91
U-FRACTION IN SYSTEM:
FE = .490055682691865
SI = .00691442924079908
0
seconds
DT =
164321.49
SUM OF SQUARES =
0.0000000
C = .0120233349524823 FE = .490055682698822
MN = .00302988813337276 SI = .00691442923305911
.00314159265359 [m^2]
output ignored...
... output resumed
CPU time used in timestep
TIME =
15119280.
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
CPU time used in timestep
TIME =
28597125.
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
0
seconds
DT =
13477845.
SUM OF SQUARES =
0.0000000
C = .0165300519884718 FE = .490055682940724
MN = .00302988816674853 SI = .00691442895778081
.00314159265359 [m^2]
CPU time used in timestep
TIME =
55552815.
U-FRACTION IN SYSTEM:
0
DT =
6738922.5
SUM OF SQUARES =
0.0000000
C = .016530430864208 FE = .490055682867987
MN = .00302988815669835 SI = .00691442904056798
.00314159265359 [m^2]
0
seconds
DT =
26955690.
SUM OF SQUARES =
0.0000000
C = .016529737105878 FE = .490055683047884
MN = .00302988818132928 SI = .00691442883604053
.00314159265359 [m^2]
CPU time used in timestep
1
seconds
TIME = 0.10946419E+09 DT =
53911380.
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .016529699237533 FE = .490055683206572
MN = .00302988820257483 SI = .00691442865610666
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
CPU time used in timestep
0
seconds
TIME = 0.20883343E+09 DT =
99369240.
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0165306811403286 FE = .49005568342848
MN = .00302988823170669 SI = .00691442840506641
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
CPU time used in timestep
0
seconds
TIME = 0.30830636E+09 DT =
99472929.
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0165348571162441 FE = .490055683611437
MN = .00302988825525438 SI = .0069144281985626
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
CPU time used in timestep
0
seconds
TIME = 0.40784707E+09 DT =
99540711.
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .016538250858666 FE = .490055683774507
MN = .00302988827589775 SI = .00691442801484847
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
CPU time used in timestep
1
seconds
TIME = 0.50744329E+09 DT =
99596213.
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0165412919615189 FE = .490055683925116
MN = .00302988829469354 SI = .00691442784544345
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
CPU time used in timestep
0
seconds
TIME = 0.60708721E+09 DT =
99643921.
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0165441256829561 FE = .490055684067096
MN = .00302988831219105 SI = .00691442768596585
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
CPU time used in timestep
0
seconds
TIME = 0.70677300E+09 DT =
99685789.
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .016546817769877 FE = .490055684202729
MN = .00302988832871668 SI = .00691442753380813
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
CPU time used in timestep
1
seconds
TIME = 0.80649607E+09 DT =
99723077.
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0165494037752657 FE = .490055684333495
MN = .00302988834448347 SI = .00691442738727498
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
CPU time used in timestep
0
seconds
TIME = 0.90625273E+09 DT =
99756653.
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0165519052639314 FE = .490055684460418
MN = .00302988835963936 SI = .0069144272451963
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
CPU time used in timestep
0
seconds
TIME = 0.99706021E+09 DT =
90807478.
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0165543980726468 FE = .490055684573206
MN = .00302988837299422 SI = .0069144271190536
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
CPU time used in timestep
0
seconds
TIME = 0.10000000E+10 DT =
2939794.5
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0165570300715913 FE = .490055684576818
MN = .00302988837342096 SI = .00691442711501466
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
0.0000000
0.10000000E-06
0.10010000E-03
0.40010010
160.87030
481.81071
1123.6915
2407.4532
4974.9764
10110.023
20380.116
40920.302
82000.674
164161.42
328482.91
657125.89
1314411.8
2593116.0
4748316.3
8380357.3
15119280.
28597125.
55552815.
0.10946419E+09
0.20883343E+09
0.30830636E+09
0.40784707E+09
0.50744329E+09
0.60708721E+09
0.70677300E+09
0.80649607E+09
0.90625273E+09
KEEPING TIME-RECORD FOR TIME
0.99706021E+09
AND FOR TIME
0.10000000E+10
WORKSPACE RECLAIMED
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
--OK--DIC>
exa6-plot
MACRO exa6\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa6\plot.DCM"DIC>
DIC>
DIC> @@ exa6_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+09
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC> read exa6
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
POST-1:
@@
@@ PLOT CONCENTRATION OF C AT DIFFERENT TIMES
@@
s-d-a x distance global
Distance is set as independent variable
s-d-a y w-p c
s-p-c time 0,1e4,2e5,1e7,1e9
plot
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ NOW, LET'S PLOT THE ACTIVITY OF C
POST-1: @@
POST-1:
POST-1: s-d-a y acr(c)
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ LET US LOOK AT THE MN AND SI PROFILES
POST-1: @@
POST-1: @@ WE PLOT THE U-FRACTION OF MN AND SI WHICH WILL BE INDEPENDENT
POST-1: @@ OF THE C-CONCENTRATION.
POST-1: @@
POST-1: s-d-a y u-f mn
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: s-d-a y u-f si
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ FINALLY, LET'S HAVE A LOOK ON THE ACTIVITY PROFILES OF SI
POST-1: @@
POST-1: s-d-a y ac(si)
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: set-inter
--OK--POST-1:
exa7-setup
MACRO exa7\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-ConsoleExamples\examples\exa7\setup.DCM"SYS: @@ DICTRA simulation of a homogenization heat treatment
SYS: @@
SYS: @@ The initial segregation profile is created from a
SYS: @@ Scheil calculation (see macro create_initial_profile.TCM).
SYS: @@ The command INPUT_SCHEIL_PROFILE in the DICTRA monitor
SYS: @@ performs most of the setup. Only time and temperature must
SYS: @@ be entered after the INPUT_SCHEIL_PROFILE command is
SYS: @@ executed.
SYS:
SYS:
SYS: @@ In this case only a single phase, ferrite, is entered in the simulation
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1
TDB_TCFE8: sw FEDEMO
Current database: Iron Demo Database
B2_VACANCY
REJECTED
VA
/- DEFINED
TDB_FEDEMO: def-sys fe cr ni mn
FE
CR
MN DEFINED
TDB_FEDEMO: rej ph *
LIQUID:L
BCC_A2
FCC_A1
HCP_A3
SIGMA REJECTED
TDB_FEDEMO: rest ph bcc
BCC_A2 RESTORED
TDB_FEDEMO: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
NI
CHI_A12
LAVES_PHASE_C14
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270
(1986); CR-FE'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'B.-J. Lee, Metall. Trans. A, 24A (1993), 1919-1933; Cr-Mn, Fe-Cr -Mn'
'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI'
'W. Huang, Calphad, 13 (1989), 243-252; TRITA-MAC 388 (rev 1989); FE-MN'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
'NPL, unpublished work (1989); Mn-Ni'
-OKTDB_FEDEMO:
TDB_FEDEMO: app MFEDEMO
Current database: Fe-Alloys Mobility demo database
VA DEFINED
APP: def-sys fe cr ni mn
FE
CR
MN DEFINED
APP: rej ph *
BCC_A2
FCC_A1
APP: rest ph bcc
BCC_A2 RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
NI
REJECTED
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni
diffusion bcc Cr-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
'Assessed from data presented in Landholt-Bornstein, Vol. 26, ed. H.
Mehrer, springer (1990); Impurity diff of Mn in bcc Fe.'
-OKAPP:
APP: go dict-mon
NO TIME STEP DEFINED
DIC>
DIC>
DIC> @@ This command perform most of the setup
DIC> input_scheil_profile
INFO: SCHEIL_REGION CREATED
FILE NAME /XF.TXT/: segregation_profile.TXT
ENTER WIDTH OF REGION /1/: 100e-6
INFO: LINEAR GRID IN SCHEIL_REGION ENTERED WITH 100 GRID POINTS
ENTER MAIN SOLID SOLUTION PHASE
PHASE NAME:: bcc#1
INFO: COMPOSITION PROFILE ENTERED IN REGION
SHOULD MORE PHASES BE ENTERED IN THE REGION /NO/: n
INFO: TO COMPLETE SETUP, ENTER TEMPERATURE AND
SIMULATION TIME
DIC>
DIC>
DIC> @@ Enter heat treatment temperature
DIC> s-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: glob
VARIABLE : t
LOW TIME LIMIT /0/: 0 1473; * n
DIC>
DIC>
DIC> @@ Enter simulation time
DIC> se-si-ti
END TIME FOR INTEGRATION /.1/: 3600
AUTOMATIC TIMESTEP CONTROL /YES/: y
MAX TIMESTEP DURING INTEGRATION /360/: 360
INITIAL TIMESTEP : /1E-07/: 1e-7
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: 1e-9
DIC>
DIC>
DIC> save exa7 y
DIC>
DIC> set-inter
--OK--DIC>
exa7-run
MACRO exa7\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa7\run.DCM"DIC> go dict-mon
TIME STEP AT TIME 0.00000E+00
DIC>
DIC> read exa7
OK
DIC>
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788
MN = .00999016878282828 NI = .0130905459141414
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788
MN = .00999016878282828 NI = .0130905459141414
TOTAL SIZE OF SYSTEM: 1E-04 [m]
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788
MN = .00999016878282828 NI = .0130905459141413
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788
MN = .00999016878282828 NI = .0130905459141413
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
TIME = 0.41672379
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
CPU time used in timestep
TIME =
1.2499712
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
1
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
1
TOTAL SIZE OF SYSTEM:
0
1146.2061
seconds
DT =
360.00000
SUM OF SQUARES =
0.0000000
CR = .180420497423547 FE = .796498787877697
MN = .0099901687830277 NI = .0130905459157284
1E-04 [m]
CPU time used in timestep
TIME =
seconds
DT =
213.31133
SUM OF SQUARES =
0.0000000
CR = .180420497423878 FE = .796498787878058
MN = .00999016878319379 NI = .0130905459148703
1E-04 [m]
CPU time used in timestep
TIME =
786.20613
U-FRACTION IN SYSTEM:
seconds
DT =
106.65566
SUM OF SQUARES =
0.0000000
CR = .180420497423953 FE = .796498787878029
MN = .00999016878329586 NI = .0130905459147225
1E-04 [m]
CPU time used in timestep
TIME =
426.20613
U-FRACTION IN SYSTEM:
seconds
DT =
53.327832
SUM OF SQUARES =
0.0000000
CR = .180420497424258 FE = .796498787878506
MN = .0099901687831963 NI = .0130905459140401
1E-04 [m]
CPU time used in timestep
TIME =
212.89481
U-FRACTION IN SYSTEM:
seconds
DT =
26.663916
SUM OF SQUARES =
0.0000000
CR = .180420497424359 FE = .796498787878652
MN = .00999016878321378 NI = .0130905459137757
1E-04 [m]
CPU time used in timestep
TIME =
106.23914
U-FRACTION IN SYSTEM:
seconds
DT =
13.331958
SUM OF SQUARES =
0.0000000
CR = .180420497424366 FE = .796498787878902
MN = .00999016878296264 NI = .0130905459137682
1E-04 [m]
CPU time used in timestep
TIME =
52.911309
U-FRACTION IN SYSTEM:
seconds
DT =
6.6659790
SUM OF SQUARES =
0.0000000
CR = .180420497424346 FE = .796498787878952
MN = .00999016878291414 NI = .013090545913788
1E-04 [m]
CPU time used in timestep
TIME =
26.247393
U-FRACTION IN SYSTEM:
seconds
DT =
3.3329895
SUM OF SQUARES =
0.0000000
CR = .180420497424268 FE = .796498787878825
MN = .00999016878285738 NI = .0130905459140505
1E-04 [m]
CPU time used in timestep
TIME =
12.915434
U-FRACTION IN SYSTEM:
seconds
DT =
1.6664948
SUM OF SQUARES =
0.0000000
CR = .180420497424243 FE = .796498787878789
MN = .00999016878282915 NI = .0130905459141385
1E-04 [m]
CPU time used in timestep
TIME =
6.2494554
U-FRACTION IN SYSTEM:
seconds
DT = 0.83324738
SUM OF SQUARES =
0.0000000
CR = .180420497424242 FE = .796498787878788
MN = .00999016878282774 NI = .0130905459141418
1E-04 [m]
CPU time used in timestep
TIME =
2.9164659
U-FRACTION IN SYSTEM:
seconds
DT = 0.41662369
SUM OF SQUARES =
0.0000000
CR = .180420497424242 FE = .796498787878788
MN = .00999016878282773 NI = .0130905459141418
1E-04 [m]
DT =
0
360.00000
seconds
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
CR = .180420497423556 FE = .796498787877959
MN = .00999016878294356 NI = .0130905459155414
1E-04 [m]
CPU time used in timestep
TIME =
1506.2061
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
CPU time used in timestep
TIME =
1866.2061
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
1
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
seconds
DT =
360.00000
SUM OF SQUARES =
0.0000000
CR = .180420497421389 FE = .796498787868369
MN = .00999016878448586 NI = .0130905459257564
1E-04 [m]
CPU time used in timestep
TIME =
3600.0000
U-FRACTION IN SYSTEM:
seconds
DT =
360.00000
SUM OF SQUARES =
0.0000000
CR = .180420497421692 FE = .796498787870126
MN = .00999016878407415 NI = .013090545924108
1E-04 [m]
CPU time used in timestep
TIME =
3306.2061
U-FRACTION IN SYSTEM:
seconds
DT =
360.00000
SUM OF SQUARES =
0.0000000
CR = .180420497421996 FE = .796498787871567
MN = .00999016878382051 NI = .0130905459226154
1E-04 [m]
CPU time used in timestep
TIME =
2946.2061
U-FRACTION IN SYSTEM:
seconds
DT =
360.00000
SUM OF SQUARES =
0.0000000
CR = .180420497422548 FE = .796498787875116
MN = .00999016878299362 NI = .0130905459193419
1E-04 [m]
CPU time used in timestep
TIME =
2586.2061
U-FRACTION IN SYSTEM:
seconds
DT =
360.00000
SUM OF SQUARES =
0.0000000
CR = .180420497423079 FE = .796498787877623
MN = .00999016878258491 NI = .0130905459167128
1E-04 [m]
CPU time used in timestep
TIME =
2226.2061
U-FRACTION IN SYSTEM:
seconds
DT =
360.00000
SUM OF SQUARES =
0.0000000
CR = .180420497423591 FE = .796498787878198
MN = .00999016878288937 NI = .0130905459153216
1E-04 [m]
0
seconds
DT =
293.79387
SUM OF SQUARES =
0.0000000
CR = .180420497421215 FE = .796498787867462
MN = .00999016878467954 NI = .0130905459266437
1E-04 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-06
0.10010000E-03
0.41672379
1.2499712
2.9164659
6.2494554
12.915434
26.247393
52.911309
106.23914
212.89481
426.20613
786.20613
1146.2061
1506.2061
1866.2061
2226.2061
2586.2061
2946.2061
3306.2061
3600.0000
exa7-plot
MACRO exa7\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa7\plot.DCM"DIC> go dict-mon
TIME STEP AT TIME 3.60000E+03
DIC>
DIC> read exa7
OK
DIC>
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
s-p-c time 0,3600
s-d-a x d g
Distance is set as independent variable
s-d-a y w-p mn
plot
POST-1:
POST-1: @@ Hit enter for the next plot
POST-1:@?
POST-1:
POST-1: s-d-a y w-p ni
POST-1: plot
POST-1:
POST-1: set-inter
--OK--POST-1:
Moving boundary problems
ν
ν
Example b1a
γ to α transformation in a binary Fe - C alloy
Fe - C Phase diagram
1000
TEMPERATURE_CELSIUS
950
●
γ
900
850
800
777 oC
α
750
+
γ
700
α + cem
650
600
0
0.2
0.4
0.6
0.8
1.0
WEIGHT_PERCENT C
ν
T = 1050 K
γ
α
●
●
●
0.15% C
1E-9
2E-3
●
●
exb1a-setup
MACRO exb1a\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1a\setup.DCM"SYS: @@
SYS: @@ Moving boundary problems.
SYS: @@ Setup file for calculating a ferrite(BCC)/austenite(FCC)
SYS: @@ transformation in a binary Fe-C alloy. The initial state
SYS: @@ is an austenite of 2 mm thichness. The composition of the
SYS: @@ austenite is Fe-0.15wt%C. After austenitisation the
SYS: @@ specimen has been quenched down to 1050K. The system is
SYS: @@ assumed closed, so we do not set any boundary conditions
SYS: @@ (closed system is default). Ferrite is expected to grow
SYS: @@ into the austenite. For this reason we start with a thin
SYS: @@ region with ferrite adjacent to the austenite.
SYS: @@
SYS:
SYS: @@ exb1a_setup.DCM
SYS:
SYS:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE.
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ LET US USE THE SSOL DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw FEDEMO
Current database: Iron Demo Database
VA
/- DEFINED
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH
TDB_FEDEMO: @@
TDB_FEDEMO: def-sys fe c
FE
C DEFINED
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED
TDB_FEDEMO: @@
TDB_FEDEMO: rej ph * all
GAS:G
LIQUID:L
BCC_A2
CEMENTITE
DIAMOND_FCC_A4
FCC_A1
GRAPHITE
HCP_A3
KSI_CARBIDE
LAVES_PHASE_C14
M23C6
M5C2
M7C3 REJECTED
TDB_FEDEMO: res ph fcc bcc
FCC_A1
BCC_A2 RESTORED
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_FEDEMO: @@
TDB_FEDEMO: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo -C, C-Mn'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
-OKTDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
TDB_FEDEMO: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA
TDB_FEDEMO: @@
TDB_FEDEMO: append
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /FEDEMO/: MFEDEMO
Current database: Fe-Alloys Mobility demo database
VA DEFINED
APP: def-sys fe c
FE
APP: rej ph * all
BCC_A2
APP: res ph fcc bcc
FCC_A1
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
C
DEFINED
FCC_A1
REJECTED
BCC_A2
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr
-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T.
DIC> @@
DIC> set-condition global T 0 1050; * N
DIC>
DIC> @@
DIC> @@ WE START BY ENTERING REGION ferrite AND austenite WHEREIN WE
DIC> @@ PUT THE BCC AND FCC PHASE RESPECTIVELY. THE ferrite REGION IS
DIC> @@ ASSUMED INITIALLY TO BE VERY THIN, 1E-9 METERS.
DIC> @@
DIC> enter-region
REGION NAME : ferrite
DIC>
DIC> enter-region
REGION NAME : austenite
ATTACH TO REGION NAMED /FERRITE/:
ATTACHED TO THE RIGHT OF FERRITE /YES/:
DIC>
DIC> @@
DIC> @@ ENTER GRIDS INTO THE REGIONS.
DIC> @@
DIC> enter-grid
REGION NAME : /FERRITE/: ferrite
WIDTH OF REGION /1/: 1e-9
TYPE /LINEAR/: linear
NUMBER OF POINTS /50/: 10
DIC>
DIC> enter-grid austenite
WIDTH OF REGION /1/: 20e-4
TYPE /LINEAR/: linear
NUMBER OF POINTS /50/: 50
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGIONS
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /FERRITE/: ferrite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: bcc
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITION INTO BCC.
DIC> @@
DIC> enter-composition
REGION NAME : /FERRITE/: ferrite
PHASE NAME: /BCC_A2/: bcc
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 0.01
VALUE OF LAST POINT : /1E-2/: 0.01
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITION INTO FCC.
DIC> @@
DIC> enter-composition
REGION NAME : /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 0.15
VALUE OF LAST POINT : /0.15/: 0.15
DIC>
DIC> @@
DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 1e9
AUTOMATIC TIMESTEP CONTROL /YES/: YES
MAX TIMESTEP DURING INTEGRATION /100000000/: 1e8
INITIAL TIMESTEP : /1E-07/: 1E-5
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: 1E-5
DIC>
DIC>
DIC> @@
DIC> @@ WE USE IMPLICIT (1) TIME INTEGRATION IN THIS CASE INSTEAD OF THE
DIC> @@ MORE ACCURATE BUT LESS STABLE TRAPETZOIDAL METHOD WHICH IS THE
DIC> @@ DEFAULT METHOD.
DIC> @@
DIC> s-s-c
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/:
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: 1.0
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA
DIC> @@
DIC> save exb1a Y
DIC>
DIC> set-inter
--OK--DIC>
exb1a-run
MACRO exb1a\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1a\run.DCM"DIC>
DIC>
DIC> @@ exb1a_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE b1a
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb1a
OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> simulate
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
3
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = .00698495590385911 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
U-FRACTION IN SYSTEM: C = .00698495590385911 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
4 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: FERRITE
3.010538010512817E-002
3.010525750453487E-002
8.73429533351254
6.430152751436794E-003
1.088329900651139E002
1.051437238892292E-006
5.743440422749835E-009
1.178782546966484E-015
1.344994482070243E-024
TIME = 0.10000000E-04 DT = 0.10000000E-04 SUM OF SQUARES = 0.13449945E-23
CELL # 1 VELOCITY AT INTERFACE # 2 IS
4.7526995
AND
4.7526995
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.47527995E-04
U-FRACTION IN SYSTEM: C = .00698495582617667 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
12
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: FERRITE
CPU time used in timestep
0 seconds
9.690361202920592E-004
9.692265256370506E-004
2.896523308148584E-006
1.678632823004402E-006
2.028472855772477E007
1.088890478783754E-010
3.846704497402363E-011
5.540201244046097E-012
1.010398334671203E-020
TIME = 0.30000000E-04 DT = 0.20000000E-04 SUM OF SQUARES = 0.10103983E-19
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.68730744E-07 AND
0.68730744E-07
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.47527996E-04
U-FRACTION IN SYSTEM: C = .00698495582718185 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
CPU time used in timestep
0 seconds
1.245186523741115E-006
1.243974389959101E-006
2.369369898701173E-012
TIME = 0.70000000E-04 DT = 0.40000000E-04 SUM OF SQUARES = 0.23321002E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.81210434E-07 AND
0.81210434E-07
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.47527999E-04
U-FRACTION IN SYSTEM: C = .00698495582718188 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
1
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: FERRITE
CPU time used in timestep
0 seconds
1.711476362561969E-008
1.694778506305460E-008
6.675926348340630E-014
TIME = 0.15000000E-03 DT = 0.80000000E-04 SUM OF SQUARES = 0.92938284E-17
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.81210495E-07 AND
0.81210495E-07
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.47528006E-04
U-FRACTION IN SYSTEM: C = .0069849558271819 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
3
GRIDPOINT(S) REMOVED FROM CELL #1
GRIDPOINT(S) REMOVED FROM CELL #1
CPU time used in timestep
1.711092983135726E-008
0 seconds
1.694356915365577E-008
2.891564791858802E-015
... output resumed
4.817237533333497E-003
4.817237487819453E-003
3.942745981904871E-018
TIME = 0.67592186E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.39427460E-17
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.34033061E-15 AND
0.34033061E-15
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.13807395E-02
U-FRACTION IN SYSTEM: C = .00697278470595053 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: FERRITE
CPU time used in timestep
0 seconds
4.624365622691025E-005
4.625290796660806E-005
1.845839415222149E-019
TIME = 0.77592186E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.18458394E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.91778947E-19 AND
0.91778947E-19
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.13807395E-02
U-FRACTION IN SYSTEM: C = .00697278461241442 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
1
GRIDPOINT(S) REMOVED FROM CELL #1
2.495989573251053E-019
REGION: FERRITE
output ignored...
32
9.293828400262089E-018
REGION: FERRITE
CPU time used in timestep
0 seconds
1.711823108234314E-008
1.695082183487405E-008
4.059532925449025E-015
TIME = 0.31000000E-03 DT = 0.16000000E-03 SUM OF SQUARES = 0.24959896E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.81210687E-07 AND
0.81210687E-07
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.47528019E-04
U-FRACTION IN SYSTEM: C = .00698495582718182 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
5
2.332100192675378E-017
REGION: FERRITE
1.642362799560462E-021
CPU time used in timestep
0 seconds
7.467937289421528E-005
7.467934118250251E-005
4.095882852043687E-012
TIME = 0.87592186E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.30092655E-35
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.42462218E-16 AND
0.42462218E-16
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.13807438E-02
U-FRACTION IN SYSTEM: C = .00697274131207285 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
32
GRIDPOINT(S) REMOVED FROM CELL #1
3.009265538105056E-036
REGION: FERRITE
CPU time used in timestep
0 seconds
7.181953829198454E-005
7.183392363922831E-005
7.189159937568113E-025
TIME = 0.97592186E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.71891599E-24
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.59938459E-19 AND
0.59938459E-19
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.13807438E-02
U-FRACTION IN SYSTEM: C = .00697274125098088 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
1
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: FERRITE
CPU time used in timestep
0 seconds
2.711243439354092E-009
2.711118498082412E-009
5.998351979959399E-015
TIME = 0.10000000E+10 DT =
24078140.
SUM OF SQUARES = 0.31942559E-23
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.31404843E-18 AND
0.31404843E-18
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.13807438E-02
U-FRACTION IN SYSTEM: C = .00697274117389868 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
0.0000000
0.10000000E-04
0.30000000E-04
0.70000000E-04
0.15000000E-03
0.31000000E-03
0.63000000E-03
0.12700000E-02
0.25500000E-02
0.51100000E-02
0.10230000E-01
0.20470000E-01
0.40950000E-01
0.81910000E-01
0.16383000
0.32767000
0.65535000
1.3107100
2.6214300
5.2428700
10.485750
20.971510
41.943030
83.886070
167.77215
335.54431
671.08863
1342.1773
2684.3546
5368.7091
10737.418
21474.836
42949.673
85899.346
171798.69
343597.38
687194.77
1374389.5
2748779.1
5497558.1
10995116.
21990233.
43980465.
87960930.
0.17592186E+09
0.27592186E+09
0.37592186E+09
0.47592186E+09
0.57592186E+09
0.67592186E+09
0.77592186E+09
0.87592186E+09
KEEPING TIME-RECORD FOR TIME
0.97592186E+09
AND FOR TIME
0.10000000E+10
WORKSPACE RECLAIMED
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
--OK--DIC>
3.194255858747948E-024
exb1a-plot
MACRO exb1a\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1a\plot.DCM"DIC>
DIC>
DIC> @@ exb1a_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b1a
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+09
DIC> read exb1a
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
POST-1:
@@
@@ PLOT CARBON CONCENTRATIONS AT DIFFERENT TIMES
@@
s-d-a x distance global
Distance is set as independent variable
s-d-a y w-p c
s-p-c time 1e3,1e5,1e9
plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ PLOT THE POSITION OF THE BCC/FCC INTERPHASE
POST-1: @@
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-d-a y
VARIABLE : pos
INTERFACE : aus
UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower
POST-1:
POST-1: set_axis_type
AXIS (X, Y OR Z) : x
AXIS TYPE /LINEAR/: log
POST-1:
POST-1: s-s-s
AXIS (X, Y OR Z) : x
AUTOMATIC SCALING (Y OR N) /N/: n
MIN VALUE : 10
MAX VALUE : 1e9
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ PLOT THE VELOCITY OF THE BCC/FCC INTERPHASE
POST-1: @@
POST-1: s-d-a
AXIS (X, Y OR Z) : y
VARIABLE : velocity
INTERFACE : aus
UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: set-inter
--OK--POST-1:
Example b1b
γ to α transformation in a binary Fe - C alloy
( Inactive α )
Time = 0
T = 1050 K
γ
●
●
●
●
●
0.15% C
Inactive α
2E-3
Time > 0
ν
T = 1050 K
γ
α
●
●● ● ●
2E-3
●
●
exb1b-setup
MACRO exb1b\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1b\setup.DCM"SYS: @@
SYS: @@ Moving boundary problem.
SYS: @@ Same problem as in exb1a but now we set up the problem with
SYS: @@ ferrite as an inactive phase adjacent to the initial austenite.
SYS: @@
SYS:
SYS: @@ exb1b_setup.DCM
SYS:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE.
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ LET US USE THE SSOL DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw FEDEMO
Current database: Iron Demo Database
VA
/- DEFINED
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH
TDB_FEDEMO: @@
TDB_FEDEMO: def-sys fe c
FE
C DEFINED
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED
TDB_FEDEMO: @@
TDB_FEDEMO: rej ph * all
GAS:G
LIQUID:L
BCC_A2
CEMENTITE
DIAMOND_FCC_A4
FCC_A1
GRAPHITE
HCP_A3
KSI_CARBIDE
LAVES_PHASE_C14
M23C6
M5C2
M7C3 REJECTED
TDB_FEDEMO: res ph fcc bcc
FCC_A1
BCC_A2 RESTORED
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_FEDEMO: @@
TDB_FEDEMO: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo -C, C-Mn'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
-OKTDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
TDB_FEDEMO: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA
TDB_FEDEMO: @@
TDB_FEDEMO: app
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
SALT1
SNUX6
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /FEDEMO/: MFEDEMO
Current database: Fe-Alloys Mobility demo database
VA DEFINED
APP: def-sys fe c
FE
APP: rej ph * all
BCC_A2
APP: res ph fcc bcc
FCC_A1
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
C
DEFINED
FCC_A1
REJECTED
BCC_A2
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr
-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T.
DIC> @@
DIC> set-cond glob T 0 1050; * N
DIC>
DIC> @@
DIC> @@ WE START BY ENTERING REGION austenite WHEREIN WE PUT THE fcc PHASE
DIC> @@
DIC> enter-region
REGION NAME : austenite
DIC>
DIC> @@
DIC> @@ ENTER GRID INTO THE REGION.
DIC> @@
DIC> enter-grid
REGION NAME : /AUSTENITE/: austenite
WIDTH OF REGION /1/: 20e-4
TYPE /LINEAR/: linear
NUMBER OF POINTS /50/: 50
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGIONS
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> @@
DIC> @@ ENTER INACTIVE PHASES INTO REGIONS
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inactive
ATTACH TO REGION NAMED /AUSTENITE/: austenite
ATTACHED TO THE RIGHT OF AUSTENITE /YES/: no
PHASE NAME: /NONE/: bcc
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITION INTO FCC.
DIC> @@
DIC> enter-composition
REGION NAME : /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 0.15
VALUE OF LAST POINT : /0.15/: 0.15
DIC>
DIC> @@
DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 1e9
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /100000000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ WE USE IMPLICIT (1) TIME INTEGRATION IN THIS CASE INSTEAD OF THE
DIC> @@ MORE ACCURATE BUT LESS STABLE TRAPETZOIDAL METHOD WHICH IS THE
DIC> @@ DEFAULT METHOD.
DIC> @@
DIC> s-s-c
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/:
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: 1.0
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA
DIC> @@
DIC> save exb1b Y
DIC>
DIC> set-inter
--OK--DIC>
exb1b-run
MACRO exb1b\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1b\run.DCM"
DIC>
DIC> @@ exb1b_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE b1b
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb1b
OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
INFO: PHASE BCC_A2 IS SCHEDULED TO APPEAR
REGION STATUS CHANGE, ITERATING: TIME= 0.50000000E-07
REGION STATUS CHANGE, ITERATING: TIME= 0.25000000E-07
TIME = 0.25000000E-07 DT = 0.25000000E-07
U-FRACTION IN SYSTEM: C = .00698495916383109 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
KEEPING TIME-RECORD FOR TIME
0.0000000
AND FOR TIME
0.25000000E-07
WORKSPACE RECLAIMED
WIDTH OF NEW REGION R_BCC_A2 /1E-06/:
Trying old scheme
3
START VALUE(S) FOR INTERFACE #2 R_BCC_A2/AUSTENITE, CELL #1
----------------------------------------------------------VELOCITY /1/:
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
3
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = .00698156310125387 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
U-FRACTION IN SYSTEM: C = .00698156310125387 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
1 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: R_BCC_A2
2.75176053686592
2.75176116101681
393.018358848755
ERROR RETURN FROM NS01A BECAUSE
3.01758588659041
2.94562519081330
5 CALLS OF CALFUN FAILED TO IMPROVE THE RESIDUALS
output ignored...
... output resumed
2
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: R_BCC_A2
CPU time used in timestep
0 seconds
4.145273712277845E-006
4.145189447978009E-006
1.782766781986157E-015
TIME = 0.60995116E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.18417102E-24
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.10997612E-16 AND
0.10997612E-16
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS
0.13815296E-02
U-FRACTION IN SYSTEM: C = .00696472091885118 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
21
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: R_BCC_A2
CPU time used in timestep
0 seconds
9.440415825265427E-007
9.444687683708112E-007
3.601784548391823E-018
TIME = 0.70995116E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.36017845E-17
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.60135928E-17 AND
0.60135928E-17
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS
0.13815302E-02
U-FRACTION IN SYSTEM: C = .00696471478656231 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
11
GRIDPOINT(S) REMOVED FROM CELL #1
CPU time used in timestep
1.881966167727280E-009
REGION: R_BCC_A2
0 seconds
1.892408938756642E-009
4.489495044434513E-033
1.841710151007174E-025
4.20884975046566
TIME = 0.80995116E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.44894950E-32
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.56806112E-17 AND
0.56806112E-17
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS
0.13815308E-02
U-FRACTION IN SYSTEM: C = .00696470899382898 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
10
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: R_BCC_A2
CPU time used in timestep
0 seconds
8.171179521830250E-007
8.169127014153828E-007
2.011110967025222E-030
TIME = 0.90995116E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.20111110E-29
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.99992447E-17 AND
0.99992447E-17
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS
0.13815318E-02
U-FRACTION IN SYSTEM: C = .00696469879722088 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
17
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: R_BCC_A2
CPU time used in timestep
0 seconds
2.894270273633906E-008
2.887474213271796E-008
1.641913086827151E-019
TIME = 0.10000000E+10 DT =
90048837.
SUM OF SQUARES = 0.16419131E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.10633421E-16 AND
0.10633421E-16
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS
0.13815327E-02
U-FRACTION IN SYSTEM: C = .00696468903295322 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
0.0000000
0.25000000E-07
0.12500000E-06
0.10012500E-03
0.30012500E-03
0.70012500E-03
0.15001250E-02
0.31001250E-02
0.63001250E-02
0.12700125E-01
0.25500125E-01
0.51100125E-01
0.10230012
0.20470012
0.40950012
0.81910012
1.6383001
3.2767001
6.5535001
13.107100
26.214300
52.428700
104.85750
209.71510
419.43030
838.86070
1677.7215
3355.4431
6710.8863
13421.773
26843.546
53687.091
107374.18
214748.36
429496.73
858993.46
1717986.9
3435973.8
6871947.7
13743895.
27487791.
54975581.
0.10995116E+09
0.20995116E+09
0.30995116E+09
0.40995116E+09
0.50995116E+09
0.60995116E+09
0.70995116E+09
0.80995116E+09
KEEPING TIME-RECORD FOR TIME
0.90995116E+09
AND FOR TIME
0.10000000E+10
WORKSPACE RECLAIMED
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
--OK--DIC>
exb1b-plot
MACRO exb1b\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1b\plot.DCM"DIC>
DIC>
DIC> @@ exb1b_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b1b
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+09
DIC> read exb1b
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
@@
@@ PLOT CARBON CONCENTRATIONS AT DIFFERENT TIMES
@@
s-d-a y w-p c
s-d-a x dist glob
Distance is set as independent variable
s-p-c time 1e3,1e5,1e9
plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ PLOT THE POSITION OF THE BCC/FCC INTERPHASE
POST-1: @@
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-d-a y
VARIABLE : pos
INTERFACE : aus
UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower
POST-1:
POST-1: set_axis_type
AXIS (X, Y OR Z) : x
AXIS TYPE /LINEAR/: log
POST-1:
POST-1: s-s-s
AXIS (X, Y OR Z) : x
AUTOMATIC SCALING (Y OR N) /N/: n
MIN VALUE : 10
MAX VALUE : 1e9
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ PLOT THE VELOCITY OF THE BCC/FCC INTERPHASE
POST-1: @@
POST-1: s-d-a
AXIS (X, Y OR Z) : y
VARIABLE : velocity
INTERFACE : aus
UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: set-inter
--OK--POST-1:
Example b1c
γ to α transformation in a binary Fe - C alloy
( Gradual cooling down to 1050 K )
Time = 0
T = 1173 - Time* 0.1667
γ
●● ● ●
●
●
●
0.15% C
Inactive α
2E-3
Time > 738s
T = 1050 K
ν
γ
α
●
●● ● ●
2E-3
●
●
exb1c-setup
MACRO exb1c\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1c\setup.DCM"SYS: @@
SYS: @@ Moving boundary problems.
SYS: @@ Same problem as in exb1a and exb1b but now we start the simulation at
SYS: @@ a higher temperature and we assume a gradual cooling down to 1050 K.
SYS: @@ When we reach 1050 K we keep the temperature constant and thus have an
SYS: @@ isothermal transformation. As in exb1b we have ferrite as an inactive
SYS: @@ phase adjacent to the initial austenite.
SYS: @@
SYS:
SYS: @@ exb1c_setup.DCM
SYS:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE.
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ LET US USE THE SSOL DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw FEDEMO
Current database: Iron Demo Database
VA
/- DEFINED
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH
TDB_FEDEMO: @@
TDB_FEDEMO: def-sys fe c
FE
C DEFINED
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED
TDB_FEDEMO: @@
TDB_FEDEMO: rej ph * all
GAS:G
LIQUID:L
BCC_A2
CEMENTITE
DIAMOND_FCC_A4
FCC_A1
GRAPHITE
HCP_A3
KSI_CARBIDE
LAVES_PHASE_C14
M23C6
M5C2
M7C3 REJECTED
TDB_FEDEMO: res ph fcc bcc
FCC_A1
BCC_A2 RESTORED
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_FEDEMO: @@
TDB_FEDEMO: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo -C, C-Mn'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
-OKTDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
TDB_FEDEMO: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA
TDB_FEDEMO: @@
TDB_FEDEMO: app
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /FEDEMO/: MFEDEMO
Current database: Fe-Alloys Mobility demo database
VA DEFINED
APP: def-sys fe c
FE
APP: rej ph * all
BCC_A2
APP: res ph fcc bcc
FCC_A1
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
C
DEFINED
FCC_A1
REJECTED
BCC_A2
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr
-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T.
DIC> @@
DIC> @@ WE ASSUME THAT THE COOLING RATE IS 10K/MINUTE DOWN TO 1050K.
DIC> @@
DIC> set-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: glob
VARIABLE : T
LOW TIME LIMIT /0/: 0
T(TIME,X)= 1173-time*0.1667;
HIGH TIME LIMIT /*/: 738
ANY MORE RANGES /N/: y
T(TIME,X)= 1050;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
DIC>
DIC> @@
DIC> @@ WE START BY ENTERING REGION austenite WHEREIN WE PUT THE fcc PHASE
DIC> @@
DIC> enter-region
REGION NAME : austenite
DIC>
DIC> @@
DIC> @@ ENTER GRID INTO THE REGION.
DIC> @@
DIC> enter-grid
REGION NAME : /AUSTENITE/: austenite
WIDTH OF REGION /1/: 20e-4
TYPE /LINEAR/: geometric
NUMBER OF POINTS /50/: 50
VALUE OF R IN THE GEOMETRICAL SERIE : 1.05
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGIONS
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> @@
DIC> @@ ENTER INACTIVE PHASES INTO REGIONS
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /AUSTENITE/: austenite
ATTACHED TO THE RIGHT OF AUSTENITE /YES/: no
PHASE NAME: /NONE/: bcc
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITION INTO FCC.
DIC> @@
DIC> enter-composition
REGION NAME : /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 0.15
VALUE OF LAST POINT : /0.15/: 0.15
DIC>
DIC> @@
DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 738
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /73.8/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> @@
DIC> @@ WE USE IMPLICIT (1) TIME INTEGRATION IN THIS CASE INSTEAD OF THE
DIC> @@ MORE ACCURATE BUT LESS STABLE TRAPETZOIDAL METHOD WHICH IS THE
DIC> @@ DEFAULT METHOD.
DIC> @@
DIC> s-s-c
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/:
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: 1.0
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA
DIC> @@
DIC> save exb1c Y
DIC>
DIC> set-inter
--OK--DIC>
exb1c-run
MACRO exb1c\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1c\run.DCM"DIC>
DIC>
DIC> @@ exb1c_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE exb1c
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb1c
OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
2 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUSTENITE
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
CPU time used in timestep
0
seconds
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
CPU time used in timestep
TIME = 0.40010010
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT =
36.900000
SUM OF SQUARES =
C = .00698495916383108 FE = 1
.002 [m]
CPU time used in timestep
0 seconds
INFO: PHASE BCC_A2 IS SCHEDULED TO APPEAR
REGION STATUS CHANGE, ITERATING: TIME=
289.02193
REGION STATUS CHANGE, ITERATING: TIME=
279.79693
REGION STATUS CHANGE, ITERATING: TIME=
284.40943
REGION STATUS CHANGE, ITERATING: TIME=
286.71568
REGION STATUS CHANGE, ITERATING: TIME=
287.86881
REGION STATUS CHANGE, ITERATING: TIME=
288.44537
REGION STATUS CHANGE, ITERATING: TIME=
288.73365
TIME =
288.73365
DT =
18.161719
U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
MUST SAVE WORKSPACE ON FILE
0.0000000
seconds
DT =
36.900000
SUM OF SQUARES =
C = .00698495916383108 FE = 1
.002 [m]
CPU time used in timestep
TIME =
270.57193
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT =
36.900000
SUM OF SQUARES =
C = .00698495916383108 FE = 1
.002 [m]
CPU time used in timestep
TIME =
233.67193
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT =
36.900000
SUM OF SQUARES =
C = .00698495916383108 FE = 1
.002 [m]
CPU time used in timestep
TIME =
196.77193
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT =
36.900000
SUM OF SQUARES =
C = .00698495916383108 FE = 1
.002 [m]
CPU time used in timestep
TIME =
159.87193
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT =
36.900000
SUM OF SQUARES =
C = .00698495916383108 FE = 1
.002 [m]
CPU time used in timestep
TIME =
122.97193
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT =
27.869620
SUM OF SQUARES =
C = .00698495916383108 FE = 1
.002 [m]
CPU time used in timestep
TIME =
86.071935
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT =
13.934810
SUM OF SQUARES =
C = .00698495916383108 FE = 1
.002 [m]
CPU time used in timestep
TIME =
49.171935
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT =
6.9674050
SUM OF SQUARES =
C = .00698495916383108 FE = 1
.002 [m]
CPU time used in timestep
TIME =
21.302315
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
seconds
DT = 0.40000000
SUM OF SQUARES =
C = .00698495916383108 FE = 1
.002 [m]
CPU time used in timestep
TIME =
7.3675051
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0.0000000
0.0000000
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR
DELETING TIME-RECORD FOR
DELETING TIME-RECORD FOR
DELETING TIME-RECORD FOR
DELETING TIME-RECORD FOR
DELETING TIME-RECORD FOR
DELETING TIME-RECORD FOR
DELETING TIME-RECORD FOR
DELETING TIME-RECORD FOR
DELETING TIME-RECORD FOR
DELETING TIME-RECORD FOR
DELETING TIME-RECORD FOR
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
0.0000000
0.10000000E-06
0.10010000E-03
0.40010010
7.3675051
21.302315
49.171935
86.071935
122.97193
159.87193
196.77193
233.67193
KEEPING TIME-RECORD FOR TIME
270.57193
AND FOR TIME
288.73365
WORKSPACE RECLAIMED
WIDTH OF NEW REGION R_BCC_A2 /1E-06/:
Trying old scheme
3
output ignored...
... output resumed
5.641678946485316E-006
5.642328620485267E-006
3.375081953191066E-027
TIME = 0.54091645E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.33750820E-26
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.49407513E-16 AND -0.49407513E-16
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS
0.13817870E-02
U-FRACTION IN SYSTEM: C = .00696209592658495 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
1
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: AUSTENITE
CPU time used in timestep
0 seconds
1.670639865180212E-005
1.669832710886392E-005
1.537597922697983E-020
TIME = 0.64091645E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.15375979E-19
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.68460524E-16 AND -0.68460524E-16
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS
0.13817802E-02
U-FRACTION IN SYSTEM: C = .00696216573837476 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
1
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: AUSTENITE
CPU time used in timestep
0 seconds
1.941122205259937E-005
1.941242777689002E-005
2.849963234264096E-020
TIME = 0.74091645E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.28499632E-19
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.14893562E-15 AND
0.14893562E-15
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS
0.13817951E-02
U-FRACTION IN SYSTEM: C = .00696201386307983 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
19
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: R_BCC_A2
CPU time used in timestep
0 seconds
7.349200127361923E-006
7.350814177500563E-006
1.526526411001117E-019
TIME = 0.84091645E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.15265264E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.13033476E-16 AND
0.13033476E-16
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS
0.13817964E-02
U-FRACTION IN SYSTEM: C = .00696200057235138 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
1
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: R_BCC_A2
CPU time used in timestep
0 seconds
4.879876772699683E-006
4.881027743221242E-006
1.323573115488523E-017
TIME = 0.94091645E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.13235731E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.19413568E-17 AND
0.19413568E-17
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS
0.13817966E-02
U-FRACTION IN SYSTEM: C = .00696199859267588 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
1
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: R_BCC_A2
CPU time used in timestep
0 seconds
3.942521069221882E-002
3.942522610095536E-002
8.202643114488313E-022
TIME = 0.10000000E+10 DT =
59083546.
SUM OF SQUARES = 0.82026431E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.97167033E-15 AND -0.97167033E-15
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS
0.13817392E-02
U-FRACTION IN SYSTEM: C = .00696258402143314 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
721.20154
738.00000
754.79846
788.39539
855.58925
989.97697
1258.7524
1796.3033
2871.4050
5021.6084
9322.0153
17922.829
35124.457
69527.712
138334.22
275947.24
551173.28
1101625.4
2202529.5
4404337.9
8807954.5
17615188.
35229654.
70458588.
0.14091645E+09
0.24091645E+09
0.34091645E+09
0.44091645E+09
DELETING
DELETING
DELETING
DELETING
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
FOR
FOR
FOR
FOR
TIME
TIME
TIME
TIME
0.54091645E+09
0.64091645E+09
0.74091645E+09
0.84091645E+09
KEEPING TIME-RECORD FOR TIME
0.94091645E+09
AND FOR TIME
0.10000000E+10
WORKSPACE RECLAIMED
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
--OK--DIC>
exb1c-plot
MACRO exb1c\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1c\plot.DCM"DIC>
DIC>
DIC> @@ exb1c_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b1c
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+09
DIC> read exb1c
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1: @@
POST-1: @@ PLOT TEMPERATURE VS. TIME
POST-1: @@
POST-1: s-d-a y t
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-p-c
CONDITION /TIME/: interface
INTERFACE : austenite
UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower
POST-1: s-s-s x n 0 1000
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: @@
POST-1: @@ PLOT VS. LOG TIME
POST-1: @@
POST-1: set-axis-type x log
POST-1: s-s-s x n 10 1e9
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: @@
POST-1: @@ PLOT THE POSITION OF THE BCC/FCC INTERPHASE
POST-1: @@
POST-1: s-d-a
AXIS (X, Y OR Z) : y
VARIABLE : position
INTERFACE : austenite
UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: @@
POST-1: @@ PLOT THE CARBON CONCENTRATION VS. DISTANCE
POST-1: @@
POST-1: s-d-a y w-p c
POST-1: s-d-a x dis glob
INFO: Distance is set as independent variable
POST-1: s-p-c time 500,700,1200,2000
POST-1: set-axis-type x lin
POST-1: s-s-s x n 0 3e-4
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1: set-inter
--OK--POST-1:
Example b2
Cementite dissolution in an Fe-Cr-C alloy
T = 1183 K
FCC
ν
Cem
●
●
●●
●●
●
exb2-setup
MACRO exb2\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb2\setup.DCM"SYS: ?@@
NO SUCH COMMAND, USE HELP
SYS: @@ Moving boundary problems.
SYS: @@ Setup file for calculating the dissolution of a spherical cementite
SYS: @@ particle in an austenite matrix.
SYS: @@ This case is from Z.-K. Liu, L. Höglund, B. Jönsson and J. Ågren:
SYS: @@ Metall. Trans.A, v.22A (1991), pp. 1745-1752.
SYS:
SYS: @@
SYS: @@ In order to achieve the correct average composition in the calculation
SYS: @@ it is necessary to take into account the fact that the calculation in
SYS: @@ DICTRA is setup using the volume fraction of the phases. To calculate
SYS: @@ the initial state at the heat treatment temperature we need first to
SYS: @@ determine the state at the normalizing temperature. To calculate the
SYS: @@ volume fraction of the phases we need to enter a number of functions
SYS: @@ that calculate these quantities. NOTE: The volume fractions are
SYS: @@ determined by assuming that only the substitutional components
SYS: @@ contribute to the volume of system, whereas the interstitial components
SYS: @@ don't.
SYS: @@
SYS: @@ The total radius of the system can be calculated from the relation:
SYS: @@
SYS: @@
3
SYS: @@
R
V
SYS: @@
cem
cem
f
SYS: @@
---- = ---- = V
SYS: @@
3
cem
SYS: @@
R
V
SYS: @@
tot
tot
SYS: @@
SYS: @@
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ USE SSOL DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw FEDEMO
Current database: Iron Demo Database
VA
/- DEFINED
TDB_FEDEMO: def-sys fe cr c
FE
CR
DEFINED
TDB_FEDEMO: rej ph * all
GAS:G
LIQUID:L
CEMENTITE
CHI_A12
FCC_A1
GRAPHITE
KSI_CARBIDE
LAVES_PHASE_C14
M3C2
M5C2
SIGMA REJECTED
TDB_FEDEMO: res ph fcc bcc cem
FCC_A1
BCC_A2
RESTORED
TDB_FEDEMO: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
C
BCC_A2
DIAMOND_FCC_A4
HCP_A3
M23C6
M7C3
CEMENTITE
List of references for assessed data
'J-O. Andersson, Calphad, 11 (1987), 271-276; TRITA 0314; C-CR'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo -C, C-Mn'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'J-O. Andersson, Metall. Trans. A, 19A (1988), 627-636 TRITA 0207 (1986);
C-CR-FE'
'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270
(1986); CR-FE'
'P. Villars and L.D. Calvert (1985). Pearsons handbook of crystallographic
data for intermetallic phases. Metals park, Ohio. American Society for
Metals; Molar volumes'
'J. Bratberg, Z. Metallkd., Vol 96 (2005), 335-344; Fe-Cr-Mo-C'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
-OKTDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_FEDEMO: @@
TDB_FEDEMO: app mobfe2
Current database: Steels/Fe-Alloys Mobility v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sp fe cr c
FE
CR
DEFINED
APP: rej ph * all
BCC_A2
CEMENTITE
FE4N_LP1
HCP_A3
REJECTED
APP: res ph fcc cementite
FCC_A1
CEMENTITE
C
FCC_A1
LIQUID:L
RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Z. Metallkunde 85(1994)502-509; C diffusion in fcc Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr
-Fe-Ni'
'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni
diffusion bcc Cr-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
'This parameter has been estimated'
-OKAPP:
APP: @@
APP: @@ ENTER THE POLY-3 MONITOR
APP: @@
APP: go p-3
POLY version 3.32
POLY_3:
POLY_3: @@
POLY_3: @@ SET THE CONDITIONS AT THE NORMALIZING TEMPERATURE
POLY_3: @@
POLY_3: set-cond T=1008,P=101325,N=1
POLY_3: set-cond X(CR)=0.0206,X(C)=0.0391
POLY_3:
POLY_3:
POLY_3: @@
POLY_3: @@ ENTER FUNCTIONS IN ORDER TO DETERMINE THE VOLUME-FRACTIONS
POLY_3: @@
POLY_3:
POLY_3: @@ Radius of the cementite particle
POLY_3: ent-symb var rcem=0.5255e-6;
POLY_3:
POLY_3: @@ total number of moles of substitutional components
POLY_3: ent-symb func nstot=n(fe)+n(cr);
POLY_3:
POLY_3: @@ number of moles of substitutional components in cementite
POLY_3: ent-symb func nscem=n(cem,fe)+n(cem,cr);
POLY_3:
POLY_3: @@ volume fraction (U-fraction) of cementite
POLY_3: ent-symb func vfcem=nscem/nstot;
POLY_3:
POLY_3: @@ total radius of the system
POLY_3: ent-symb func rtot=rcem/vfcem**(1/3);
POLY_3:
POLY_3: @@ radius of the surrounding austenite matrix
POLY_3: ent-symb func rmat=rtot-rcem;
POLY_3:
POLY_3:
POLY_3: @@
POLY_3: @@ COMPUTE THE EQUILIBRIUM
POLY_3: @@
POLY_3: compute-eq
Using global minimization procedure
Calculated
3775 grid points in
0 s
Found the set of lowest grid points in
0 s
Calculated POLY solution
0 s, total time
0 s
POLY_3:
POLY_3:
POLY_3: @@
POLY_3: @@ SHOW THE COMPUTED VALUES THAT ARE TO BE USED IN THE DICTRA CALCULATION
POLY_3: @@
POLY_3: show rmat
RMAT=5.3896717E-7
POLY_3: show w(cem,cr),w(bcc,cr),w(bcc,c)
W(CEMENTITE,CR)=0.12907323
W(BCC_A2,CR)=3.9505464E-3
W(BCC_A2,C)=1.4325888E-4
POLY_3:
POLY_3: ent var wmatcr=w(bcc,cr);
POLY_3: ent var wmatc=w(bcc,c);
POLY_3: ent var wcemcr=w(cem,cr);
POLY_3:
POLY_3:
POLY_3: @@
POLY_3: @@ ENTER THE DICTRA MONITOR
POLY_3: @@
POLY_3: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob t 0 1183; * n
DIC>
DIC> @@
DIC> @@ ENTER REGIONS carb AND aus
DIC> @@
DIC> enter-region
REGION NAME : carb
DIC>
DIC> enter-region
REGION NAME : aus
ATTACH TO REGION NAMED /CARB/:
ATTACHED TO THE RIGHT OF CARB /YES/:
DIC> @@
DIC> @@ ENTER GEOMTRICAL GRIDS INTO THE REGIONS
DIC> @@
DIC>
DIC> @@
DIC> @@ THE INITIAL SIZE OF THE CEMENTITE PARTICLE IS ASSUMED TO BE KNOWN
DIC> @@ (IN THIS CASE WE TAKE OUR VALUE FROM LIU ET AL. WHO ESTIMATED THE
DIC> @@ AVERAGE INITIAL DIAMETER OF THE PARTICLES TO 1.051E-6 METERS).
DIC> @@
DIC> enter-grid
REGION NAME : /CARB/: carb
WIDTH OF REGION /1/: rcem
TYPE /LINEAR/: geo
NUMBER OF POINTS /50/: 16
VALUE OF R IN THE GEOMETRICAL SERIE : 0.80
DIC>
DIC> @@
DIC> @@ THE SIZE OF THE FCC REGION WE MAY CALCULATE FROM A MASSBALANCE
DIC> @@ AFTER ESTIMATING THE INITIAL COMPOSITIONS IN THE TWO PHASES.
DIC> @@
DIC> enter-grid
REGION NAME : /AUS/: aus
WIDTH OF REGION /1/: rmat
TYPE /LINEAR/: geo
NUMBER OF POINTS /50/: 16
VALUE OF R IN THE GEOMETRICAL SERIE : 1.25
DIC>
DIC> @@
DIC> @@ ENTER PHASES INTO REGIONS
DIC> @@
DIC> enter-phase act carb matrix
cementite
DIC> enter-phase act aus
matrix
fcc#1
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITIONS IN THE PHASES
DIC> @@
DIC> enter-composition
REGION NAME : /CARB/: carb
PHASE NAME: /CEMENTITE/: cementite
COMPOSITION TYPE /MOLE_FRACTION/: weig-fraction
PROFILE FOR /CR/: cr lin wcemcr wcemcr
DIC>
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /FE/: fe
COMPOSITION TYPE /MOLE_FRACTION/: weig-fraction
PROFILE FOR /C/: CR lin wmatcr wmatcr
PROFILE FOR /CR/: C lin wmatc wmatc
DIC>
DIC> @@
DIC> @@ SET SPHERICAL GEOMETRY
DIC> @@
DIC> enter-geo
GEOMETRICAL EXPONENT /0/: 2
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 10000
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /1000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exb2 Y
DIC>
DIC> set-inter
--OK--DIC>
exb2-run
MACRO exb2\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb2\run.DCM"DIC>
DIC>
DIC> @@ exb2_run.DCM
DIC>
DIC> @@
DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb2
OK
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
4
GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES:
9
EQUILIBRIUM CALCULATIONS
DONE
6 OUT OF
9
04
Automatic start values
Old start values kept
Automatic start values
Old start values kept
Automatic start values
U-FRACTION IN SYSTEM:
will be set
will be set
will be set
C = .0406910188418179 CR = .0214382349908299
FE = .978561765139677
TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3]
U-FRACTION IN SYSTEM: C = .0406910188418179 CR = .0214382349908299
FE = .978561765139677
TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3]
13 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: CARB
15 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUS
0.176548249161086
0.176589788972957
0.176554043370322
3.680653025207026E-003
005
1.348698347770180E-006
1.521697948390529E-006
1.380415587624159E-006
006
1.340943907800665E-006
1.328437867559631E-006
1.322012213748229E-006
006
1.298885545861614E-006
1.263386445796726E-006
1.177289696524509E-006
006
1.025833475844701E-006
7.431788736429131E-007
3.069915977298758E-007
009
5.834386602873902E-013
2.401882982751997E-017
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.24018830E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.28999660E-02 AND -0.28999660E-02
POSITION OF INTERFACE CARB / AUS IS
0.52521000E-06
U-FRACTION IN SYSTEM: C = .0407169752433709 CR = .0214511874044738
FE = .978548812726033
TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3]
CPU time used in timestep
1 seconds
4 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: CARB
4 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUS
6.653814852955000E-007
6.655272405266193E-007
6.652862996091669E-007
008
5.902173629417987E-012
5.247794362534176E-017
TIME = 0.30000000E-06 DT = 0.20000000E-06 SUM OF SQUARES = 0.52477944E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.28387079E-03 AND -0.28387079E-03
POSITION OF INTERFACE CARB / AUS IS
0.52515323E-06
U-FRACTION IN SYSTEM: C = .0407196023401171 CR = .0214536735090761
FE = .978546326621431
TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3]
CPU time used in timestep
0 seconds
2 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: CARB
2.782284523671428E-009
2.776376688605356E-009
2.755792903567012E-009
010
1.014564712495594E-012
3.472363214266680E-017
TIME = 0.70000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.34723632E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.26422306E-03 AND -0.26422306E-03
POSITION OF INTERFACE CARB / AUS IS
0.52504754E-06
U-FRACTION IN SYSTEM: C = .0407208187382304 CR = .0214582666752659
FE = .978541733455241
TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3]
9.613115127703042E1.345112033614597E1.297767444039547E1.029702876540562E1.240153131614171E-
3.421485904420861E-007
6.526996755780810E-
3.648886181064838E-010
1.740387832600494E-
CPU time used in timestep
0 seconds
1.257291393098316E-007
1.257696203799970E-007
1.254027000861004E-007
4.321388946375052E-008
008
7.657777882391577E-009
5.043773115804332E-014
2.094175212923899E-019
TIME = 0.15000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.20941752E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.19103621E-03 AND -0.19103621E-03
POSITION OF INTERFACE CARB / AUS IS
0.52489471E-06
U-FRACTION IN SYSTEM: C = .040720826044832 CR = .0214648390963127
FE = .978535161034195
TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3]
CPU time used in timestep
6.957511781635871E-008
2.919044531703546E-
0 seconds
6.959875245832238E-008
output ignored...
... output resumed
2.082561816029498E-010
1.507751644327011E-010
6.258999028925892E-011
019
TIME =
6953.2886
DT = 1000.00000
SUM OF SQUARES = 0.21479046E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.10244842E-10 AND -0.10244842E-10
POSITION OF INTERFACE CARB / AUS IS
0.28802589E-06
U-FRACTION IN SYSTEM: C = .0407454632284414 CR = .021714140397982
FE = .978285859732525
TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3]
3.068903659304607E-015
2.147904589318593E-
CPU time used in timestep
1 seconds
6.776976395674054E-010
6.772741821706955E-010
6.938083004114355E-010
1.217208300354100E-010
1.016989846927682E010
6.689519218390809E-011
1.899710203807532E-011
3.262823108209396E-016
1.043205884325779E-020
TIME =
7953.2886
DT = 1000.00000
SUM OF SQUARES = 0.10432059E-19
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.92358868E-11 AND -0.92358868E-11
POSITION OF INTERFACE CARB / AUS IS
0.27879000E-06
U-FRACTION IN SYSTEM: C = .0407454833114684 CR = .0216984244548314
FE = .978301575675676
TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3]
CPU time used in timestep
1
seconds
6.009381403882585E-010
6.005136544558488E-010
6.171813824723330E-010
5.944500742394692E-011
011
2.650480952078728E-011
3.013590116115770E-012
1.444192273775268E-017
TIME =
8953.2886
DT = 1000.00000
SUM OF SQUARES = 0.14441923E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.85048316E-11 AND -0.85048316E-11
POSITION OF INTERFACE CARB / AUS IS
0.27028517E-06
U-FRACTION IN SYSTEM: C = .0407455056373234 CR = .0216836148546153
FE = .978316385275891
TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3]
CPU time used in timestep
0 seconds
5.482504141833919E-010
5.478385318422762E-010
5.645087335148419E-010
011
9.058137127134344E-012
1.000854470429399E-017
TIME =
9953.2886
DT = 1000.00000
SUM OF SQUARES = 0.10008545E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.79666996E-11 AND -0.79666996E-11
POSITION OF INTERFACE CARB / AUS IS
0.26231847E-06
U-FRACTION IN SYSTEM: C = .0407454854423656 CR = .0216703774593679
FE = .978329622671139
TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3]
2.841111545172076E-011
4.723150753443881E-
2.156007730477038E-
CPU time used in timestep
1 seconds
5.930700240718404E-012
5.928267087186882E-012
8.675078779587592E-012
2.371093605565389E-013
2.302148279205644E013
2.164620787518801E-013
1.904687273153091E-013
4.506953063957254E-013
1.432759543270245E013
6.912456288719108E-014
9.956750740554640E-016
1.382936552707374E-023
TIME = 10000.0000
DT =
46.711442
SUM OF SQUARES = 0.13829366E-22
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.80493199E-11 AND -0.80493199E-11
POSITION OF INTERFACE CARB / AUS IS
0.26194247E-06
U-FRACTION IN SYSTEM: C = .0407454799578226 CR = .0216694467618613
FE = .978330553368646
TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-06
0.30000000E-06
0.70000000E-06
0.15000000E-05
0.31000000E-05
0.63000000E-05
0.12700000E-04
0.25500000E-04
0.51100000E-04
0.10230000E-03
0.20470000E-03
0.40950000E-03
0.81910000E-03
0.16383000E-02
0.32120700E-02
0.60099431E-02
0.10631393E-01
0.17916898E-01
0.29375408E-01
0.48512461E-01
0.84586691E-01
0.15673515
0.30103207
0.57443972
1.1019649
2.1570154
4.2671162
8.4873179
16.927721
33.808528
67.570142
135.09337
270.13982
540.23273
1080.4186
2008.6858
2953.2886
3953.2886
4953.2886
5953.2886
6953.2886
7953.2886
8953.2886
9953.2886
10000.0000
exb2-plot
MACRO exb2\plot.DCMDIC>
DIC>
DIC> @@ exb2_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b2
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+04
DIC> read exb2
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: @@ LET US PLOT CHROMIUM CONCENTRATION PROFILES
POST-1: @@ WE THEN SET DISTANCE AS X-AXIS (NOTE THAT DISTANCE IS SET AS
POST-1: @@ INDEPENDENT VARIABLE AUTOMATICALLY) AND U-FRACTION CARBON AS Y-AXIS
POST-1: @@ REMEMBER THAT ONE ALSO HAS TO SET PLOT CONDITION
POST-1: @@
POST-1: @@ NOTICE THAT ALL DISTANCES IN THE DATA FILE ARE GIVEN RELATIVE TO THE
POST-1: @@ CEM/FCC INTERFACE. FOR THIS REASON ONE HAS TO GIVE AN OFFSET TO THE
POST-1: @@ DATA ACCORDING TO THE ACTUAL PARTICLE RADIUS AT THE SPECIFIED TIME.
POST-1: @@
POST-1: enter-symb
Function or table /FUNCTION/: func
NAME: rdist
FUNCTION: gd-poi(carb,u);
POST-1:
POST-1: s-d-a x rdist
POST-1:
POST-1: s-i-v
VARIABLE /TIME/: dist
DISTANCE : /GLOBAL/: glo
POST-1:
POST-1: s-d-a y uf(cr)
POST-1:
POST-1: s-p-c time 10
POST-1:
POST-1: @@
POST-1: @@ SET TITLE ON DIAGRAM
POST-1: @@
POST-1: set-title Figure b2.1
POST-1:
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: @@ INCLUDE EXPERIMENTAL DATAPOINTS ON THE FIGURE FOR COMPARISION
POST-1: @@
POST-1: @@ FIRST LIST DATASETS
POST-1: @@
POST-1: app y exb2.exp
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: -1
DATASET 1 CONCENTRATION PROFILE T=10S
DATASET 2 CONCENTRATION PROFILE T=100S
DATASET 3 CONCENTRATION PROFILE T=1000S
DATASET 4 CONCENTRATION PROFILE T=10000S
DATASET 5 VOLUME FRACTION CEMENTITE VS. TIME
DATASET 6 MEAN PARTICLE DIAMETER VS. TIME
POST-1:
POST-1: @@
POST-1: @@ SELECT THE PROPER DATASET
POST-1: @@
POST-1: app y exb2.exp
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: 1
POST-1:
POST-1: set-title Figure b2.2
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: @@ PLOT ALSO FOR 100, 1000 AND 10000S
POST-1: @@
POST-1:
POST-1: s-p-c time 100
POST-1:
POST-1: app y exb2.exp
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: 2
POST-1:
POST-1: set-title Figure b2.3
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1:
POST-1: s-p-c time 1000
POST-1:
POST-1: app y exb2.exp
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: 3
POST-1:
POST-1: set-title Figure b2.4
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: s-p-c time 10000
POST-1:
POST-1: app y exb2.exp
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: 4
POST-1:
POST-1: set-title Figure b2.5
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: @@ LET US ALSO PLOT HOW THE VOLUME FRACTION OF CEMENTITE VARIES
POST-1: @@ WITH TIME
POST-1: @@
POST-1: s-d-a y ivv(cem)
POST-1: s-s-s y n 0 .15
POST-1:
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: set-axis-type x log
POST-1: s-s-s x n .01 10000
POST-1:
POST-1: s-p-c integral
POST-1:
POST-1: app y exb2.exp
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: 5
POST-1:
POST-1: set-title Figure b2.6
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: @@ LET US ALSO PLOT HOW THE DIAMETER OF CEMENTITE VARIES WITH TIME
POST-1: @@
POST-1: enter func diam=2*poi(carb,u);
POST-1: s-d-a y diam
POST-1:
POST-1: s-p-c interface carb upper
POST-1:
POST-1: app y exb2.exp
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: 6
POST-1:
POST-1: set-title Figure b2.7
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: set-inter
--OK--POST-1:
Example b3
Dissolution of 23 - carbide in an austenitic matrix
T = 1273 K
FCC
ν
23 - carbide
●
Inactive BCC
●
●●
●
●
●
exb3-setup
MACRO exb3\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb3\setup.DCM"SYS:
SYS:
SYS: @@ exb3_setup.DCM
SYS:
SYS: @@------------------------------------------------------------------SYS: @@ SETUP FILE FOR CALCULATING THE DISSOLUTION OF A M23C6 PARTICLE IN
SYS: @@ AN AUSTENITE MATRIX. A FILM OF FERRITE IS ALLOWED TO NUCLEATE AROUND
SYS: @@ THE CARBIDE DURING THE PERCIPITATION.
SYS: @@------------------------------------------------------------------SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ USE A PUBLIC DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw tcfe8
TDB_TCFE8: def-sys fe c cr
FE
C
CR
DEFINED
TDB_TCFE8: rej ph *
GAS:G
LIQUID:L
BCC_A2
FCC_A1
HCP_A3
DIAMOND_FCC_A4
GRAPHITE
CEMENTITE
M23C6
M7C3
M5C2
M3C2
KSI_CARBIDE
A1_KAPPA
KAPPA
FE4N_LP1
FECN_CHI
SIGMA
CHI_A12
LAVES_PHASE_C14
CR3SI
CRZN17
AL5FE4 REJECTED
TDB_TCFE8: res ph fcc bcc m23
FCC_A1
BCC_A2
M23C6
RESTORED
TDB_TCFE8: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'X.-G. Lu, M. Selleby and B. Sundman, Calphad, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu et al. Calphad 29 (2005) 49-55, Fe P-T diagram'
'J-O. Andersson, Calphad, 11 (1987), 271-276; TRITA 0314; C-CR'
'J. Bratberg, Z. Metallkd., Vol 96 (2005), 335-344; Fe-Cr-Mo-C'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
'P. Franke, estimated PARAM within SGTE, 2007; Fe-C, Ni-C, Mo-C, C-Mn'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'J-O. Andersson, Metall. Trans. A, 19A (1988), 627-636 TRITA 0207 (1986);
C-CR-FE'
'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270
(1986); CR-FE'
-OKTDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_TCFE8: @@
TDB_TCFE8: app mfedemo
Current database: Fe-Alloys Mobility demo database
VA DEFINED
APP: def-sys c cr fe
C
DEFINED
APP: rej ph *
BCC_A2
APP: res ph fcc bcc
FCC_A1
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
CR
FE
FCC_A1
REJECTED
BCC_A2
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Z. Metallkunde 85(1994)502-509; C diffusion in fcc Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr
-Fe-Ni'
'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni
diffusion bcc Cr-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
NO TIME STEP DEFINED
*** ENTERING M23C6 AS A DIFFUSION NONE PHASE
DIC>
DIC>
DIC>
DIC>
DIC>
@@
@@ ENTER GLOBAL CONDITION T
@@
set-cond glob T 0 1273;
* N
DIC>
DIC> @@
DIC> @@ ENTER REGIONS carbide AND matrix
DIC> @@
DIC> enter-region carbide
DIC> enter-region matrix
ATTACH TO REGION NAMED /CARBIDE/:
ATTACHED TO THE RIGHT OF CARBIDE /YES/:
DIC> @@
DIC> @@ WE ASSUME SOME REASONABLE SIZE OF THE CARBIDE PARTICLE
DIC> @@
DIC> enter-grid carbide 5.00000000E-7
TYPE /LINEAR/:
NUMBER OF POINTS /50/:
DIC>
DIC> @@
DIC> @@ THE SIZE OF THE FCC REGION WE MAY CALCULATE FROM A MASSBALANCE
DIC> @@ AFTER ESTIMATING THE INITIAL COMPOSITIONS IN THE TWO PHASES.
DIC> @@
DIC> enter-grid matrix 5.55859755E-7,,,,,,
DIC>
DIC> @@
DIC> @@ ENTER PHASES INTO REGION MATRIX, BOUNDARY CONDITIONS ARE GIVEN
DIC> @@ IF THE INACTIVE PHASE bcc IS NUCLEATED
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /CARBIDE/: matrix
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /MATRIX/: matrix
ATTACHED TO THE RIGHT OF MATRIX /YES/: no
PHASE NAME: /NONE/: bcc#1
DEPENDENT COMPONENT ? /FE/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/:
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@
DIC> @@ ENTER PHASE INTO REGION carbide
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /CARBIDE/: carbide
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: m23c6
DIC>
DIC> @@
DIC> @@ ENTER COMPOSITIONS INTO THE PHASES
DIC> @@
DIC> enter-composition
REGION NAME : /CARBIDE/: carbide
PHASE NAME: /M23C6/: m23c6
DEPENDENT COMPONENT ? /FE/: fe
COMPOSITION TYPE /MOLE_FRACTION/: mole-fraction
PROFILE FOR /CR/: cr lin 0.55079807 0.55079807
DIC>
DIC>
DIC> enter-composition
REGION NAME : /MATRIX/: matrix
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /FE/: fe
COMPOSITION TYPE /MOLE_FRACTION/: mole-fraction
PROFILE FOR /C/: cr lin 8.5203899E-2 8.5203899E-2
PROFILE FOR /CR/: c lin 1.8072433E-4 1.8072433E-4
DIC>
DIC> @@
DIC> @@ SET SPHERICAL GEOMETRY
DIC> @@
DIC> enter-geo
GEOMETRICAL EXPONENT /0/: 2
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 8000
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /800/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC> @@
DIC> @@ VARY POTENTIALS INSTEAD OF ACTIVITIES
DIC> @@
DIC> @@set-simulation-conditions ,,,,POTENTIALS,,,,,,,,,
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE
DIC> @@
DIC> save exb3 Y
DIC>
DIC>
DIC>
DIC> set-inter
--OK--DIC>
exb3-run
MACRO exb3\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb3\run.DCM"DIC>
DIC>
DIC> @@ exb3_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE b3
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER DICTRA MONITOR AND READ THE SETUP FROM FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
*** ENTERING M23C6 AS A DIFFUSION NONE PHASE
DIC> read exb3
OK
DIC>
DIC> @@
DIC> @@ WHEN THE FERRITE NUCLEATES WE USE DEFAULT VALUES
DIC> @@ AS STARTING VALUES FOR THE WIDTH OF THE NEW REGION
DIC> @@ AND THE VELOCITY OF THE INTERFACES
DIC> @@
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim yes
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
4
GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES:
9
EQUILIBRIUM CALCULATIONS
*** ERROR 1611 IN QTHISS
*** TOO MANY ITERATIONS
Give the command INFO TROUBLE for help
DONE
6 OUT OF
9
DONE
9 OUT OF
9
try
2 failed
DETERMINED ACTIVITIES ACR(CR) .00193522400114
UNABLE TO OBTAIN GOOD STARTING VALUE USING THE OLD SCHEME
Trying new scheme
GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES:
17
EQUILIBRIUM CALCULATIONS
Automatic start values
Old start values kept
Automatic start values
Old start values kept
Automatic start values
U-FRACTION IN SYSTEM:
DONE
1 OUT OF
17
will be set
will be set
will be set
C = .0278637912207471 CR = .149918318671311
FE = .850081681459196
TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3]
U-FRACTION IN SYSTEM: C = .0278637912207471 CR = .149918318671311
FE = .850081681459196
TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3]
0.408619885131314
0.408716710898664
0.408584145263652
1.674986954178332E-002
004
6.126723360891388E-007
1.619902718423255E-006
5.811986825683249E-007
007
5.724552977420747E-007
5.618258895585958E-007
5.536922381679318E-007
007
5.470206516910119E-007
5.256911614533897E-007
4.893336064636908E-007
007
4.220458017873270E-007
2.939007522182687E-007
1.024476099049136E-007
009
1.541151015590047E-010
1.713431975931416E-016
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.17134320E-15
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.26058211E-02 AND -0.26058211E-02
POSITION OF INTERFACE CARBIDE / MATRIX IS
0.49973942E-06
U-FRACTION IN SYSTEM: C = .0278841352664978 CR = .149550600858534
FE = .850449399271973
TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3]
4.918693138972422E5.699623545438217E5.443329190243083E4.196579594423448E5.450394316391980E-
CPU time used in timestep
1 seconds
3.816055715956604E-003
3.816839008490423E-003
3.815370652862120E-003
2.527897640536468E-005
1.144939040108324E006
2.032168530485676E-007
1.026204753345505E-009
3.159262579630971E-014
6.773743355690572E019
SWITCHING ACTIVITIES FOR INTERFACE #2, CELL #1
FROM: C TO: CR
output ignored...
... output resumed
6.927387066289644E-014
6.931519858520847E-014
2.335463551605804E-013
6.918553369433477E-014
6.925355098996109E014
6.929355400087825E-014
2.335207494959195E-013
6.916261461491805E-014
6.923315353994493E014
6.927438480145949E-014
2.334791261152170E-013
6.914087844510265E-014
6.921252134575964E014
6.925368003364189E-014
2.334869075816354E-013
6.912101405612129E-014
6.919256658256397E014
6.923286350735860E-014
2.334739247120146E-013
6.910158851581425E-014
6.917030974332241E014
6.921431822339167E-014
2.334367506479928E-013
6.908253365469867E-014
6.915303134991009E014
6.919523486530147E-014
2.334221614392812E-013
6.906078393500270E-014
6.913225892512623E014
6.917291254128657E-014
2.334014250062081E-013
6.903897366993359E-014
6.911017644221225E014
6.915137431261912E-014
2.333833599182512E-013
6.901980764049190E-014
6.908898112797514E014
6.913222667978269E-014
2.333663842270504E-013
6.899989934323851E-014
6.906842055192835E014
6.911183917390004E-014
2.333371742342332E-013
6.897900644051470E-014
6.904894610768656E014
6.909033840540276E-014
2.333171431316021E-013
6.895756785848278E-014
6.902862739892802E014
6.907321094753266E-014
2.333035585643108E-013
6.893795055364259E-014
6.901021816547033E014
6.905214363249911E-014
2.332826239910425E-013
6.891743606935416E-014
6.899040209495990E014
6.902958937120014E-014
2.332738861001053E-013
6.889788959233373E-014
6.896724834219189E014
6.900934364527586E-014
2.332473780870336E-013
6.888143260503876E-014
6.894797618418828E014
6.899006471534289E-014
2.332259283040875E-013
6.885591601253775E-014
6.892688648541616E014
6.897006406445248E-014
2.331881070932989E-013
6.883766946449420E-014
6.890539538830185E014
6.894732790319194E-014
2.331871569012679E-013
ERROR RETURN FROM NS01A BECAUSE THERE HAVE BEEN
*** ERROR
1890 IN DCNS01
300 CALLS OF CALFUN
*** ERROR RETURN FROM NS01A
1.312210028766995E-013
1.310320227371677E-013
1.310606580974647E-013
013
1.313332202146105E-013
SWITCHING ACTIVITIES FOR INTERFACE #2, CELL #1
FROM: CR TO: FE
TIME =
8000.0000
DT =
390.12029
SUM OF SQUARES = 0.92283394E-14
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.74168880E-13 AND -0.74168880E-13
POSITION OF INTERFACE CARBIDE / MATRIX IS
0.38406467E-06
U-FRACTION IN SYSTEM: C = .0275883708014442 CR = .146716739349575
FE = .853283260780932
TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC> set-inter
--OK--DIC>
53.013009
67.702436
67.702446
67.702466
67.702506
67.702586
67.702746
67.703066
67.703706
67.704986
67.707546
67.712666
67.722906
67.743386
67.784346
67.866266
68.030106
68.357786
69.013146
70.323866
72.945306
78.188186
88.673946
109.64547
151.58851
235.47459
403.24675
738.79107
1409.8797
2209.8797
3009.8797
3809.8797
4609.8797
5409.8797
6209.8797
7009.8797
7209.8797
7609.8797
8000.0000
1.310330523718692E-013
5.812625362109149E-
exb3-plot
MACRO exb3\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb3\plot.DCM"DIC>
DIC>
DIC> @@ exb3_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b3
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 8.00000E+03
*** ENTERING M23C6 AS A DIFFUSION NONE PHASE
DIC> read exb3
OK
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
@@
@@ LET US FIRST SEE HOW THE AMOUNT OF FERRITE VARIED DURING THE
@@ SIMULATION
@@
s-d-a y iww(bcc)
s-d-a x time
Time is set as independent variable
s-ax-typ x log
s-s-s x n 1E-5 1E3
s-s-s y n 0 0.1
set-tit Figure b3.1
plot
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: @@ NOW LOOK AT THE ALLOYING ELEMENTS AT THE UPPER BOUND OF THE SYSTEM
POST-1: @@
POST-1: s-d-a y w(c)
POST-1: s-s-s x n 1E-3 1E4
POST-1: s-p-c interface last
POST-1:
POST-1: set-tit Figure b3.2
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: s-d-a y w(cr)
POST-1: s-s-s y n 0 0.12
POST-1:
POST-1: set-tit Figure b3.3
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: @@ AND FINALLY LOOK AT THE CHANGE OF RADIUS OF THE M23-CARBIDE
POST-1: @@
POST-1: s-d-a y position carbide upper
POST-1: s-s-s x n 1E-4 1E4
POST-1:
POST-1: set-tit Figure b3.4
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
Example b4a
Solidification path of a Fe - 18% Cr - 8% Ni alloy
( Eutectic reaction)
T = 1900 - 1 ∗ Time K
Time > 0
Liquid
FCC
ν
BCC
ν
1E-4
exb4a-setup
MACRO exb4a\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4a\setup.DCM"SYS: @@
SYS: @@ Moving boundary problems.
SYS: @@ This examples demonstrates the solidification path of an Fe-18%Cr-8%Ni
SYS: @@ alloy. A eutectic reaction is assumed, LIQUID -> BCC + FCC. Hence the
SYS: @@ BCC and FCC regions should be on separate sides of the liquid region.
SYS: @@ Comparison is made with both a Scheil-Gulliver simulation and equilibrium
SYS: @@ solidification conditions, both made with Thermo-Calc.
SYS: @@
SYS:
SYS: @@ exb4a_setup.DCM
SYS:
SYS:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE.
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@ LET US USE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7:
TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK
TDB_TCFE7: def-sys fe ni cr
FE
NI
DEFINED
TDB_TCFE7:
TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR
TDB_TCFE7: rej ph /all
LIQUID:L
BCC_A2
HCP_A3
A1_KAPPA
SIGMA
CHI_A12
CR3SI
NBNI3
REJECTED
TDB_TCFE7: res ph fcc liq bcc
FCC_A1
LIQUID:L
RESTORED
TDB_TCFE7:
TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
WITH
CR
THE PHASES THAT IS NOT NEEDED
FCC_A1
KAPPA
LAVES_PHASE_C14
NI3TI
BCC_A2
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'B.-J. Lee, Calphad (1993); revison of Fe-Cr and Fe-Ni liquid'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'J. Brillo and I. Egry, Int. J. Thermophysics, 24, pp. 1155-1170'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270
(1986); CR-FE'
'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE AND APPEND DATA
TDB_TCFE7: @@
TDB_TCFE7: app
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE7/: mobfe2
Current database: Steels/Fe-Alloys Mobility
v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe ni cr
FE
DEFINED
APP: rej ph /all
BCC_A2
LIQUID:L REJECTED
APP: res ph fcc liq bcc
FCC_A1
RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
NI
CR
FCC_A1
HCP_A3
LIQUID:L
BCC_A2
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni'
'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc
Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni
diffusion bcc Cr-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T.
DIC> @@
DIC> @@ LET US LOWER THE TEMPERATURE WITH A RATE OF 1 K/S
DIC> @@
DIC> set-cond glob T 0 1900-1*TIME; * N
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
@@
@@ ENTER A REGION CALLED smalta
@@
enter-region smalta
@@
DIC> @@ ENTER A DOUBLE GEOMETRIC GRID INTO THE REGION.
DIC> @@
DIC> enter-grid
REGION NAME : /SMALTA/: smalta
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 60
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.11
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.9
DIC>
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /SMALTA/: smalta
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: liq
DIC>
DIC> @@
DIC> @@ ENTER INACTIVE PHASES INTO REGION, ONE PHASE ON EACH SIDE OF THE LIQUID
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: no
PHASE NAME: /NONE/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
PHASE NAME: /NONE/: bcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@
DIC> @@ ENTER START COMPOSITION FOR THE LIQUID
DIC> @@
DIC> enter-composition
REGION NAME : /SMALTA/: smalta
PHASE NAME: /LIQUID/: liq
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /CR/: cr lin 18 18
PROFILE FOR /NI/: ni lin 8 8
DIC>
DIC> @@
DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 200
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /20/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> @@
DIC> @@ CHECK INTERFACE POSSITION
DIC> @@
DIC> @@ THIS IN ORDER TO MAKE SURE THAT THE LIQUID REGION DOESN'T SHRINK
DIC> @@ TO MUCH DURING A TIMESTEP. THE TIMESTEP WILL NOW IN ADDITION BE
DIC> @@ CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION.
DIC> @@
DIC> s-s-c
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/: yes
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: no
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/:
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA
DIC> @@
DIC> save exb4a Y
DIC>
DIC> set-inter
--OK--DIC>
exb4a-run
MACRO exb4a\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4a\run.DCM"DIC>
DIC>
DIC> @@ exb4a_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE b4a
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER DICTRA MONITOR AND READ THE SETUP FROM FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb4a
OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim yes
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
2 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: SMALTA
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.30341217E-04 DT = 0.30241217E-04 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.90823651E-04 DT = 0.60482434E-04 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.21178852E-03 DT = 0.12096487E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.45371826E-03 DT = 0.24192974E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.93757773E-03 DT = 0.48385947E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.19052967E-02 DT = 0.96771895E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.38407346E-02 DT = 0.19354379E-02 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.77116104E-02 DT = 0.38708758E-02 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.15453362E-01 DT = 0.77417516E-02 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.30936865E-01 DT = 0.15483503E-01 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
TIME =
0.61903871E-01 DT =
0
seconds
0.30967006E-01 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
1E-04 [m]
CPU time used in timestep
TIME = 0.12383788
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
CPU time used in timestep
TIME = 0.24770591
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 0.61934013E-01 SUM OF SQUARES =
0.0000000
CR = .191520367992482 FE = .733068011219292
NI = .0754116207882253
1E-04 [m]
0
seconds
DT = 0.12386803
SUM OF SQUARES =
0.0000000
CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
1E-04 [m]
output ignored...
... output resumed
5.771371582884955E-012
2.089558108784325E-017
TIME =
180.86919
DT =
2.6214400
SUM OF SQUARES = 0.20895581E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.41981368E-07 AND -0.41981368E-07
POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS
0.63377458E-05
U-FRACTION IN SYSTEM: CR = .191525960107609 FE = .733031163665452
NI = .0754428762269383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
2
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: R_BCC_A2
CPU time used in timestep
3 seconds
1.460359577486928E-009
1.460424345810496E-009
1.508731074903434E-009
1.064013602682988E-010
1.044336853713972E010
1.006921655765308E-010
9.323286653824786E-011
9.363639914867788E-011
7.929423073972821E011
5.480511680805466E-011
1.938013801667766E-011
7.461691077798861E-017
TIME =
186.11207
DT =
5.2428800
SUM OF SQUARES = 0.74616911E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.15615759E-07 AND -0.15615759E-07
POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS
0.62558743E-05
U-FRACTION IN SYSTEM: CR = .191525761328886 FE = .733031734201103
NI = .0754425044700113
TOTAL SIZE OF SYSTEM: 1E-04 [m]
4
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: R_BCC_A2
CPU time used in timestep
2 seconds
8.463934080918495E-010
8.464210007709240E-010
8.673104528639008E-010
2.489945026114041E-010
2.478593658014353E010
2.456637718005384E-010
2.412297841820694E-010
2.413929260828676E-010
2.325330086774077E010
2.156237357646513E-010
1.837209222034226E-010
1.839360039621276E-010
1.275701172534941E010
4.617578549592149E-011
8.103041359381663E-016
4.474487158087514E-020
TIME =
196.59783
DT =
10.485760
SUM OF SQUARES = 0.44744872E-19
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.24172842E-07 AND
0.24172842E-07
POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS
0.65093449E-05
U-FRACTION IN SYSTEM: CR = .191525752899147 FE = .733032006620248
NI = .0754422404806052
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
4 seconds
2.285329270877706E-010
2.285300657944728E-010
2.501264527568899E-010
6.191425452799986E-012
6.092317751107364E012
5.897883803589933E-012
5.517164895079782E-012
6.016558369509794E-012
4.794676132351746E012
3.475176114401289E-012
1.505516335260266E-012
1.610328537170677E-017
TIME =
200.00000
DT =
3.4021729
SUM OF SQUARES = 0.16103285E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.17465648E-07 AND
0.17465648E-07
POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS
0.65687661E-05
U-FRACTION IN SYSTEM: CR = .1915257131766 FE = .733032182333232
NI = .0754421044901677
TOTAL SIZE OF SYSTEM: 1E-04 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
175.06428
175.62632
175.62633
175.62635
175.62639
175.62647
175.62663
175.62695
175.62759
175.62887
175.63143
175.63655
175.64679
175.66727
175.70823
175.79015
175.95399
176.28167
176.93703
178.24775
180.86919
186.11207
KEEPING TIME-RECORD FOR TIME
196.59783
AND FOR TIME
200.00000
WORKSPACE RECLAIMED
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
--OK--DIC>
exb4a-plot
MACRO exb4a\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4a\plot.DCM"DIC>
DIC>
DIC> @@ exb4a_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b4a
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 2.00000E+02
DIC> read exb4a
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: set-title Fe-18%Cr-8%Ni
POST-1:
POST-1: @@
POST-1: @@ PLOT FRACTION SOLID AND COMPARE WITH SCHEIL-GULLIVER SIMULATION
POST-1: @@ AND EQUILIBRIUM SOLIDIFICATION (DATA ON FILE exb4.exp)
POST-1: @@
POST-1: enter function fs=1-ivv(liquid);
POST-1: s-d-a x fs
POST-1: s-s-s x n 0 1
POST-1: set-axis-text
AXIS (X, Y OR Z) : x
AUTOMATIC AXIS TEXT (Y OR N) /N/: n
AXIS TEXT : Fraction Solid
POST-1:
POST-1: s-d-a y t-c
POST-1: s-s-s y n 1420 1480
POST-1:
POST-1: s-p-c interface smalta lower
POST-1:
POST-1: app y exb4a.exp 0; 1
POST-1: plo
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
Example b4b
Solidification path of a Fe - 18% Cr - 8% Ni alloy
( Peritectic reaction)
T = 1900 - 1 ∗ Time K
Time > 0
Liquid
FCC
ν
ν
1E-4
BCC
exb4b-setup
MACRO exb4b\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4b\setup.DCM"SYS: @@
SYS: @@ Moving boundary problems.
SYS: @@ The same as exb4a but now a peritectic reaction is assumed, LIQUID + BCC ->
SYS: @@ FCC. Hence the FCC region should appear inbetween the LIQUID and the BCC.
SYS: @@ Comparison is made with both a Scheil-Gulliver simulation and equilibrium
SYS: @@ solidification conditions, both made with Thermo-Calc.
SYS: @@
SYS:
SYS: @@ exb4b_setup.DCM
SYS:
SYS:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE.
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@ LET US USE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7:
TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK
TDB_TCFE7: def-sys fe ni cr
FE
NI
DEFINED
TDB_TCFE7:
TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR
TDB_TCFE7: rej ph /all
LIQUID:L
BCC_A2
HCP_A3
A1_KAPPA
SIGMA
CHI_A12
CR3SI
NBNI3
REJECTED
TDB_TCFE7: res ph fcc liq bcc
FCC_A1
LIQUID:L
RESTORED
TDB_TCFE7:
TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
WITH
CR
THE PHASES THAT IS NOT NEEDED
FCC_A1
KAPPA
LAVES_PHASE_C14
NI3TI
BCC_A2
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'B.-J. Lee, Calphad (1993); revison of Fe-Cr and Fe-Ni liquid'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'J. Brillo and I. Egry, Int. J. Thermophysics, 24, pp. 1155-1170'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270
(1986); CR-FE'
'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE AND APPEND DATA
TDB_TCFE7: @@
TDB_TCFE7: app
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE7/: mobfe2
Current database: Steels/Fe-Alloys Mobility
v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe ni cr
FE
DEFINED
APP: rej ph /all
BCC_A2
LIQUID:L REJECTED
APP: res ph fcc liq bcc
FCC_A1
RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
NI
CR
FCC_A1
HCP_A3
LIQUID:L
BCC_A2
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni'
'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc
Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni
diffusion bcc Cr-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T.
DIC> @@
DIC> @@ LET US LOWER THE TEMPERATURE WITH A RATE OF 1 K/S
DIC> @@
DIC> set-cond glob T 0 1900-1*TIME; * N
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
@@
@@ ENTER A REGION CALLED smalta
@@
enter-region smalta
@@
DIC> @@ ENTER A DOUBLE GEOMETRIC GRID INTO THE REGION.
DIC> @@
DIC> enter-grid
REGION NAME : /SMALTA/: smalta
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 60
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.11
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.9
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /SMALTA/: smalta
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: liq
DIC>
DIC> @@
DIC> @@ ENTER INACTIVE PHASES INTO REGION, BOTH PHASES ON THE SAME SIDE OF
DIC> @@ THE LIQUID REGION IN ORDER TO GET A PERITECTIC REACTION.
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
PHASE NAME: /NONE/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
PHASE NAME: /NONE/: bcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@
DIC> @@ ENTER START COMPOSITION FOR THE LIQUID
DIC> @@
DIC> enter-composition
REGION NAME : /SMALTA/: smalta
PHASE NAME: /LIQUID/: liq
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /CR/: cr lin 18 18
PROFILE FOR /NI/: ni lin 8 8
DIC>
DIC> @@
DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 200
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /20/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ CHECK INTERFACE POSSITION
DIC> @@
DIC> @@ THIS IN ORDER TO MAKE SURE THAT THE LIQUID REGION DOESN'T SHRINK
DIC> @@ TO MUCH DURING A TIMESTEP. THE TIMESTEP WILL NOW IN ADDITION BE
DIC> @@ CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION.
DIC> @@
DIC> s-s-c
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/: yes
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/:
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA
DIC> @@
DIC> save exb4b Y
DIC>
DIC> set-inter
--OK--DIC>
exb4b-run
MACRO exb4b\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4b\run.DCM"DIC>
DIC> @@ exb4b_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE b4b
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER DICTRA MONITOR AND READ THE SETUP FROM FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb4b
OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim yes
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
2 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: SMALTA
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.30341217E-04 DT = 0.30241217E-04 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.90823651E-04 DT = 0.60482434E-04 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.21178852E-03 DT = 0.12096487E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.45371826E-03 DT = 0.24192974E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.93757773E-03 DT = 0.48385947E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.19052967E-02 DT = 0.96771895E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.38407346E-02 DT = 0.19354379E-02 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.77116104E-02 DT = 0.38708758E-02 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.15453362E-01 DT = 0.77417516E-02 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.30936865E-01 DT = 0.15483503E-01 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.61903871E-01 DT = 0.30967006E-01 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
TOTAL SIZE OF SYSTEM:
NI = .0754116207882254
1E-04 [m]
CPU time used in timestep
TIME = 0.12383788
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
CPU time used in timestep
TIME = 0.24770591
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 0.61934013E-01 SUM OF SQUARES =
0.0000000
CR = .191520367992482 FE = .733068011219292
NI = .0754116207882253
1E-04 [m]
0
seconds
DT = 0.12386803
SUM OF SQUARES =
0.0000000
CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
1E-04 [m]
CPU time used in timestep
0
seconds
output ignored...
... output resumed
1.606351071323816E-013
9.497522945818284E-014
1.349247768140254E-010
9.497406542702966E-014
9.497296286315062E014
9.497190547356131E-014
2.354281790341135E-013
9.497089313323211E-014
1.607849942101898E013
9.496992514727693E-014
1.343723284978931E-010
9.496900240858102E-014
9.496812415855370E014
9.496729103007874E-014
2.354253625072466E-013
9.496650269226790E-014
1.607881539665046E013
9.496575908853408E-014
1.338384054899058E-010
9.496506028289182E-014
9.496440641896879E014
9.496379751987669E-014
2.354236642947368E-013
9.496323361192260E-014
1.607924261702835E013
9.496271453790768E-014
1.333061296216786E-010
9.496223980373605E-014
9.496181014899195E014
9.496142550153503E-014
2.354230847514591E-013
9.496108579321768E-014
1.607978137505358E013
9.496079103329023E-014
1.327752654355967E-010
9.496054095406605E-014
9.496033560604795E014
9.496017491953049E-014
2.354236212383154E-013
9.496005968213400E-014
1.608043169815855E013
9.495998911620896E-014
1.322460548851414E-010
9.495996328145033E-014
9.495992915577071E014
9.495990338925266E-014
2.354251628075671E-013
9.495986896715417E-014
1.608118915174528E013
9.495984363010964E-014
1.316978044005179E-010
9.495980904529519E-014
9.495978353145641E014
9.495974887476056E-014
2.354268837975142E-013
9.495972316638317E-014
1.608195286036031E013
9.495968926673921E-014
1.311383534892437E-010
9.495966332877960E-014
9.495962873821918E014
9.495960309863504E-014
2.354285881841828E-013
9.495956871168775E-014
1.608273105561955E013
1.906798733565061E-010
1.360228222917424E-010
1.185969918003716E-013
9.696328407590267E014
1.203545096568814E-010
1.905701620131140E-010
1.032919799701922E-013
9.570399446675509E014
1.467150150947997E-013
1.904058121409195E-010
ERROR RETURN FROM NS01A BECAUSE
*** ERROR 1890 IN DCNS01
*** ERROR RETURN FROM NS01A
MAX ERROR LEVEL EXCEEDED
PLEASE CHECK STARTING VALUES
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
8 CALLS OF CALFUN FAILED TO IMPROVE THE RESIDUALS
170.10836
170.48419
170.48419
170.48419
170.48419
170.48419
170.48419
170.48420
170.48421
170.48421
*** ERROR 1880 IN DITER
*** FATAL INTEGRATION ERROR
ERROR
1880 RESET
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
--OK--DIC>
exb4b-plot
MACRO exb4b\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4b\plot.DCM"DIC>
DIC>
DIC> @@ exb4b_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b4b
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.70484E+02
DIC> read exb4b
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
set-title Fe-18%Cr-8%Ni
@@
@@ PLOT FRACTION SOLID AND COMPARE WITH SCHEIL-GULLIVER SIMULATION AND
@@ EQUILIBRIUM SOLIDIFICATION (DATA ON FILE exb4.exp)
@@
enter func fs=1-ivv(liquid);
s-d-a x fs
s-s-s x n 0 1
s-ax-te x n Fraction Solid
s-d-a y t-c
s-s-s y n 1420 1480
s-p-c interf smalta lower
app y exb4b.exp 0; 1
plo
POST-1:
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
Example b4c
Solidification path of a Fe - 18% Cr - 8% Ni alloy
( Peritectic reaction , Homogeneous liquid )
T = 1900 - 1 ∗ Time K
Time > 0
Liquid
FCC
( Homogeneous )
ν
ν
1E-4
BCC
exb4c-setup
MACRO exb4c\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4c\setup.DCM"SYS: @@
SYS: @@ Moving boundary problems.
SYS: @@ Same as exb4b but, now the diffusivity data is amended for the LIQUID
SYS: @@ and a very high value for the diffusivity is used in order to simulate a
SYS: @@ case where we assume that the composition in the LIQUID is always
SYS: @@ homogeneous. This case should be considered less realistic than exb4b.
SYS: @@ Comparison is made with both a Scheil-Gulliver simulation and equilibrium
SYS: @@ solidification conditions, both made with Thermo-Calc.
SYS: @@
SYS:
SYS: @@ exb4c_setup.DCM
SYS:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE.
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@ LET US USE THE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7:
TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK
TDB_TCFE7: def-sys fe ni cr
FE
NI
DEFINED
TDB_TCFE7:
TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR
TDB_TCFE7: rej ph /all
LIQUID:L
BCC_A2
HCP_A3
A1_KAPPA
SIGMA
CHI_A12
CR3SI
NBNI3
REJECTED
TDB_TCFE7: res ph fcc liq bcc
FCC_A1
LIQUID:L
RESTORED
TDB_TCFE7:
TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
WITH
CR
THE PHASES THAT IS NOT NEEDED
FCC_A1
KAPPA
LAVES_PHASE_C14
NI3TI
BCC_A2
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'B.-J. Lee, Calphad (1993); revison of Fe-Cr and Fe-Ni liquid'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'J. Brillo and I. Egry, Int. J. Thermophysics, 24, pp. 1155-1170'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270
(1986); CR-FE'
'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE AND APPEND DATA
TDB_TCFE7: @@
TDB_TCFE7: app
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE7/: mobfe2
Current database: Steels/Fe-Alloys Mobility
v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe ni cr
FE
DEFINED
APP: rej ph /all
BCC_A2
LIQUID:L REJECTED
APP: res ph fcc liq bcc
FCC_A1
RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
NI
CR
FCC_A1
HCP_A3
LIQUID:L
BCC_A2
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni'
'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc
Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni
diffusion bcc Cr-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ LIST MOBILITIES IN THE LIQUID
DIC> @@
DIC> list-mobility-data
Sorry, LIST-DATA disabled for this database
DIC>
DIC>
DIC> liquid
NO SUCH COMMAND, USE HELP
DIC>
DIC>
DIC> @@
DIC> @@ AMEND THE DIFFUSIVITY DATA IN THE LIQUID
DIC> @@
DIC> @@ LET'S CHANGE TO A DIFFUSIVITY WHICH IS 1000 TIMES HIGHER THAN THE
DIC> @@ VALUE IN THE MOB-DATABASE. THIS SHOULD BE ENOUGH IN ORDER FOR US TO
DIC> @@ ASSUME THAT THE COMPOSITION IN THE LIQUID IS ATT ALL TIMES HOMOGENEOUS.
DIC> @@
DIC> amend_mobility_data
PARAMETER:
*** ERROR, PLEASE RE-ENTER EACH PART SEPARATELY
IDENTIFIER: dq
PHASE NAME: liquid&cr
CONSTITUENT: cr
INTERACTING CONSTITUENT:
DQ(LIQUID&CR#1,CR;0) = Sorry, database encrypted
DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: yes
I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES
DQ(LIQUID&CR#1,CR;0) =
LOW TEMPERATURE LIMIT /298.15/: 298.15
FUNCTION: +R*T*LN(1E-06);
HIGH TEMPERATURE LIMIT /6000/: 6000
ANY MORE RANGES /N/: no
DIC>
DIC> amend_mobility_data
PARAMETER: dq(liquid&cr,fe;0)
DQ(LIQUID&CR#1,FE;0) = Sorry, database encrypted
DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y
I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES
DQ(LIQUID&CR#1,FE;0) =
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
DIC>
DIC> am-mob dq(liquid&cr,ni;0)
DQ(LIQUID&CR#1,NI;0) = Sorry, database encrypted
DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y
I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES
DQ(LIQUID&CR#1,NI;0) =
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
DIC>
DIC> am-mob dq(liquid&ni,cr;0)
DQ(LIQUID&NI#1,CR;0) = Sorry, database encrypted
DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y
I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES
DQ(LIQUID&NI#1,CR;0) =
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
DIC>
DIC> am-mob dq(liquid&ni,fe;0)
DQ(LIQUID&NI#1,FE;0) = Sorry, database encrypted
DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y
I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES
DQ(LIQUID&NI#1,FE;0) =
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
DIC>
DIC> am-mob dq(liquid&ni,ni;0)
DQ(LIQUID&NI#1,NI;0) = Sorry, database encrypted
DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y
I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES
DQ(LIQUID&NI#1,NI;0) =
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
DIC>
DIC> am-mob dq(liquid&fe,cr;0)
DQ(LIQUID&FE#1,CR;0) = Sorry, database encrypted
DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y
I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES
DQ(LIQUID&FE#1,CR;0) =
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
DIC>
DIC> am-mob dq(liquid&fe,fe;0)
DQ(LIQUID&FE#1,FE;0) = Sorry, database encrypted
DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y
I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES
DQ(LIQUID&FE#1,FE;0) =
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
DIC>
DIC> am-mob dq(liquid&fe,ni;0)
DQ(LIQUID&FE#1,NI;0) = Sorry, database encrypted
DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y
I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES
DQ(LIQUID&FE#1,NI;0) =
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
DIC>
DIC> li-mob
AMBIGUOUS COMMAND, USE HELP
DIC>
DIC>
DIC> liquid
NO SUCH COMMAND, USE HELP
DIC>
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T.
DIC> @@
DIC> @@ LET US LOWER THE TEMPERATURE WITH A RATE OF 1 K/S
DIC> set-cond glob T 0 1900-1*TIME; * N
DIC>
DIC> @@
DIC> @@ ENTER A REGION CALLED smalta
DIC> @@
DIC> enter-region smalta
DIC>
DIC> @@
DIC> @@ ENTER A DOUBLE GEOMETRIC GRID INTO THE REGION.
DIC> @@
DIC> enter-grid
REGION NAME : /SMALTA/: smalta
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 60
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.11
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.9
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /SMALTA/: smalta
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: liq
DIC>
DIC> @@
DIC> @@ ENTER INACTIVE PHASES INTO REGION, BOTH PHASES ON THE SAME SIDE OF
DIC> @@ THE LIQUID REGION IN ORDER TO GET A PERITECTIC REACTION.
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
PHASE NAME: /NONE/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
PHASE NAME: /NONE/: bcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@
DIC> @@ ENTER START COMPOSITION FOR THE LIQUID
DIC> @@
DIC> enter-composition
REGION NAME : /SMALTA/: smalta
PHASE NAME: /LIQUID/: liq
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /CR/: cr lin 18 18
PROFILE FOR /NI/: ni lin 8 8
DIC>
DIC> @@
DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 200
AUTOMATIC TIMESTEP CONTROL /YES/: yes
MAX TIMESTEP DURING INTEGRATION /20/: 1
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ CHECK INTERFACE POSSITION
DIC> @@
DIC> @@ THIS IN ORDER TO MAKE SURE THAT THE LIQUID REGION DOESN'T SHRINK
DIC> @@ TO MUCH DURING A TIMESTEP. THE TIMESTEP WILL NOW IN ADDITION BE
DIC> @@ CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION.
DIC> @@
DIC> s-s-c
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/: yes
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/:
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA
DIC> @@
DIC> save exb4c Y
DIC>
DIC> set-inter
--OK--DIC>
exb4c-run
MACRO exb4c\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4c\run.DCM"DIC>
DIC> @@ exb4c_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE b4b
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER DICTRA MONITOR AND READ THE SETUP FROM FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb4c
OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim yes
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
2 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: SMALTA
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.30000000E-06 DT = 0.20000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.70000000E-06 DT = 0.40000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.15000000E-05 DT = 0.80000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.31000000E-05 DT = 0.16000000E-05 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.63000000E-05 DT = 0.32000000E-05 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.12700000E-04 DT = 0.64000000E-05 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.25500000E-04 DT = 0.12800000E-04 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.51100000E-04 DT = 0.25600000E-04 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.10230000E-03 DT = 0.51200000E-04 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.20470000E-03 DT = 0.10240000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.40950000E-03 DT = 0.20480000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292
TOTAL SIZE OF SYSTEM:
NI = .0754116207882251
1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.81910000E-03 DT = 0.40960000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
NI = .075411620788225
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.16383000E-02 DT = 0.81920000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992485 FE = .73306801121929
NI = .0754116207882253
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
output ignored...
... output resumed
TIME =
199.15650
DT = 1.00000000
SUM OF SQUARES = 0.22397494E-15
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.10275834E-06 AND -0.10275834E-06
POSITION OF INTERFACE SMALTA / R_FCC_A1 IS
0.46571227E-06
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.11599686E-07 AND
0.11599686E-07
POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS
0.11075416E-04
U-FRACTION IN SYSTEM: CR = .191193855891716 FE = .733395570121137
NI = .0754105739871477
TOTAL SIZE OF SYSTEM: 1E-04 [m]
30
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: R_FCC_A1
CPU time used in timestep
3 seconds
6.884754720605361E-010
6.899356554633356E-010
6.884857097222088E-010
6.752526945588829E-010
7.175312094595172E010
2.311181779713061E-010
1.481380242214286E-010
1.320165285754225E-010
1.143976837410466E010
1.147464336880186E-010
9.128149536211991E-011
5.165875724569470E-011
6.758135683676992E012
9.678197719845635E-016
1.046019864581144E-017
TIME =
200.00000
DT = 0.84350267
SUM OF SQUARES = 0.10460199E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.94237389E-07 AND -0.94237389E-07
POSITION OF INTERFACE SMALTA / R_FCC_A1 IS
0.38622278E-06
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.13707658E-07 AND
0.13707658E-07
POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS
0.11086979E-04
U-FRACTION IN SYSTEM: CR = .191194078405121 FE = .73339541805811
NI = .0754105035367696
TOTAL SIZE OF SYSTEM: 1E-04 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC>
DIC>
DIC>
DIC>
170.09596
170.47878
170.47878
170.47878
170.47878
170.47878
170.47878
170.47878
170.47879
170.47880
170.47883
170.47888
170.47898
170.47919
170.47959
170.48041
170.48205
170.48533
170.49188
170.50499
170.53120
170.58363
170.68849
170.89821
171.31764
172.15650
173.15650
174.15650
175.15650
176.15650
177.15650
178.15650
179.15650
180.15650
181.15650
182.15650
183.15650
184.15650
185.15650
186.15650
187.15650
188.15650
189.15650
190.15650
191.15650
192.15650
193.15650
194.15650
195.15650
196.15650
197.15650
198.15650
199.15650
200.00000
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
--OK--DIC>
exb4c-plot
MACRO exb4c\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4c\plot.DCM"DIC>
DIC>
DIC> @@ exb4c_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b4c
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 2.00000E+02
DIC> read exb4c
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
set-title Fe-18%Cr-8%Ni
@@
@@ PLOT FRACTION SOLID AND COMPARE WITH SCHEIL-GULLIVER SIMULATION AND
@@ EQUILIBRIUM SOLIDIFICATION (DATA ON FILE exb4.exp). IN THIS CASE WE
@@ MAY SEE THAT ALL THREE LINES INITIALLY FALL ON THE SAME LINE.
@@
enter func fs=1-ivv(liquid);
s-d-a x fs
s-s-s x n 0 1
s-ax-te x n Fraction Solid
s-d-a y t-c
s-s-s y n 1420 1480
s-p-c interf smalta lower
app y exb4c.exp 0; 1
plo
POST-1:
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
Example b4d
Solidification path of a Fe - 18% Cr - 8% Ni alloy
( Peritectic reaction, Heat-flux controls the temperature)
Q
Time > 0
Liquid
FCC
ν
ν
1E-4
BCC
exb4d-setup
MACRO exb4d\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4d\setup.DCM"SYS: @@
SYS: @@ Moving boundary problems.
SYS: @@ Same as exb4b but instead of controlling the temperature the amount
SYS: @@ of heat extracted is given. Comparison is made with both a Scheil-Gulliver
SYS: @@ simulation and equilibrium solidification conditions, both made
SYS: @@ with Thermo-Calc.
SYS: @@
SYS:
SYS: @@ exb4d_setup.DCM
SYS:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE.
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@ LET US USE THE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7:
TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK
TDB_TCFE7: def-sys fe ni cr
FE
NI
DEFINED
TDB_TCFE7:
TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR
TDB_TCFE7: rej ph /all
LIQUID:L
BCC_A2
HCP_A3
A1_KAPPA
SIGMA
CHI_A12
CR3SI
NBNI3
REJECTED
TDB_TCFE7: res ph fcc liq bcc
FCC_A1
LIQUID:L
RESTORED
TDB_TCFE7:
TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
WITH
CR
THE PHASES THAT IS NOT NEEDED
FCC_A1
KAPPA
LAVES_PHASE_C14
NI3TI
BCC_A2
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'B.-J. Lee, Calphad (1993); revison of Fe-Cr and Fe-Ni liquid'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'J. Brillo and I. Egry, Int. J. Thermophysics, 24, pp. 1155-1170'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270
(1986); CR-FE'
'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE AND APPEND DATA
TDB_TCFE7: @@
TDB_TCFE7: app
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE7/: mobfe2
Current database: Steels/Fe-Alloys Mobility
v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe ni cr
FE
DEFINED
APP: rej ph /all
BCC_A2
LIQUID:L REJECTED
APP: res ph fcc liq bcc
FCC_A1
RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
NI
CR
FCC_A1
HCP_A3
LIQUID:L
BCC_A2
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni'
'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc
Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni
diffusion bcc Cr-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T.
DIC> @@
DIC> @@ LET US LOWER THE TEMPERATURE WITH A RATE OF 1 K/S
DIC> @@
DIC> set-cond glob Q 0 91.19; * N
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
set-initial-temp 1900
@@
@@ ENTER A REGION CALLED smalta
@@
enter-region smalta
DIC>
DIC> @@
DIC> @@ ENTER A DOUBLE GEOMETRIC GRID INTO THE REGION.
DIC> @@
DIC> enter-grid
REGION NAME : /SMALTA/: smalta
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 60
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.11
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.9
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /SMALTA/: smalta
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: liq
DIC>
DIC> @@
DIC> @@ ENTER INACTIVE PHASES INTO REGION, BOTH PHASES ON THE SAME SIDE OF
DIC> @@ THE LIQUID REGION IN ORDER TO GET A PERITECTIC REACTION.
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
PHASE NAME: /NONE/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-3
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
PHASE NAME: /NONE/: bcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-3
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@
DIC> @@ ENTER START COMPOSITION FOR THE LIQUID
DIC> @@
DIC> enter-composition
REGION NAME : /SMALTA/: smalta
PHASE NAME: /LIQUID/: liq
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /CR/: cr lin 18 18
PROFILE FOR /NI/: ni lin 8 8
DIC>
DIC> @@
DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 200
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /20/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ CHECK INTERFACE POSSITION
DIC> @@
DIC> @@ THIS IN ORDER TO MAKE SURE THAT THE LIQUID REGION DOESN'T SHRINK
DIC> @@ TO MUCH DURING A TIMESTEP. THE TIMESTEP WILL NOW IN ADDITION BE
DIC> @@ CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION.
DIC> @@
DIC> s-s-c
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/: yes
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: no
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/:
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA
DIC> @@
DIC> save exb4d Y
DIC>
DIC> set-inter
--OK--DIC>
exb4d-run
MACRO exb4d\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4d\run.DCM"DIC>
DIC> @@ exb4d_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE b4b
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER DICTRA MONITOR AND READ THE SETUP FROM FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb4d
OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
TEMPERATURE:
1900.
ENTHALPY: 0.7394E+05
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
TEMPERATURE:
1900.
ENTHALPY: 0.7394E+05
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
2 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: SMALTA
3.863918610053683E-007
3.864691456618458E-007
3.837208708589287E-016
3.818673870627797E-025
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.38186739E-24
TEMPERATURE:
1900.
ENTHALPY: 0.7394E+05
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
1.391013277902083E-015
0 seconds
1.391013277902083E-015
ERROR RETURN FROM NS01A BECAUSE A NEARBY STATIONARY POINT OF F(X) IS PREDICTED
*** ERROR 1890 IN DCNS01
*** ERROR RETURN FROM NS01A
1.391013277902083E-015
1.391013277902083E-015
1.391013277902083E-015
6.201282479414338E-016
1.381874772924989E015
9.633560150782941E-016
9.633560150782941E-016
3.521917793531438E-016
3.521917793531438E016
1.143246451654787E-030
1.143246451654787E-030
1.143246451654787E-030
1.143246451654787E030
1.143246451654787E-030
1.143246451654787E-030
1.143246451654787E-030
1.143246451654787E030
1.143246451654787E-030
1.143246451654787E-030
1.143246451654787E-030
TIME = 0.30341217E-04 DT = 0.30241217E-04 SUM OF SQUARES = 0.11432465E-29
TEMPERATURE:
1900.
ENTHALPY: 0.7394E+05
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
1.391013373335957E-015
0 seconds
1.391013373335957E-015
ERROR RETURN FROM NS01A BECAUSE A NEARBY STATIONARY POINT OF F(X) IS PREDICTED
*** ERROR 1890 IN DCNS01
*** ERROR RETURN FROM NS01A
1.391013373335957E-015
1.391013373335957E-015
1.391013373335957E-015
1.363331585815682E-011
1.391013373335957E015
3.999579931858193E-029
3.999579931858193E-029
3.999579931858193E-029
3.999579931858193E029
1.391013373335957E-015
5.341059802424994E-029
5.341059802424994E-029
5.341059802424994E029
5.341059802424994E-029
5.341059802424994E-029
5.341059802424994E-029
TIME = 0.90823651E-04 DT = 0.60482434E-04 SUM OF SQUARES = 0.53410598E-28
TEMPERATURE:
1900.
ENTHALPY: 0.7394E+05
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
5.564053736206117E-015
0 seconds
5.564053736206117E-015
output ignored...
... output resumed
4.652172223732392E-007
4.519150917255312E-007
4.256682594290620E-007
4.256594182322315E-007
3.640435129324556E007
2.708292483065120E-007
1.045743962567992E-007
1.643023330347266E-013
4.424353373453989E015
3.602550427171037E-019
TIME =
196.65470
DT = 0.86250000
SUM OF SQUARES = 0.36025504E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.75244346E-07 AND
0.75244346E-07
POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS
0.52760463E-05
TEMPERATURE:
1704.
ENTHALPY: 0.5593E+05
U-FRACTION IN SYSTEM: CR = .191464760917737 FE = .733089957199255
NI = .0754452818830082
TOTAL SIZE OF SYSTEM: 1E-04 [m]
15
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: R_FCC_A1
CPU time used in timestep
2 seconds
1.914495317682618E-006
1.914481391408520E-006
1.914817283448515E-006
1.914113522347135E-006
1.764479218358891E006
1.603307021154490E-006
1.259985448963141E-006
1.259891218446057E-006
7.828420230386651E007
8.573601833391040E-008
3.640376978482006E-011
1.011308024743076E-014
1.476276857769010E-017
TIME =
198.37970
DT =
1.7250000
SUM OF SQUARES = 0.14762769E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.93047393E-07 AND
0.93047393E-07
POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS
0.54365530E-05
TEMPERATURE:
1700.
ENTHALPY: 0.5578E+05
U-FRACTION IN SYSTEM: CR = .191464704847506 FE = .733089971592494
TOTAL SIZE OF SYSTEM:
56
NI = .0754453235600003
1E-04 [m]
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: R_FCC_A1
CPU time used in timestep
3 seconds
2.646763117621882E-008
2.646947765807383E-008
2.643702066248058E-008
2.655729024243307E-008
1.486424097744991E008
5.556683275897760E-009
1.354440024849325E-009
9.094859250558854E-015
1.300540734365709E-018
TIME =
200.00000
DT =
1.6203030
SUM OF SQUARES = 0.13005407E-17
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.10274262E-06 AND
0.10274262E-06
POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS
0.56030272E-05
TEMPERATURE:
1697.
ENTHALPY: 0.5563E+05
U-FRACTION IN SYSTEM: CR = .191464629158383 FE = .73309001821154
NI = .075445352630077
TOTAL SIZE OF SYSTEM: 1E-04 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
194.68712
194.95665
194.98360
195.03751
195.14532
195.36095
195.79220
196.65470
KEEPING TIME-RECORD FOR TIME
198.37970
AND FOR TIME
200.00000
WORKSPACE RECLAIMED
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
--OK--DIC>
exb4d-plot
MACRO exb4d\plot.DCMDIC>
DIC>
DIC> @@ exb4d_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b4b
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 2.00000E+02
DIC> read exb4d
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
set-title Fe-18%Cr-8%Ni
@@
@@ PLOT FRACTION SOLID AND COMPARE WITH SCHEIL-GULLIVER SIMULATION AND
@@ EQUILIBRIUM SOLIDIFICATION (DATA ON FILE exb4.exp)
@@
s-d-a x time
Time is set as independent variable
s-d-a y T
s-p-c inter first
plot
POST-1:
POST-1:Hit RETURN to continue
POST-1: enter func fs=1-ivv(liquid);
POST-1: s-d-a x fs
POST-1: s-s-s x n 0 1
POST-1: s-ax-te x n Fraction Solid
POST-1:
POST-1: s-d-a y t-c
POST-1: s-s-s y n 1420 1480
POST-1:
POST-1: s-p-c interf smalta lower
POST-1:
POST-1: app y exb4d.exp 0; 1
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
Example b5
γ/α/γ diffusion couple of Fe-Ni-Cr alloys
ν
T = 1373 K
γ
α
●
● ●
● ●●
●
●
593.45E-6
●
exb5-setup
MACRO exb5\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb5\setup.DCM"SYS: @@
SYS: @@ Moving boundary problems.
SYS: @@ This example demonstrates the evaluation of a ternary Fe-Cr-Ni diffusion
SYS: @@ couple. A thin slice of ALPHA phase (38%Cr, 0%Ni) is clamped between
SYS: @@ two thicker slices of GAMMA phase (27%Cr, 20%Ni). The assembly is
SYS: @@ subsequently heat treated at 1373K. This setup corresponds to diffusion
SYS: @@ couple A in M. Kajihara, C.-B. Lim and M. Kikuchi: ISIJ International
SYS: @@ 33 (1993), pp. 498-507. See also M. Kajihara and M. Kikichi: Acta Metall.Mater.
SYS: @@ 41 (1993), pp.2045-2059.
SYS: @@
SYS:
SYS: @@ exb5_setup.DCM
SYS:
SYS: @@
SYS: @@ GOTO DATABASE AND READ THERMODYNAMIC AND KINETIC DATA.
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7: def-sys cr fe ni
CR
FE
DEFINED
TDB_TCFE7: rej-ph /all
LIQUID:L
BCC_A2
HCP_A3
A1_KAPPA
SIGMA
CHI_A12
CR3SI
NBNI3
REJECTED
TDB_TCFE7: res-ph bcc,fcc
BCC_A2
FCC_A1 RESTORED
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
NI
FCC_A1
KAPPA
LAVES_PHASE_C14
NI3TI
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270
(1986); CR-FE'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: app
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE7/: mobfe2
Current database: Steels/Fe-Alloys Mobility
v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys cr fe ni
CR
DEFINED
APP: rej-ph /all
BCC_A2
LIQUID:L REJECTED
APP: res-ph bcc,fcc
BCC_A2
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
FE
NI
FCC_A1
HCP_A3
FCC_A1
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni'
'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc
Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni
diffusion bcc Cr-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: @@
APP: @@ GOTO DICTRA MODULE TO SETUP THE SIMULATION
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ SET GLOBAL CONDITIONS
DIC> @@
DIC> set-cond glob T 0 1373; * N
DIC>
DIC> @@
DIC> @@ ENTER TWO REGIONS, ONE FOR EACH PHASE
DIC> @@
DIC> enter-region alfa
DIC> enter-region gamma
ATTACH TO REGION NAMED /ALFA/:
ATTACHED TO THE RIGHT OF ALFA /YES/:
DIC> @@
DIC> @@ ENTER GRID SIZE AND SPACINGS
DIC> @@
DIC> enter-grid alfa 93.45E-6 geo 40 0.8
DIC> enter-grid gamma 500.0E-6 geo 80 1.05
DIC>
DIC> @@
DIC> @@ SPECIFY WHICH PHASE GOES INTO WHICH REGION
DIC> @@
DIC> enter-phase act alfa matrix bcc
DIC> enter-phase act gamma matrix fcc
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITIONS IN THE PHASES
DIC> @@ N.B. DO NOT PUT 0%NI IN PHASE BCC, USE SOME SMALL VALUE INSTEAD
DIC> @@
DIC> enter-composition
REGION NAME : /ALFA/: alfa
PHASE NAME: /BCC_A2/: bcc
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-f
PROFILE FOR /CR/: cr lin .38 .38
PROFILE FOR /NI/: ni lin 1e-5 1e-5
DIC>
DIC> enter-composition
REGION NAME : /GAMMA/: gamma
PHASE NAME: /FCC_A1/: fcc
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-f
PROFILE FOR /CR/: cr lin .27 .27
PROFILE FOR /NI/: ni lin .28 .28
DIC>
DIC> @@
DIC> @@ SPECIFY SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 36E5
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /360000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> SAVE exb5 Y
DIC>
DIC> set-inter
--OK--DIC>
exb5-run
MACRO exb5\run.DCMDIC>
DIC>
DIC> @@ exb5_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE b5
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER DICTRA MONITOR AND READ THE SETUP FROM FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb5
OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> simulate
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
4
GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES:
9
EQUILIBRIUM CALCULATIONS
*** ERROR 1611 IN QTHISS
*** TOO MANY ITERATIONS
Give the command INFO TROUBLE for help
DONE
6 OUT OF
9
*** ERROR 1611 IN QTHISS
*** TOO MANY ITERATIONS
Give the command INFO TROUBLE for help
DONE
9 OUT OF
9
try
2 failed
try
3 failed
DETERMINED ACTIVITIES ACR(NI) 2.00457405352E-04
try
1
failed
UNABLE TO OBTAIN GOOD STARTING VALUE USING THE OLD SCHEME
USE NEW SCHEME /YES/:
Trying new scheme
GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES:
18
EQUILIBRIUM CALCULATIONS
04
Automatic start values
Old start values kept
Automatic start values
Old start values kept
Automatic start values
U-FRACTION IN SYSTEM:
DONE
1 OUT OF
will be set
will be set
will be set
CR = .305280432605602 FE = .471672082221691
NI = .223047485172707
TOTAL SIZE OF SYSTEM: 5.9345E-04 [m]
U-FRACTION IN SYSTEM: CR = .305280432605602 FE = .471672082221691
NI = .223047485172707
TOTAL SIZE OF SYSTEM: 5.9345E-04 [m]
13 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: ALFA
1 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: GAMMA
0.106136983530096
0.106150062854856
0.106103203276532
8.458791749426496E-002
002
4.499519033155664E-002
2.528136911225624E-002
1.196170289740929E-003
004
2.224111111030204E-005
4.500545505034420E-006
2.214525007523396E-008
011
2.591624659919232E-015
1.159628751007539E-008
2.700321779891248E-022
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.27003218E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.27803281
AND -0.27803281
POSITION OF INTERFACE ALFA / GAMMA IS
0.93422197E-04
U-FRACTION IN SYSTEM: CR = .305282651467081 FE = .47167522036077
NI = .223042128172149
TOTAL SIZE OF SYSTEM: 5.9345E-04 [m]
6
8
18
GRIDPOINT(S) REMOVED FROM CELL #1
GRIDPOINT(S) REMOVED FROM CELL #1
7.268921933966221E1.970625768439523E1.596263972994138E-
REGION: ALFA
REGION: GAMMA
CPU time used in timestep
1 seconds
4 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: ALFA
7.049309196277842E-004
7.050719130692013E-004
7.045328946069252E-004
9.080136498675171E-005
5.652947025108335E005
9.091094382616951E-006
9.353712426062240E-010
1.702056250928643E-010
3.097406201361293E010
1.226936705809184E-010
1.038469404964575E-010
1.053346045678465E-010
1.062853484583819E010
1.035861573534911E-010
1.023782009274843E-010
1.029498463007279E-010
1.024216274831730E010
1.048185113202060E-010
output ignored...
... output resumed
TOTAL SIZE OF SYSTEM:
7
NI = .223117419874602
5.9345E-04 [m]
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: GAMMA
CPU time used in timestep
2 seconds
8.171295660509001E-010
8.168471576592743E-010
7.755351865192994E-010
1.398860646461774E-012
1.220625245325760E012
9.073877157361427E-013
4.199096919088357E-013
9.672955022077600E-013
1.476839819722347E015
8.734778778083146E-021
TIME =
3384108.1
DT =
360000.00
SUM OF SQUARES = 0.87347788E-20
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.52341539E-11 AND -0.52341539E-11
POSITION OF INTERFACE ALFA / GAMMA IS
0.88558359E-04
U-FRACTION IN SYSTEM: CR = .305309528578132 FE = .471572960994874
NI = .223117510426995
TOTAL SIZE OF SYSTEM: 5.9345E-04 [m]
6
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: GAMMA
CPU time used in timestep
2 seconds
5.854279026172617E-011
5.855086696652707E-011
5.420389057329046E-011
2.553044102880157E-013
2.360884395957356E013
1.999059139758058E-013
1.366015832688479E-013
2.200408254797064E-013
5.381151624427943E-
012
014
014
012
013
014
1.442051570399685E-012
5.376639659022812E-012
6.414973480054908E-014
5.966224959789681E-012
9.287593806566650E-014
9.173762161443951E-014
1.094469981250754E-013
1.330740273223822E-012
5.374087301676602E-012
9.205326497461081E-013
5.925912990172716E-012
1.186401789874109E-013
ERROR RETURN FROM NS01A BECAUSE
1.949830035367267E-013
1.689861349391349E-013
1.483172189203149E-013
5.889663490577106E-012
1.072003961884869E-013
5.861610062230590E-012
8.529228999477698E7.435148617746459E1.273442952915936E2.153487904221881E9.902133179601092E-
6 CALLS OF CALFUN FAILED TO IMPROVE THE RESIDUALS
*** ERROR 1890 IN DCNS01
*** ERROR RETURN FROM NS01A
5.854279026142006E-011
5.854279146485342E-011
5.854213129724272E-011
5.854279026131726E-011
017
1.448213893676626E-017
7.293715461412117E-023
7.293760245336630E-023
TIME =
3600000.0
DT =
215891.85
SUM OF SQUARES = 0.32350051E-23
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.47777233E-11 AND -0.47777233E-11
POSITION OF INTERFACE ALFA / GAMMA IS
0.87526888E-04
U-FRACTION IN SYSTEM: CR = .305309892556834 FE = .47157202262308
NI = .223118084820086
TOTAL SIZE OF SYSTEM: 5.9345E-04 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-06
0.73315652E-04
0.21974695E-03
0.51260956E-03
0.10983348E-02
0.22697852E-02
0.46126861E-02
0.89023013E-02
0.16890895E-01
0.25822078E-01
0.33114019E-01
0.47697902E-01
0.76865667E-01
0.13520120
0.20569816
0.34669209
0.50480028
0.82101666
1.0430852
1.4872222
2.3754963
3.7765573
6.1843052
10.999801
14.091011
20.273432
32.638273
48.195808
56.717021
73.759448
107.84430
176.01401
275.69604
441.99832
720.56092
1277.6861
2261.6988
4229.7241
8165.7746
16037.876
31782.078
63270.483
126247.29
252200.91
504108.15
864108.15
1224108.1
1584108.1
1944108.1
2304108.1
2664108.1
3024108.1
3384108.1
3600000.0
1.448213891703216E-
exb5-plot
MACRO exb5\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb5\plot.DCM"DIC>
DIC>
DIC> @@ exb5_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b5
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 3.60000E+06
DIC> read exb5
OK
DIC>
DIC> @@
DIC> @@ ENTER THE POST PROCESSOR, PLOT SOME QUANTITIES AND COMPARE WITH EXPERIMENTS
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: set-title Diffusion Couple A
POST-1:
POST-1: @@
POST-1: @@ WE ARE INTERESTED IN THE POSITION OF THE UPPER INTERFACE OF REGION ALFA
POST-1: @@
POST-1: s-p-c interf alfa upper
POST-1:
POST-1: @@
POST-1: @@ l0 IS THE INITIAL THICKNESS USED FOR NORMALIZATION
POST-1: @@
POST-1: enter func l0=186.9e-6;
POST-1: enter func aa=2*poi(alfa,u)/l0;
POST-1: enter func ab=time/l0**2;
POST-1: s-i-v time
POST-1:
POST-1: s-d-a x ab
POST-1: s-s-s x n 1e10 1e15
POST-1: s-ax-ty x log
POST-1:
POST-1: s-d-a y aa
POST-1: s-s-s y n 0 2
POST-1:
POST-1: app y exb5.exp
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: 7
POST-1:
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ LET US PLOT CONCENTRATION PROFILES FOR SOME DIFFERENT ANNEALING TIMES
POST-1: @@
POST-1: s-d-a x dist glo
INFO: Distance is set as independent variable
POST-1: s-ax-ty x lin
POST-1: s-s-s x n 0 350e-6
POST-1:
POST-1: s-d-a y w(*)
POST-1: s-s-s y n 0 1
POST-1:
POST-1: s-p-c time 3600
POST-1:
POST-1: app y exb5.exp 0; 1
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: s-p-c time 36000
POST-1: app y exb5.exp 0; 2
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: s-p-c time 360000
POST-1: app y exb5.exp 0; 3
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: s-p-c time 3600000
POST-1: app y exb5.exp 0; 4
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ FINALLY PLOT SOME DIFFERENT DIFFUSION PATHS.
POST-1: @@
POST-1: s-d-a x w(ni)
POST-1: s-s-s x n .00 .40
POST-1:
POST-1: s-d-a y w(cr)
POST-1: s-s-s y n .20 .45
POST-1:
POST-1: s-i-v dist glob
POST-1:
POST-1: s-p-c time 3600,36000,360000,3600000
POST-1:
POST-1: app y exb5.exp 0; 5 6
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
exb6-setup
MACRO exb6\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb6\setup.DCM"SYS: @@
SYS: @@ Moving boundary problems.
SYS: @@ This example illustrates the effect of microsegregation
SYS: @@ of phosphorus during peritectic solidification in steel.
SYS: @@
SYS:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE.
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@ LET US USE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7:
TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK
TDB_TCFE7: def-sys fe c si mn p
FE
C
MN
P DEFINED
TDB_TCFE7:
TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR
TDB_TCFE7: rej ph /all
GAS:G
LIQUID:L
FCC_A1
HCP_A3
RED_P
WHITE_P
CEMENTITE
M23C6
M5C2
KSI_CARBIDE
KAPPA
FE4N_LP1
LAVES_PHASE_C14
M3SI
CR3SI
FE2SI
M5SI3
AL4C3
SIC
FEP
M2P
M3P REJECTED
TDB_TCFE7: res ph fcc liq bcc
FCC_A1
LIQUID:L
RESTORED
TDB_TCFE7:
TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
WITH
SI
THE PHASES THAT IS NOT NEEDED
BCC_A2
DIAMOND_FCC_A4
GRAPHITE
M7C3
A1_KAPPA
FECN_CHI
G_PHASE
MSI
FE8SI2C
CU3P
BCC_A2
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo-C, C-Mn'
'J. Grobner, H.L. Lukas and F. Aldinger, Calphad, 20 (1996), 247-254; Si-C
and Al-Si-C'
'W. Huang, Calphad, 13 (1989), 243-252; TRITA-MAC 388 (rev 1989); FE-MN'
'J.-H. Shim, C.-S. Oh and D.N. Lee, J. Korean Inst. Met. Mater., 34 (1996),
1385-1393; Fe-P'
'J. Lacaze and B. Sundman, Metall. Mater. Trans. A, 22A (1991), 2211-2223;
Fe-Si and Fe-Si-C'
'J. Miettinen and B. Hallstedt, Calphad, 22 (1998), 231-256; Fe-Si and Fe
-Si-C'
'J.E. Tibballs, SI Norway (1991) Rep. 890221-5; Mn-Si'
'P. Franke, estimated parameter within SGTE, 2008; Fe-Mn-C'
'J.-H. Shim, H.-J. Chung and D.N. Lee, Z. fur Metallkde., (1999); Fe-C-P'
'B. Sundman, 1999, revision of the liquid Fe-Si-C description'
'NPL, unpublished work (1989); C-Mn-Si'
'A. Forsberg and J. Agren, J. Phase Equil., 14 (1993), 354-363; Fe-Mn-Si'
'B. Uhrenius (1993-1994), International journal of refractory metals and
hard mater, Vol. 12, pp. 121-127; Molar volumes'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'W. Huang, Metall. Trans. A, 21A (1990), 2115-2123; TRITA-MAC 411 (Rev
1989); C-FE-MN'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE AND APPEND DATA
TDB_TCFE7: @@
TDB_TCFE7: app
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Steels/Fe-Alloys
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
v8.0
v7.0
v6.2
v5.0
v4.1
v3.1
v2.1
v1.0
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE7/: mobfe2
Current database: Steels/Fe-Alloys Mobility
v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe c si mn p
FE
C
MN
P DEFINED
APP: rej ph /all
BCC_A2
CEMENTITE
FE4N_LP1
HCP_A3
REJECTED
APP: res ph fcc liq bcc
FCC_A1
LIQUID:L
RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
SI
FCC_A1
LIQUID:L
BCC_A2
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'Bae et al.: Z. Metallkunde 91(2000)672-674; fcc Fe-Mn
Mn-Ni'
'V. V. Mural and P. L. Gruzin, Phys. Met. Metallogr. (English Transl.) 17
(5) (1964)154.; Impurity diff of P in fcc Fe.'
'D. Bergner et al., Defect and Diffusion Forum 66-69(1989)409. Impurity
diffusion of Si in fcc Fe.'
'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr
-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
'B. Jonsson: Unpublished research bcc Fe-Si 1994'
'Assessed from data presented in Landholt-Bornstein, Vol. 26, ed. H.
Mehrer, springer (1990); Impurity diff of Mn in bcc Fe.'
'Assessed from data presented in Landholt-Bornstein, Vol. 26, ed. H.
Mehrer, springer (1990); Impurity diff of P in bcc Fe.'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T.
DIC> @@
DIC> @@ LET US LOWER THE TEMPERATURE WITH A RATE OF 0.2 K/S
DIC> @@
DIC> set-cond glob T 0 1780-0.2*TIME; * N
DIC>
DIC> @@
DIC> @@ ENTER A REGION CALLED smalta
DIC> @@
DIC> enter-region smalta
DIC>
DIC> @@
DIC> @@ ENTER A DOUBLE GEOMETRIC GRID INTO THE REGION.
DIC> @@
DIC> enter-grid
REGION NAME : /SMALTA/: smalta
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 50
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.11
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.9
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /SMALTA/: smalta
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: liq
DIC>
DIC> @@
DIC> @@ ENTER INACTIVE PHASES INTO REGION, BOTH PHASES ON THE SAME SIDE OF
DIC> @@ THE LIQUID REGION IN ORDER TO GET A PERITECTIC REACTION.
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: no
PHASE NAME: /NONE/: fcc#1
DEPENDENT COMPONENT ? /SI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: no
PHASE NAME: /NONE/: bcc#1
DEPENDENT COMPONENT ? /SI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@
DIC> @@ ENTER START COMPOSITION FOR THE LIQUID
DIC> @@
DIC> enter-composition
REGION NAME : /SMALTA/: smalta
PHASE NAME: /LIQUID/: liq
DEPENDENT COMPONENT ? /SI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: c lin 0.4 0.4
PROFILE FOR /MN/: si lin 0.7 0.7
PROFILE FOR /P/: mn lin 0.8 0.8
PROFILE FOR /SI/: p lin 0.03 0.03
DIC>
DIC> @@
DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 3000
AUTOMATIC TIMESTEP CONTROL /YES/: yes
MAX TIMESTEP DURING INTEGRATION /300/: 15
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ CHECK INTERFACE POSSITION
DIC> @@
DIC> @@ THIS IN ORDER TO MAKE SURE THAT THE LIQUID REGION DOESN'T SHRINK
DIC> @@ TO MUCH DURING A TIMESTEP. THE TIMESTEP WILL NOW IN ADDITION BE
DIC> @@ CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION.
DIC> @@
DIC> s-s-c
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/: yes
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/:
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA
DIC> @@
DIC> save exb6 Y
DIC>
DIC> set-inter
--OK--DIC>
exb6-run
MACRO exb6\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb6\run.DCM"DIC>
DIC>
DIC> @@ exb6_run.DCM
DIC>
DIC> @@
DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb6
OK
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.29321190560921E-04
SI = .0136208267339645
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.29321190560921E-04
SI = .0136208267339645
TOTAL SIZE OF SYSTEM: 1E-04 [m]
4 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: SMALTA
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.29321190560921E-04
SI = .0136208267339645
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.92411922E-04 DT = 0.92311922E-04 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.29321190560921E-04
SI = .0136208267339645
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.27703577E-03 DT = 0.18462384E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.29321190560921E-04
SI = .0136208267339645
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.64628345E-03 DT = 0.36924769E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.29321190560921E-04
SI = .0136208267339645
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.13847788E-02 DT = 0.73849537E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.29321190560921E-04
SI = .0136208267339645
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.28617696E-02 DT = 0.14769907E-02 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.29321190560921E-04
SI = .0136208267339645
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.58157511E-02 DT = 0.29539815E-02 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.2932119056092E-04
SI = .0136208267339645
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.11723714E-01 DT = 0.59079630E-02 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.2932119056092E-04
SI = .0136208267339645
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.23539640E-01 DT = 0.11815926E-01 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.29321190560921E-04
SI = .0136208267339645
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.47171492E-01 DT = 0.23631852E-01 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.2932119056092E-04
SI = .0136208267339645
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
0
seconds
TIME = 0.94435196E-01 DT = 0.47263704E-01 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.2932119056092E-04
TOTAL SIZE OF SYSTEM:
SI = .0136208267339645
1E-04 [m]
CPU time used in timestep
TIME = 0.18896260
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
CPU time used in timestep
TIME = 0.37801742
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
0
... output resumed
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
seconds
DT = 0.37810963
SUM OF SQUARES =
0.0000000
C = .0182001993244348 FE = .959691496499054
MN = .00795815625198538 P = 5.2932119056092E-04
output ignored...
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
seconds
DT = 0.18905482
SUM OF SQUARES =
0.0000000
C = .0182001993244348 FE = .959691496499054
MN = .00795815625198537 P = 5.29321190560921E-04
SI = .0136208267339645
1E-04 [m]
CPU time used in timestep
TIME = 0.75612705
U-FRACTION IN SYSTEM:
seconds
DT = 0.94527408E-01 SUM OF SQUARES =
0.0000000
C = .0182001993244348 FE = .959691496499054
MN = .00795815625198536 P = 5.2932119056092E-04
SI = .0136208267339645
1E-04 [m]
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
854.70672
869.70672
884.70672
899.70672
914.70672
929.70672
944.70672
959.70672
974.70672
989.70672
1004.7067
1019.7067
1034.7067
1049.7067
1064.7067
1079.7067
1094.7067
1109.7067
1124.7067
1139.7067
1154.7067
1169.7067
1184.7067
1199.7067
1214.7067
1229.7067
1244.7067
1259.7067
1274.7067
1289.7067
1304.7067
1319.7067
1334.7067
1349.7067
1364.7067
1379.7067
1394.7067
1409.7067
1424.7067
1439.7067
1454.7067
1469.7067
1484.7067
1499.7067
1514.7067
1529.7067
1544.7067
1559.7067
1574.7067
1589.7067
1604.7067
1619.7067
1634.7067
1649.7067
1664.7067
1679.7067
1694.7067
1709.7067
1724.7067
1739.7067
1754.7067
1769.7067
1784.7067
1799.7067
1814.7067
1829.7067
1844.7067
1859.7067
1874.7067
1889.7067
1904.7067
1919.7067
1934.7067
1949.7067
1964.7067
1979.7067
1994.7067
2009.7067
2024.7067
2039.7067
2054.7067
2069.7067
2084.7067
2099.7067
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC> set-inter
--OK--DIC>
2114.7067
2129.7067
2144.7067
2159.7067
2174.7067
2189.7067
2204.7067
2219.7067
2234.7067
2249.7067
2264.7067
2279.7067
2294.7067
2309.7067
2324.7067
2339.7067
2354.7067
2369.7067
2384.7067
2399.7067
2414.7067
2429.7067
2444.7067
2459.7067
2474.7067
2489.7067
2504.7067
2519.7067
2534.7067
2549.7067
2564.7067
2579.7067
2594.7067
2609.7067
2624.7067
2639.7067
2654.7067
2669.7067
2684.7067
2699.7067
2714.7067
2729.7067
2744.7067
2759.7067
2774.7067
2789.7067
2804.7067
2819.7067
2834.7067
2849.7067
2864.7067
2879.7067
2894.7067
2909.7067
2924.7067
2939.7067
2954.7067
2969.7067
2984.7067
2999.7067
3000.0000
exb6-plot
MACRO exb6\plot.DCMDIC>
DIC>
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 3.00000E+03
DIC> read exb6
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
set-title Fe-0.4%C-0.7%Si-0.8%Mn-0.03%P
s-d-a y t-c
s-d-a x time
Time is set as independent variable
s-p-c interf first
plot
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ PLOT FRACTION SOLID
POST-1: @@
POST-1: enter func fs=1-ivv(liq);
POST-1: s-d-a x fs
POST-1: s-s-s x n 0 1
POST-1: s-ax-te x n Fraction Solid
POST-1:
POST-1: s-d-a y t-c
POST-1:
POST-1:
POST-1: s-p-c interf smalta lower
POST-1:
POST-1:
POST-1: plot
POST-1:
POST-1:Hit RETURN to continue
POST-1: s-d-a y ivv(bcc)
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1:
POST-1: plot
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: s-d-a y ivv(fcc)
POST-1: plot
POST-1:
POST-1:Hit RETURN to continue
POST-1: ent table solid
Variable(s) ivv(bcc) ivv(fcc)
POST-1:
POST-1: s-d-a y solid
COLUMN NUMBER /*/:
POST-1:
POST-1: plot
POST-1:
POST-1:Hit RETURN to continue
POST-1: s-d-a y w-p c
POST-1: s-d-a x dis gl
INFO: Distance is set as independent variable
POST-1: s-p-c time 120,135,400,700,1500,3000
POST-1:
POST-1: plot
POST-1:
POST-1:Hit RETURN to continue
POST-1: s-d-a y w-p mn
POST-1: plot
POST-1:
POST-1:Hit RETURN to continue
POST-1: s-d-a y w-p si
POST-1: plot
POST-1:
POST-1:Hit RETURN to continue
POST-1: s-d-a y w-p p
POST-1: plot
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: ent function mnn
FUNCTION: w(mn)/0.008
&
POST-1: ent function sin
FUNCTION: w(si)/0.007
&
POST-1: ent function pn
FUNCTION: w(p)/0.0003
&
POST-1: ent function cn
FUNCTION: w(c)/0.004
&
POST-1: ent tabel segregation
Variable(s) mnn sin pn cn
POST-1:
POST-1:
POST-1: s-d-a y segregation
COLUMN NUMBER /*/:
POST-1:
POST-1:
POST-1: s-p-c time 610
POST-1: plot
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: s-p-c time 800
POST-1: plot
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: s-p-c time 1500
POST-1: plot
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: s-p-c time 3000
POST-1: plot
POST-1:
POST-1:Hit RETURN to continue
POST-1: set-inter
--OK--POST-1:
exb7-setup
MACRO exb7\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb7\setup.DCM"SYS: @@
SYS: @@ Moving boundary problems.
SYS: @@ This example shows how to enter dispersed phases on either side
SYS: @@ of a phase interface. The particular case shows how
SYS: @@ the kinetics of a ferrite to austenite transformation is
SYS: @@ affected by simultaneous precipitation of niobium carbide.
SYS: @@ The transformation is caused by carburization.
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ LET US USE A TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK
TDB_TCFE7: @@
TDB_TCFE7: def-species fe c nb
FE
C
DEFINED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR
TDB_TCFE7: @@
TDB_TCFE7: rej ph * all
GAS:G
LIQUID:L
FCC_A1
HCP_A3
GRAPHITE
CEMENTITE
M7C3
M6C
KSI_CARBIDE
A1_KAPPA
Z_PHASE
FE4N_LP1
SIGMA
MU_PHASE
G_PHASE
CR3SI
REJECTED
TDB_TCFE7: res ph fcc bcc grap
FCC_A1
BCC_A2
RESTORED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_TCFE7: @@
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
WITH
NB
THE PHASES THAT IS NOT NEEDED
BCC_A2
DIAMOND_FCC_A4
M23C6
M5C2
KAPPA
FECN_CHI
LAVES_PHASE_C14
NBNI3
GRAPHITE
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo-C, C-Mn'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'B.-J. Lee, estimated parameter 1999'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'S. Canderyd, Report IM-2005-109, Stockholm, Sweden; Fe-Nb-C'
'W. Huang, Zeitschrift fur Metallkunde, Vol. 6 (1990), pp. 397-404; Fe-Nb-C'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
'B. Uhrenius (1993-1994), International journal of refractory metals and
hard mater, Vol. 12, pp. 121-127; Molar volumes'
'B.-J. Lee, Metall. Mater. Trans. A, 32A, 2423-39(2001); Fe-Nb'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ NOW APPEND A SSUB DATABASE FROM WHICH WE READ THE THERMODYNAMIC
TDB_TCFE7: @@ DESCRIPTION OF NIOBIUM CARBIDE
TDB_TCFE7: @@
TDB_TCFE7:
TDB_TCFE7: app SSUB5
Current database: SGTE Substances Database v5.1
VA DEFINED
APP: def-sys fe c nb
FE
DEFINED
APP: rej ph *
GAS:G
DIAMOND
C0_98NB1_S
C1NB2_S
FE_S2
FE2NB1_S
REJECTED
APP: rest ph c1nb1_s
C1NB1_S RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
C
NB
GRAPHITE
C0_749NB1_S
C1FE3_S
C60_S
FE_S3
NB_S
GRAPHITE_L
C0_877NB1_S
C1NB1_S
FE_S
FE_L
NB_L
List of references for assessed data
C1NB1 I. BARIN 3rd. Edition
C1NB1 NbC
Data taken from BARIN 3rd. Ed. (1995)
-OKAPP:
APP:
APP: @@
APP: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
APP: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA
APP: @@
APP: app mobfe2
Current database: Steels/Fe-Alloys Mobility v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe c nb
FE
DEFINED
APP: rej ph * all
BCC_A2
FE4N_LP1
REJECTED
APP: res ph fcc bcc
FCC_A1
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
C
NB
CEMENTITE
HCP_A3
FCC_A1
LIQUID:L
BCC_A2
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'J. Geise and Ch. Herzig, Z. Metallkd. 76(1985)622.; Impurity diffusion of
Nb in fcc Fe.'
'Assessed from data presented by B. B. Yu and R. F. Davis J. Phys. Chem.
Solids 40(1979)997.; C Self-Diff in NbC.'
'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr
-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
'R. F. Peart, Acta Metall. 10(1962)519.; Impurity diffusion of Fe in bcc
Nb.'
'Assessed from data presented in Landholt-Bornstein, Vol. 26, ed. H.
Mehrer, springer (1990); Impurity diff of Nb in bcc Fe.'
'R. E. Einziger et al., Phys. Rev. B 17(1978)440.; self-diffusion of Nb in
bcc Nb.'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: go d-m
NO TIME STEP DEFINED
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING C1NB1_S AS A DIFFUSION NONE PHASE
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T.
DIC> @@
DIC> set-cond glob T 0 1073.15; * N
DIC>
DIC> @@
DIC> @@ ENTER REGIONS ferr AND aus
DIC> @@
DIC> enter-region
REGION NAME : ferr
DIC>
DIC> ent-reg
REGION NAME : aus
ATTACH TO REGION NAMED /FERR/: ferr
ATTACHED TO THE RIGHT OF FERR /YES/: n
DIC>
DIC> @@
DIC> @@ ENTER GRIDS INTO REGIONS
DIC> @@
DIC> enter-grid
REGION NAME : /AUS/: ferr
WIDTH OF REGION /1/: 2.499999e-3
TYPE /LINEAR/: linear
NUMBER OF POINTS /50/: 50
DIC>
DIC>
DIC> enter-grid
REGION NAME : /AUS/: aus
WIDTH OF REGION /1/: 1e-9
TYPE /LINEAR/: linear
NUMBER OF POINTS /50/: 5
DIC>
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGIONS
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUS/: ferr
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: bcc
DIC>
DIC>
DIC> en-ph
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: ferr
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: c1nb1_s
DIC>
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC>
DIC> en-ph
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: c1nb1_s
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITIONS OF THE PHASES
DIC> @@
DIC> enter-composition
REGION NAME : /AUS/: ferr
PHASE NAME: /BCC_A2/: bcc
DEPENDENT COMPONENT ? /NB/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 1e-3
VALUE OF LAST POINT : /1E-3/: 1e-3
PROFILE FOR /NB/: nb
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 0.28
VALUE OF LAST POINT : /0.28/: 0.28
DIC>
DIC> en-co
REGION NAME : /AUS/: ferr
PHASE NAME: /BCC_A2/: c1nb1_s
USE EQUILIBRIUM VALUE /Y/: y
DIC>
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /NB/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 0.89
VALUE OF LAST POINT : /0.89/: 0.89
PROFILE FOR /NB/: nb
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 0.28
VALUE OF LAST POINT : /0.28/: 0.28
DIC>
DIC> en-co
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: c1nb1_s
USE EQUILIBRIUM VALUE /Y/: y
DIC>
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 32400
AUTOMATIC TIMESTEP CONTROL /YES/: y
MAX TIMESTEP DURING INTEGRATION /3240/: 3240
INITIAL TIMESTEP : /1E-07/: 1e-8
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: 1e-15
DIC>
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ SET THE REFERENCE PHASE OF CARBON AS GRAPHITE
DIC> @@
DIC> s-ref
Component: c
Reference state: grap
Temperature /*/: *
Pressure /100000/: 1e5
DIC>
DIC> @@
DIC> @@ SET THE BOUNDARY CONDITION
DIC> @@ THE CARBON ACTIVITY IS ONE ON THE BOUNDARY
DIC> @@
DIC> s-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: bound
BOUNDARY /LOWER/: low
CONDITION TYPE /CLOSED_SYSTEM/: mix
Dependent substitutional element:FE
Dependent interstitial element:VA
TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: act
LOW TIME LIMIT /0/: 0
ACR(C)(TIME)= 1.0;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
TYPE OF CONDITION FOR COMPONENT NB /ZERO_FLUX/: zero
DIC>
DIC> @@
DIC> @@ ENABLE THE HOMOGENIZATION MODEL
DIC> @@
DIC> ho y y
HOMOGENIZATION ENABLED
DIC>
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA
DIC> @@
DIC> save exb7 Y
DIC>
DIC>
DIC> set-inter
--OK--DIC>
exb7-run
MACRO exb7\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb7\run.DCM"DIC> @@
DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING C1NB1_S AS A DIFFUSION NONE PHASE
DIC> read exb7
OK
DIC> sim yes
STARTING SIMULATION USING HOMOGENIZATION MODEL
---------------------------------------------WARNING: ELEMENT C
IS BOTH INTERSTITIAL AND SUBSTITUTIONAL
AND RESULTS MUST BE INTERPRETED WITH CARE
INFO: PHASE WITH LIMITED SOLUBILITY OF ELEMENT(S) EXIST
A FALLBACK PHASE ZZDICTRA_GHOST WILL BE DEFINED
ALONG WITH THE FOLLOWING PARAMETERS:
G(ZZDICTRA_GHOST,C;0)-H298(GRAPHITE,C;0)
G(ZZDICTRA_GHOST,FE;0)-H298(BCC_A2,FE;0)
G(ZZDICTRA_GHOST,NB;0)-H298(BCC_A2,NB;0)
L(ZZDICTRA_GHOST,C,FE;0)
L(ZZDICTRA_GHOST,C,NB;0)
L(ZZDICTRA_GHOST,FE,NB;0)
Saving results
-----------------------------------------------WARNING:C1NB1_S HAS NO VOLUME FRACTION, CREATING ONE
WARNING:C1NB1_S HAS NO VOLUME FRACTION, CREATING ONE
Starting time-step t0= 0.000000000000000E+000 dt= 1.000000000000000E-008
Stage 1
Evaluating Jacobian
Iteration #
1 sum residual **2:
761484143.600867
Iteration #
2 sum residual **2:
272521611.463422
Error
408
Reducing dt to
5.000000000000000E-009
Stage 1
Evaluating Jacobian
Iteration #
1 sum residual **2:
86854830.3872002
Iteration #
2 sum residual **2:
15186837.0125629
Iteration #
3 sum residual **2:
2475650.44865618
Iteration #
4 sum residual **2:
367734.699643220
Iteration #
5 sum residual **2:
50581.0313455482
Iteration #
6 sum residual **2:
6556.96729626404
Iteration #
7 sum residual **2:
810.833950019362
Iteration #
8 sum residual **2:
96.2585474856122
Iteration #
9 sum residual **2:
10.6884134877324
Iteration #
10 sum residual **2:
0.856089223512080
Stage 2
Iteration #
1 sum residual **2:
48773046.9957205
Iteration #
2 sum residual **2:
10783248.0718347
Iteration #
3 sum residual **2:
2305081.09591607
Iteration #
4 sum residual **2:
466667.450512141
Iteration #
5 sum residual **2:
89929.3498828119
Iteration #
6 sum residual **2:
16641.6780366640
Iteration #
7 sum residual **2:
2978.93480949521
Iteration #
8 sum residual **2:
518.427577464409
Iteration #
9 sum residual **2:
87.8381290592130
Iteration #
10 sum residual **2:
14.2503495043070
Iteration #
11 sum residual **2:
1.96914022533882
Iteration #
12 sum residual **2:
5.583992191911839E-002
Stage 3
Iteration #
1 sum residual **2:
16731304.2175551
Iteration #
2 sum residual **2:
13288152.5208820
Iteration #
3 sum residual **2:
3235386.51283236
Iteration #
4 sum residual **2:
729331.639059452
Iteration #
5 sum residual **2:
154857.572119951
Iteration #
6 sum residual **2:
31164.4466297938
Iteration #
7 sum residual **2:
5987.76393588770
Iteration #
8 sum residual **2:
1104.77306030137
Iteration #
9 sum residual **2:
196.244929947586
Iteration #
10 sum residual **2:
33.3567652771319
Iteration #
11 sum residual **2:
5.15830679686436
Iteration #
12 sum residual **2:
0.502534226921674
Reducing dt to
2.500000000000000E-009
Stage 2
Iteration #
1 sum residual **2:
19124391.1735335
Iteration #
2 sum residual **2:
5418894.49468780
Iteration #
3 sum residual **2:
1462456.75364628
Iteration #
4 sum residual **2:
377052.931823163
Iteration #
5 sum residual **2:
93602.7851390764
Iteration #
6 sum residual **2:
22537.5494076056
Iteration #
7 sum residual **2:
5292.09730315031
Iteration #
8 sum residual **2:
1216.63377785119
Iteration #
9 sum residual **2:
274.444593354382
Iteration #
10 sum residual **2:
60.6514115442645
Iteration #
11 sum residual **2:
12.9463195383948
Iteration #
12 sum residual **2:
2.44996420228756
Iteration #
13 sum residual **2:
0.221490777949307
Stage 3
Iteration #
1 sum residual **2:
11721041.2302707
Iteration #
2 sum residual **2:
3342677.72389746
Iteration #
3 sum residual **2:
914207.559987675
Iteration #
4 sum residual **2:
240832.841336049
Iteration #
5 sum residual **2:
61409.8256782736
Iteration #
6 sum residual **2:
15238.0397451104
Iteration #
7 sum residual **2:
3695.52784862717
Iteration #
8 sum residual **2:
878.355965709476
Iteration #
9 sum residual **2:
204.869790215520
Iteration #
10 sum residual **2:
46.7800782558305
Iteration #
11 sum residual **2:
10.2661960931187
Iteration #
12 sum residual **2:
1.96507907290198
Iteration #
13 sum residual **2:
0.145181242124560
Reducing dt to
1.250000000000000E-009
Stage 2
Iteration #
1 sum residual **2:
6060946.48730088
Iteration #
2 sum residual **2:
2051441.21616307
Iteration #
3 sum residual **2:
653666.750955425
Iteration #
4 sum residual **2:
198902.543204315
Iteration #
5 sum residual **2:
58431.5087447917
Iteration #
6 sum residual **2:
16698.6510204835
Iteration #
7 sum residual **2:
4667.66016351647
Iteration #
8 sum residual **2:
1280.99548020213
Iteration #
9 sum residual **2:
345.743251527409
Iteration #
10 sum residual **2:
91.6910846910978
Iteration #
11 sum residual **2:
23.8078314256144
Iteration #
12 sum residual **2:
5.86482228352070
Iteration #
13 sum residual **2:
1.22626136538328
Stage 3
Iteration #
1 sum residual **2:
4487161.26802159
Iteration #
2 sum residual **2:
1503990.38762600
Iteration #
3 sum residual **2:
478848.625467493
Iteration #
4 sum residual **2:
146482.070971023
Iteration #
5 sum residual **2:
43427.9192383714
Iteration #
6 sum residual **2:
12558.4048158770
Iteration #
7 sum residual **2:
3559.00700255928
Iteration #
8 sum residual **2:
991.267386148905
Iteration #
9 sum residual **2:
271.711725154067
Iteration #
10 sum residual **2:
73.2816642442880
Iteration #
11 sum residual **2:
19.2985750377137
Iteration #
12 sum residual **2:
4.77538245395629
Iteration #
13 sum residual **2:
0.979041667562023
Moles of elements / mole fractions in system:
C
1.164142616651208E-007 /
4.656353640216400E-005
FE
2.495787462274513E-003 /
0.998268499833665
NB
4.212537725487070E-006 /
1.684936629933338E-003
Time-step converged t0= 0.000000000000000E+000 dt=
-----------------------------------------------Saving results
output ignored...
... output resumed
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
31700.699
31706.067
31711.436
31716.805
31722.173
31727.542
31732.911
31738.280
31743.648
31749.017
31754.386
31759.754
31765.123
31770.492
31775.860
31781.229
31786.598
31791.967
31797.335
31802.704
31808.073
31813.441
31818.810
31824.179
31829.548
31834.916
31840.285
31845.654
31851.022
31856.391
31861.760
31867.129
31872.497
31877.866
31883.235
31888.603
31893.972
31899.341
31904.710
31910.078
31915.447
31920.816
31926.184
31931.553
31936.922
31942.290
31947.659
31953.028
31958.397
31963.765
31969.134
31974.503
31979.871
31985.240
31990.609
31995.978
32001.346
32006.715
32012.084
32017.452
32022.821
32028.190
32033.559
32038.927
32044.296
32049.665
32055.033
32060.402
32065.771
32071.139
32076.508
32081.877
32087.246
32092.614
32097.983
32103.352
32108.720
32114.089
32119.458
32124.827
1.250000000000000E-009
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
32130.195
32135.564
32140.933
32146.301
32151.670
32157.039
32162.408
32167.776
32173.145
32178.514
32183.882
32189.251
32194.620
32199.989
32205.357
32210.726
32216.095
32221.463
32226.832
32232.201
32237.569
32242.938
32248.307
32253.676
32259.044
32264.413
32269.782
32275.150
32280.519
32285.888
32291.257
32296.625
32301.994
32307.363
32312.731
32318.100
32323.469
32328.838
32334.206
32339.575
32344.944
32350.312
32355.681
32361.050
32366.418
32371.787
32377.156
32382.525
32387.893
32393.262
KEEPING TIME-RECORD FOR TIME
32398.631
AND FOR TIME
32400.000
WORKSPACE RECLAIMED
-----------------------------------------------INTERPOLATION SCHEME USED THIS FRACTION OF
THE ALLOCATED MEMORY:
0.364642341060312
EFFICIENCY FACTOR:
41.7960039209153
MEMORY FRACTION USAGE PER BRANCH:
0.423233475584851
0.189445263868403
0.404754862607569
-----------------------------------------------DEALLOCATING
-----------------------------------------------DIC>
DIC> set-inter
--OK--DIC>
exb7-plot
MACRO exb7\plot.DCMDIC>
DIC>
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 3.24000E+04
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING C1NB1_S AS A DIFFUSION NONE PHASE
DIC> read exb7
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
@@
@@ PLOT
@@
s-d-a x
Time is
s-d-a y
THE INTERFACE POSITION AS A FUNCTION OF TIME
time
set as independent variable
po-o-in aus upp
plot
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ APPEND DATA FROM A CORRESPONDING SIMULATION
POST-1: @@ WITHOUT NIOBIUM
POST-1: @@
POST-1:
POST-1: app y fec.exp 0
DATASET NUMBER(s): /-1/: 1
POST-1:
POST-1: plot
POST-1:
POST-1: set-inter
--OK--POST-1:
Cell calculations
ν
ν
Σ
J = 0
i
µ − µ ref = const
i
ν
Example c1
’Carbon cannon’ in α/γ Fe-C system, two-cell calculation
T = 673K
FCC
l l l
l
l
l
l
0.4%C
2E-7
Σ
J i= 0
µ − µ = const
i
BCC
l
l
l
2E-7
l l l
l
0.4%C
ref
exc1-setup
MACRO exc1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exc1\setup.DCM"SYS: ?@@
NO SUCH COMMAND, USE HELP
SYS: @@ Cell calculations.
SYS: @@ This example simulates what happens to a FERRITE plate that has
SYS: @@ inherited the carbon content of its parent AUSTENITE. The FERRITE
SYS: @@ plate formed is embedded in an AUSTENITE matrix. This setup
SYS: @@ corresponds to a proposed mechanism for formation of WIDMANNSTÄTTEN
SYS: @@ FERRITE or for the FERRITE phase of the BAINITE structure. It is
SYS: @@ assumed that the phase boundary between FERRITE and AUSTENITE is
SYS: @@ immobile, this is achieved in the simulation by putting the FERRITE
SYS: @@ and the AUSTENITE in two different cells. See also M. Hillert,
SYS: @@ L. Höglund and J. Ågren: Acta Metall. Mater. 41 (1993), pp.1951-1957.
SYS: @@
SYS:
SYS: @@ exc1_setup.DCM
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ USE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7: def-sys fe c
FE
C DEFINED
TDB_TCFE7: rej ph * all
GAS:G
LIQUID:L
BCC_A2
FCC_A1
HCP_A3
DIAMOND_FCC_A4
GRAPHITE
CEMENTITE
M23C6
M7C3
M5C2
KSI_CARBIDE
A1_KAPPA
KAPPA
FE4N_LP1
FECN_CHI
LAVES_PHASE_C14 REJECTED
TDB_TCFE7: res ph fcc,bcc
FCC_A1
BCC_A2 RESTORED
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo-C, C-Mn'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_TCFE7: @@
TDB_TCFE7: app mobfe2
Current database: Steels/Fe-Alloys Mobility v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe c
FE
APP: rej ph * all
BCC_A2
FE4N_LP1
REJECTED
APP: res ph fcc,bcc
FCC_A1
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
C
DEFINED
CEMENTITE
HCP_A3
BCC_A2
FCC_A1
LIQUID:L
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr
-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 673; * N
DIC>
DIC> @@
DIC> @@ IN THE FIRST CELL
DIC> @@
DIC> @@ ENTER REGION aus CONTAINING AUSTENITE
DIC> @@ ENTER A GEOMETRICAL GRID INTO THAT REGION
DIC> @@ ENTER THE INITIAL COMPOSITION INTO THE AUSTENITE
DIC> @@
DIC> enter-region aus
DIC> enter-grid aus 0.2e-6 geo 60 0.9
DIC> enter-phase act aus matrix fcc_a1#1
DIC>
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: fcc_a1#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: c
TYPE /LINEAR/: lin 0.4 0.4
DIC>
DIC> @@
DIC> @@ IN THE SECOND CELL
DIC> @@
DIC> create-new-cell
CELL DISTRIBUTION FACTOR /1/: 1
CREATING NEW CELL, NUMBER: 2
CELL
2 SELECTED
DIC-2>
DIC-2> @@
DIC-2> @@ ENTER REGION fer CONTAINING FERRITE
DIC-2> @@ ENTER A GEOMETRICAL GRID INTO THAT REGION
DIC-2> @@ ENTER THE INITIAL COMPOSITION INTO THE FERRITE
DIC-2> @@
DIC-2> enter-region fer
DIC-2>
DIC-2>
DIC-2>
DIC-2> enter-grid fer 0.2e-6 geo 60 0.9
DIC-2> enter-phase act fer matrix bcc_a2#1
DIC-2>
DIC-2> enter-composition
REGION NAME : /FER/: fer
PHASE NAME: /BCC_A2/: bcc_a2#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: c
TYPE /LINEAR/: lin 0.4 0.4
DIC-2>
DIC-2> @@
DIC-2> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS
DIC-2> @@
DIC-2> set-simulation-time
END TIME FOR INTEGRATION /.1/: 0.5
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /.05/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC-2>
DIC-2>
DIC-2>
DIC-2> @@
DIC-2> @@ USE IMPLICIT ( 1 ) TIME INTEGRATION
DIC-2> @@
DIC-2> set-simulation-cond
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/:
VARY POTENTIALS OR ACTIVITIES : /POTENTIAL/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: 1.0
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC-2> @@
DIC-2> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC-2> @@
DIC-2> save exc1 Y
DIC-2>
DIC-2> set-inter
--OK--DIC-2>
exc1-run
MACRO exc1\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exc1\run.DCM"DIC-2>
DIC-2>
DIC-2> @@ exc1_run.DCM
DIC-2>
DIC-2> @@
DIC-2> @@ READ THE WORKSPACE AND START THE SIMULATION
DIC-2> @@
DIC-2> go d-m
TIME STEP AT TIME 0.00000E+00
DIC-2> read exc1
OK
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = .018673311178274 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
U-FRACTION IN SYSTEM: C = .018673311178274 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
8 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUS
8 GRIDPOINT(S) ADDED
TO
CELL #2
REGION: FER
0.291957646701152
0.291967981400445
4.452942466211993E-003
1.056182702057677E-004
008
1.065737783038557E-012
1.089065137005806E-020
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.10890651E-19
U-FRACTION IN SYSTEM: C = .0186733111782745 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
1 seconds
2 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUS
2 GRIDPOINT(S) ADDED
TO
CELL #2
REGION: FER
1.775713937712862E-002
1.775560509700572E-002
4.709366181155220E-005
013
1.300073830501569E-022
TIME = 0.20000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.13000738E-21
U-FRACTION IN SYSTEM: C = .0186733111782746 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
0 seconds
1.894086503563816E-002
1.893991060303749E-002
1.944845303613433E-004
010
5.954579121981513E-017
TIME = 0.40000000E-06 DT = 0.20000000E-06 SUM OF SQUARES = 0.59545791E-16
U-FRACTION IN SYSTEM: C = .0186733111783517 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
0 seconds
5.753927082142873E-003
5.753534277398328E-003
3.246413492771475E-005
012
3.323190699231719E-019
TIME = 0.80000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.33231907E-18
U-FRACTION IN SYSTEM: C = .0186733111783632 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
1 seconds
2.399446368407586E-003
2.399265821858272E-003
1.150456905549928E-005
013
4.908977804545285E-020
TIME = 0.16000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.49089778E-19
U-FRACTION IN SYSTEM: C = .0186733111783721 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
0 seconds
1.063842800641006E-003
1.063756933705778E-003
4.435487864103911E-006
013
8.811201997630363E-021
TIME = 0.32000000E-05 DT = 0.16000000E-05 SUM OF SQUARES = 0.88112020E-20
U-FRACTION IN SYSTEM: C = .0186733111783796 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
1 seconds
4.911339437171466E-002
4.910923484767850E-002
1.859900765037043E-004
012
2.177652672440453E-019
TIME = 0.64000000E-05 DT = 0.32000000E-05 SUM OF SQUARES = 0.21776527E-18
U-FRACTION IN SYSTEM: C = .0186733111783871 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
2.322711469145240E-002
012
1 seconds
2.322507934526504E-002
8.231128443784615E-005
6.618962836891992E-
1.077539395229455E-007
5.271722008217298E-
1.534294189834762E-006
1.005901573414534E-
1.496974220477658E-007
3.263926335714396E-
4.591210758092814E-008
7.474865402637155E-
1.560185168587246E-008
1.967700843935883E-
5.994581629435414E-007
6.337183967850354E-
2.496155905740787E-007
2.333460413034720E-
1.389253440110022E-013
1.763688281274284E-
8.693440440561522E-013
4.861201623042941E-
5.365119208560109E-012
1.385445859249805E-
output ignored...
... output resumed
1.299717826422561E-009
3.568911242631111E-014
1.042025498564197E-023
TIME = 0.22713652
DT = 0.28246019E-01 SUM OF SQUARES = 0.10420255E-22
U-FRACTION IN SYSTEM: C = .018673311173762 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
1 seconds
9.562458274913929E-005
9.568978669831512E-005
3.073800121062001E-009
022
TIME = 0.25944804
DT = 0.32311520E-01 SUM OF SQUARES = 0.17636883E-21
U-FRACTION IN SYSTEM: C = .0186733111737842 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
1 seconds
1.378748593893599E-004
1.379384518217050E-004
9.515228440263469E-009
021
TIME = 0.29844465
DT = 0.38996609E-01 SUM OF SQUARES = 0.48612016E-20
U-FRACTION IN SYSTEM: C = .0186733111739195 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
1.895926793149763E-004
019
0 seconds
1.896512949647019E-004
2.880981394015494E-008
TIME = 0.34844465
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
DT = 0.50000000E-01 SUM OF SQUARES =
C = .0186733111748497 FE = 1
4E-07 [m]
0.13854459E-18
CPU time used in timestep
1 seconds
2.028903288074087E-005
2.030585721407329E-005
3.172581738387434E-010
024
TIME = 0.39844465
DT = 0.50000000E-01 SUM OF SQUARES = 0.26286177E-23
U-FRACTION IN SYSTEM: C = .0186733111748538 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
1 seconds
1.648563629436657E-006
1.644257878051604E-006
1.077064351971489E-011
TIME = 0.44844465
DT = 0.50000000E-01 SUM OF SQUARES = 0.30190520E-17
U-FRACTION IN SYSTEM: C = .0186733111705096 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
0 seconds
2.590856712305113E-005
2.589294323468353E-005
1.118314403462673E-009
020
TIME = 0.49844465
DT = 0.50000000E-01 SUM OF SQUARES = 0.20421895E-19
U-FRACTION IN SYSTEM: C = .0186733111701528 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
1 seconds
2.695477343886611E-002
2.695216541416953E-002
3.899880468258554E-005
016
8.044771170452259E-022
TIME = 0.50000000
DT = 0.15553540E-02 SUM OF SQUARES = 0.80447712E-21
U-FRACTION IN SYSTEM: C = .0186733111701506 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC>
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-06
0.20000000E-06
0.40000000E-06
0.80000000E-06
0.16000000E-05
0.32000000E-05
0.64000000E-05
0.12800000E-04
0.25600000E-04
0.51200000E-04
0.10240000E-03
0.20480000E-03
0.40960000E-03
0.81920000E-03
0.16384000E-02
0.32768000E-02
0.65536000E-02
0.13107200E-01
0.26214400E-01
0.45260619E-01
0.64862706E-01
0.84942953E-01
0.10563568
0.12709395
0.14953811
0.17329951
0.19889050
0.22713652
0.25944804
0.29844465
0.34844465
0.39844465
0.44844465
0.49844465
0.50000000
9.282241683785022E-015
2.628617663895445E-
3.019052027850228E-018
4.249018170221949E-014
2.042189453913243E-
5.024304569429793E-008
1.905321032688952E-
exc1-plot
MACRO exc1\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exc1\plot.DCM"DIC>
DIC>
DIC> @@ exc1_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE c1
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 5.00000E-01
DIC> read exc1
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: @@ LET US PLOT CARBON CONCENTRATION PROFILES IN FERRITE (CELL-2)
POST-1: @@ WE THEN SET DISTANCE AS X-AXIS (NOT THAT DISTANCE IS SET INDEPENDENT
POST-1: @@ VARIABLE AUTOMATICALLY) AND W-FRACTION CARBON AS Y-AXIS
POST-1: @@ REMEMBER THAT ONE ALSO HAS TO SET PLOT CONDITION
POST-1: @@
POST-1: select-cell
Number /NEXT/: 2
CELL
2 SELECTED
POST-2:
POST-2: @@
POST-2: @@ NOTICE THAT THE PROMPT INCLUDES THE CURRENT CELL NUMBER
POST-2: @@
POST-2: s-d-a x dist glo
INFO: Distance is set as independent variable
POST-2: s-d-a y w(c)
POST-2: s-p-c time .0001 .001 .01 .03 .1 .5
POST-2:
POST-2: @@
POST-2: @@ SET TITLE ON DIAGRAMS
POST-2: @@
POST-2: set-title Figure c1.1
POST-2: plo
POST-2:
POST-2:
POST-2:
POST-2:@?<_hit_return_to_continue_>
POST-2:
POST-2: @@
POST-2: @@ DO THE SAME THING FOR THE AUSTENITE (CELL-1)
POST-2: @@
POST-2: select-cell
Number /NEXT/: 1
CELL
1 SELECTED
POST-1: set-title Figure c1.2
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: @@ PLOT THE AVARAGE WEIGHT FRACTION OF CARBON IN FERRITE VS. SQUARE ROOT
POST-1: @@ OF TIME. START BY DEFINING A "SQUARE-ROOT-OF-TIME" FUNCTION.
POST-1: @@
POST-1: sel-cell 2
CELL
2 SELECTED
POST-2: enter func sqrt=sqrt(time);
POST-2: s-d-a x sqrt
POST-2: s-d-a y iww(2,c)
POST-2: s-i-v time
POST-2: set-title Figure c1.3
POST-2: plo
POST-2:
POST-2:
POST-2:
POST-2:@?<_hit_return_to_continue_>
POST-2:
POST-2: @@
POST-2: @@ DO THE SAME THING FOR THE AUSTENITE
POST-2: @@
POST-2: sel-cell 1
CELL
1 SELECTED
POST-1: s-d-a y iww(1,c)
POST-1: set-title Figure c1.4
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: @@ PLOT HOW THE CONCENTRATION IN FERRITE AT THE FERRITE/AUSTENITE BOUNDARY
POST-1: @@ V.S SQUARE ROOT OF TIME. THE FERRITE/AUSTENITE BOUNDARY IS REPRESENTED
POST-1: @@ BY THE CELL BOUNDARY I.E. THE "LAST" INTERFACE.
POST-1: @@
POST-1: sel-cell 2
CELL
2 SELECTED
POST-2: s-d-a y w(c)
POST-2: s-p-c interface last
POST-2: set-title Figure c1.5
POST-2: plo
POST-2:
POST-2:
POST-2:
POST-2:@?<_hit_return_to_continue_>
POST-2:
POST-2: @@
POST-2: @@ DO THE SAME THING FOR THE AUSTENITE
POST-2: @@
POST-2: sel-cell 1
CELL
1 SELECTED
POST-1: set-title Figure c1.6
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: set-inter
--OK--POST-1:
Example c2
Cementite disolution in an Fe-Cr-C alloy
( Three different particle sizes, Three cell problem )
T = 1183K
FCC
FCC
ν
cem
ν
cem
Σ
J i= 0
µi − µref = const
FCC
cem
exc2-setup
MACRO exc2\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exc2\setup.DCM"SYS: ?@@
NO SUCH COMMAND, USE HELP
SYS: @@ Cell calculations.
SYS: @@ Setup file for calculating the dissolution of CEMENTITE particles
SYS: @@ in an AUSTENITE matrix. This case is identical to exb2 except
SYS: @@ that we here have three different particle sizes. Altogether six
SYS: @@ particles are considered using three different cells. This is in
SYS: @@ order to represent some size distribution among the CEMENTITE
SYS: @@ particles. See also Z.-K. Liu, L. Höglund, B. Jönsson and J. Ågren:
SYS: @@ Metall.Trans.A, v. 22A (1991), pp. 1745-1752.
SYS: @@
SYS:
SYS: @@ exc2_setup.DCM
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ USE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: switch tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7: def-sys fe cr c
FE
CR
DEFINED
TDB_TCFE7: rej ph * all
GAS:G
LIQUID:L
FCC_A1
HCP_A3
GRAPHITE
CEMENTITE
M7C3
M5C2
KSI_CARBIDE
A1_KAPPA
FE4N_LP1
FECN_CHI
CHI_A12
LAVES_PHASE_C14
REJECTED
TDB_TCFE7: res ph fcc cementite
FCC_A1
CEMENTITE RESTORED
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
C
BCC_A2
DIAMOND_FCC_A4
M23C6
M3C2
KAPPA
SIGMA
CR3SI
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'J. Bratberg, Z. Metallkd., Vol 96 (2005), 335-344; Fe-Cr-Mo-C'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270
(1986); CR-FE'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
'P. Villars and L.D. Calvert (1985). Pearsons handbook of crystallographic
data for intermetallic phases. Metals park, Ohio. American Society for
Metals; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_TCFE7: @@
TDB_TCFE7: app mobfe2
Current database: Steels/Fe-Alloys Mobility v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe cr c
FE
CR
DEFINED
APP: rej ph * all
BCC_A2
CEMENTITE
FE4N_LP1
HCP_A3
REJECTED
APP: res ph fcc cementite
FCC_A1
CEMENTITE
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
C
FCC_A1
LIQUID:L
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Z. Metallkunde 85(1994)502-509; C diffusion in fcc Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'This parameter has been estimated'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob t 0 1183; * n
DIC>
DIC> @@-----------------------------------------------------------------------DIC> @@ CELL NUMBER ONE
DIC> @@-----------------------------------------------------------------------DIC>
DIC> @@
DIC> @@ ENTER REGIONS carb AND aus
DIC> @@
DIC> enter-region carb
DIC> enter-region aus
ATTACH TO REGION NAMED /CARB/:
ATTACHED TO THE RIGHT OF CARB /YES/:
DIC> @@
DIC> @@ ENTER GEOMTRICAL GRIDS INTO THE REGIONS
DIC> @@
DIC>
DIC> @@
DIC> @@ THE SIZE OF THE CEMENTITE PARTICLES WE KNOW SINCE WE ASSUME
DIC> @@ IT HAS BEEN MEASSURED.
DIC> @@
DIC> enter-grid
REGION NAME : /CARB/: carb
WIDTH OF REGION /1/: 0.700000e-6
TYPE /LINEAR/: geo
NUMBER OF POINTS /50/: 16
VALUE OF R IN THE GEOMETRICAL SERIE : 0.80
DIC>
DIC> @@
DIC> @@ THE SIZE OF THE FCC REGION WE MAY CALCULATE FROM A MASSBALANCE
DIC> @@ AFTER ESTIMATING THE INITIAL COMPOSITIONS IN THE TWO PHASES.
DIC> @@
DIC> enter-grid
REGION NAME : /AUS/: aus
WIDTH OF REGION /1/: 7.1832993E-7
TYPE /LINEAR/: dou
NUMBER OF POINTS /50/: 20
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.25
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.8
DIC>
DIC> @@
DIC> @@ ENTER PHASES INTO REGIONS
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /CARB/: carb
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: cementite
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> @@
DIC> @@ ENTER INITIAL VALUES FOR THE COMPOSITIONS IN THE PHASES
DIC> @@
DIC> enter-composition carb cementite w-f
PROFILE FOR /CR/: cr lin 0.12423326 0.12423326
DIC>
DIC> enter-composition aus fcc#1 fe w-f
PROFILE FOR /C/: cr lin 4.6615447E-3 4.6615447E-3
PROFILE FOR /CR/: c lin 1.5135207E-4 1.5135207E-4
DIC>
DIC> @@----------------------------------------------------------------DIC> @@ CELL NUMBER TWO
DIC> @@----------------------------------------------------------------DIC> create-new-cell
CELL DISTRIBUTION FACTOR /1/: 2
CREATING NEW CELL, NUMBER: 2
CELL
2 SELECTED
DIC-2>
DIC-2> @@
DIC-2> @@ ENTER REGIONS carb AND aus
DIC-2> @@
DIC-2> enter-region carb
DIC-2> enter-region aus
ATTACH TO REGION NAMED /CARB/:
ATTACHED TO THE RIGHT OF CARB /YES/:
DIC-2> @@
DIC-2> @@ ENTER GRIDS GEOMTRICAL GRIDS INTO THE REGIONS
DIC-2> @@
DIC-2> enter-grid carb 0.300000e-6 geo 16 0.80
DIC-2> enter-grid aus 3.0785568E-7 dou 20 1.25 0.80
DIC-2>
DIC-2> @@
DIC-2> @@ ENTER PHASES INTO REGIONS
DIC-2> @@
DIC-2> enter-phase act carb matrix
cementite
DIC-2> enter-phase act aus
matrix
fcc#1
DIC-2>
DIC-2> @@
DIC-2> @@ ENTER INITIAL VALUES FOR THE COMPOSITIONS IN THE PHASES
DIC-2> @@
DIC-2> enter-composition carb cementite w-f
PROFILE FOR /CR/: cr lin 0.12423326 0.12423326
DIC-2>
DIC-2> enter-composition aus fcc#1 fe w-f
PROFILE FOR /C/: cr lin 4.6615447E-3 4.6615447E-3
PROFILE FOR /CR/: c lin 1.5135207E-4 1.5135207E-4
DIC-2>
DIC-2> @@--------------------------------------------------------------DIC-2> @@ CELL NUMBER THREE
DIC-2> @@--------------------------------------------------------------DIC-2> create-new-cell
CELL DISTRIBUTION FACTOR /1/: 3
CREATING NEW CELL, NUMBER: 3
CELL
3 SELECTED
DIC-3>
DIC-3> @@
DIC-3> @@ ENTER REGIONS carb AND aus
DIC-3> @@
DIC-3> enter-region carb
DIC-3> enter-region aus
ATTACH TO REGION NAMED /CARB/:
ATTACHED TO THE RIGHT OF CARB /YES/:
DIC-3> @@
DIC-3> @@ ENTER GRIDS GEOMTRICAL GRIDS INTO THE REGIONS
DIC-3> @@
DIC-3> enter-grid carb 0.525500e-6 geo 16 0.80
DIC-3> enter-grid aus
5.3926054E-7 dou 20 1.25 0.80
DIC-3>
DIC-3> @@
DIC-3> @@ ENTER PHASES INTO REGIONS
DIC-3> @@
DIC-3> enter-phase act carb matrix
cementite
DIC-3> enter-phase act aus
matrix
fcc#1
DIC-3>
DIC-3> @@
DIC-3> @@ ENTER INITIAL VALUES FOR THE COMPOSITIONS IN THE PHASES
DIC-3> @@
DIC-3> enter-composition carb cementite w-f
PROFILE FOR /CR/: cr lin 0.12423326 0.12423326
DIC-3>
DIC-3> enter-composition aus fcc#1 fe w-f
PROFILE FOR /C/: cr lin 4.6615447E-3 4.6615447E-3
PROFILE FOR /CR/: c lin 1.5135207E-4 1.5135207E-4
DIC-3>
DIC-3> @@--------------------------------------------------------------DIC-3> @@ GLOBAL CONDITIONS
DIC-3> @@--------------------------------------------------------------DIC-3>
DIC-3> @@
DIC-3> @@ SET SPHERICAL GEOMETRY
DIC-3> @@
DIC-3> enter-geo 2
DIC-3>
DIC-3> s-n-l
REQUIRED SUM OF SQUARES IN NS01A : /1E-16/:
MAX NUMBER OF CALLS TO CALFUN OF NS01A : /300/:
STEP USED BY NS01A : /1E-04/:
MAX STEP USED BY NS01A : /1E+12/:
MAX NUMBER OF EQUIDISTANT POINTS IN A REGION
(-1 DISABLES GRIDPOINT REMOVAL)
GRIDPOINT REMOVAL NUMBER : /75/:
FRACTION OF REGION ASSIGNED TO THE INTERFACE : /.05/:
SMALLEST NUMBER USED IN SCALING FLUX EQUATIONS : /1E-16/:
DEFAULT DRIVING FORCE FOR INACTIVE PHASES : /.01/: 1E-3
DIC-3>
DIC-3>
DIC-3>
DIC-3>
DIC-3> @@
DIC-3> @@ SET THE SIMULATION TIME
DIC-3> @@
DIC-3> set-simulation-time
END TIME FOR INTEGRATION /.1/: 10000
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /1000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC-3>
DIC-3> @@
DIC-3> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC-3> @@
DIC-3> save exc2 Y
DIC-3>
DIC-3>
DIC-3> set-inter
--OK--DIC-3>
exc2-run
MACRO exc2\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exc2\run.DCM"DIC-3>
DIC-3>
DIC-3> @@ exc2_run.DCM
DIC-3>
DIC-3> @@
DIC-3> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
DIC-3> @@
DIC-3>
DIC-3> go d-m
TIME STEP AT TIME 0.00000E+00
DIC-3> read exc2
OK
DIC> sim yes
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
4
GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES:
9
EQUILIBRIUM CALCULATIONS
DONE
6 OUT OF
9
90445.3431211
Trying old scheme
4
GENERATING STARTING VALUES FOR CELL # 2 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES:
9
EQUILIBRIUM CALCULATIONS
90445.3431211
Trying old scheme
4
GENERATING STARTING VALUES FOR CELL # 3 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES:
9
EQUILIBRIUM CALCULATIONS
90445.3431211
Automatic start values
Old start values kept
Automatic start values
Old start values kept
Automatic start values
Automatic start values
Old start values kept
Automatic start values
Old start values kept
Automatic start values
Automatic start values
Old start values kept
Automatic start values
Old start values kept
Automatic start values
U-FRACTION IN SYSTEM:
DONE
6 OUT OF
9
DONE
6 OUT OF
9
will be set
will be set
will be set
will be set
will be set
will be set
will be set
will be set
will be set
C = .0406910187346776 CR = .0214382352304608
FE = .978561764900046
TOTAL SIZE OF SYSTEM: 2.90023192349E-17 [m^3]
U-FRACTION IN SYSTEM: C = .0406910187346776 CR = .0214382352304608
FE = .978561764900046
TOTAL SIZE OF SYSTEM: 2.90023192349E-17 [m^3]
13 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: CARB
12 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUS
13 GRIDPOINT(S) ADDED
TO
CELL #2
REGION: CARB
12 GRIDPOINT(S) ADDED
TO
CELL #2
REGION: AUS
13 GRIDPOINT(S) ADDED
TO
CELL #3
REGION: CARB
12 GRIDPOINT(S) ADDED
TO
CELL #3
REGION: AUS
0.554531681954655
0.554567480675658
0.554589499863892
002
3.576300040682906E-004
5.360866440804185E-005
005
4.870104298291606E-006
5.059690052455969E-006
006
4.582895886150748E-006
4.579953770683088E-006
006
4.585273984455962E-006
4.582897341046175E-006
006
4.510965086266615E-006
4.511132392568204E-006
006
4.499671268169157E-006
4.495392268910281E-006
006
4.492180574820510E-006
4.491557910140355E-006
006
4.491039171620601E-006
4.490927182417670E-006
006
4.484467703800908E-006
4.484665245691513E-006
006
4.483859718319426E-006
4.483480820395356E-006
0.554572221447398
1.012113318158805E-005
4.621899570971407E-006
4.606650646730465E-006
4.582916902910096E-006
4.498425903112486E-006
4.493239884788908E-006
4.491663375001367E-006
4.490946743738308E-006
4.484375486830423E-006
4.483230945996525E-006
0.554531505763472
1.326508337030136E4.630784214210825E4.610375384318215E4.599867835758483E4.491061729413131E4.491820556526696E4.490925731057583E4.496937672335242E4.483992016575018E4.484059688560885E-006
0.554531431762965
output ignored...
... output resumed
6.920570362484212E-003
6.920499946758814E-003
6.920342052933263E-003
6.919756483371863E-003
3.098058520449391E004
1.296356992228752E-007
3.917157842870373E-011
7.593557155621097E-015
2.483115580187522E-018
TIME =
7912.8235
DT = 1000.00000
SUM OF SQUARES = 0.24831156E-17
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.87837351E-11 AND -0.87837351E-11
POSITION OF INTERFACE CARB / AUS IS
0.44403331E-06
CELL # 3 VELOCITY AT INTERFACE # 2 IS -0.95350930E-11 AND -0.95350930E-11
POSITION OF INTERFACE CARB / AUS IS
0.27251396E-06
U-FRACTION IN SYSTEM: C = .040773066126075 CR = .0221610436037789
FE = .977838956526728
TOTAL SIZE OF SYSTEM: 2.90023192349E-17 [m^3]
CPU time used in timestep
5 seconds
8.797385665174391E-003
8.797385618748307E-003
8.797385579921092E-003
8.797301174272916E-003
8.797241760775941E003
8.797020156384188E-003
8.796305182840140E-003
2.875722549578110E-004
1.758283246381142E007
6.964164830236587E-011
1.499469195446894E-014
5.535336829027822E-018
TIME =
8912.8235
DT = 1000.00000
SUM OF SQUARES = 0.55353368E-17
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.78832250E-11 AND -0.78832250E-11
POSITION OF INTERFACE CARB / AUS IS
0.43615008E-06
CELL # 3 VELOCITY AT INTERFACE # 2 IS -0.89978107E-11 AND -0.89978107E-11
POSITION OF INTERFACE CARB / AUS IS
0.26351615E-06
U-FRACTION IN SYSTEM: C = .0407730711774085 CR = .0221662684280764
TOTAL SIZE OF SYSTEM:
1
5
FE = .977833731702431
2.90023192349E-17 [m^3]
GRIDPOINT(S) REMOVED FROM CELL #1
GRIDPOINT(S) REMOVED FROM CELL #3
REGION: AUS
REGION: AUS
CPU time used in timestep
6 seconds
1.071877503144397E-002
1.071877499173175E-002
1.071877495163795E-002
1.071869750432614E-002
1.071865322081512E002
1.071837061107872E-002
1.071754023482961E-002
2.883501430172470E-004
2.191718160934316E007
1.126135832891216E-010
2.779436024492862E-014
9.692387490428569E-018
TIME =
9912.8235
DT = 1000.00000
SUM OF SQUARES = 0.96923875E-17
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.70942205E-11 AND -0.70942205E-11
POSITION OF INTERFACE CARB / AUS IS
0.42905586E-06
CELL # 3 VELOCITY AT INTERFACE # 2 IS -0.85936570E-11 AND -0.85936570E-11
POSITION OF INTERFACE CARB / AUS IS
0.25492249E-06
U-FRACTION IN SYSTEM: C = .0407730658479598 CR = .0221685046525647
FE = .977831495477942
TOTAL SIZE OF SYSTEM: 2.90023192349E-17 [m^3]
CPU time used in timestep
5 seconds
4.055311937845849E-003
4.055311978385242E-003
4.055312045618205E-003
4.055223751032636E-003
4.055173600805509E003
4.055167128391832E-003
4.055042470302864E-003
4.125187845373604E-004
1.168017483653392E006
5.718420994437329E-010
7.830648355576657E-013
3.875679695388341E-017
TIME = 10000.0000
DT =
87.176513
SUM OF SQUARES = 0.38756797E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.50513560E-11 AND -0.50513560E-11
POSITION OF INTERFACE CARB / AUS IS
0.42861550E-06
CELL # 3 VELOCITY AT INTERFACE # 2 IS -0.57192500E-11 AND -0.57192500E-11
POSITION OF INTERFACE CARB / AUS IS
0.25442391E-06
U-FRACTION IN SYSTEM: C = .0407730842038893 CR = .0221686010324642
FE = .977831399098043
TOTAL SIZE OF SYSTEM: 2.90023192349E-17 [m^3]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC>
DIC>
DIC>
DIC>
DIC> set-inter
--OK--DIC>
4163.1700
4570.6462
4570.6462
4570.6462
4570.6463
4570.6464
4570.6465
4570.6468
4570.6475
4570.6488
4570.6513
4570.6564
4570.6667
4570.6872
4570.7281
4570.8100
4570.9739
4571.3016
4571.9569
4573.2676
4575.8891
4581.1320
4591.6177
4612.5892
4654.5323
4738.4184
4906.1905
5241.7348
5912.8235
6912.8235
7912.8235
8912.8235
9912.8235
10000.0000
exc2-plot
MACRO exc2\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exc2\plot.DCM"DIC>
DIC>
DIC> @@ exc2_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE c2
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+04
DIC> read exc2
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: @@ LET US PLOT CHROMIUM CONCENTRATION PROFILES IN THE SAME WAY AS IN exb2
POST-1: @@ BUT NOW FOR EACH PARTICLE. LET'S LOOK AT THE PROFILES AFTER 1000S.
POST-1: @@
POST-1:
POST-1: @@
POST-1: @@ FIRST CELL
POST-1: @@
POST-1: enter-symb
Function or table /FUNCTION/: func
NAME: rdist
FUNCTION: gd-poi(carb,u);
POST-1:
POST-1: s-d-a x rdist
POST-1:
POST-1: s-d-a y uf(cr)
POST-1:
POST-1: s-i-v
VARIABLE /TIME/: dist
DISTANCE : /GLOBAL/: glo
POST-1:
POST-1: s-p-c time 1000
POST-1:
POST-1: @@
POST-1: @@ SET TITLE ON DIAGRAM
POST-1: @@
POST-1: set-title Figure C2.1
POST-1: plo
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: @@ SELECT CELL 2
POST-1: @@
POST-1: select-cell
Number /NEXT/: 2
CELL
2 SELECTED
POST-2:
POST-2: enter-symb
Function or table /FUNCTION/: func
NAME: rdist2
FUNCTION: gd-poi(carb,u);
POST-2:
POST-2: s-d-a x rdist2
POST-2:
POST-2: set-title Figure C2.2
POST-2: plo
POST-2:
POST-2:
POST-2:
POST-2:@?<_hit_return_to_continue_>
POST-2:
POST-2: @@
POST-2: @@ SELECT CELL 3
POST-2: @@
POST-2: select-cell 3
CELL
3 SELECTED
POST-3:
POST-3: enter-symb
Function or table /FUNCTION/: func
NAME: rdist3
FUNCTION: gd-poi(carb,u);
POST-3:
POST-3: s-d-a x rdist3
POST-3:
POST-3: set-title Figure C2.3
POST-3: plo
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:@?<_hit_return_to_continue_>
POST-3:
POST-3:
POST-3: @@
POST-3: @@ LET US ALSO PLOT HOW THE DIAMETER OF THE CEMENTITE PARTICLE VARIES
POST-3: @@ WITH TIME IN THE THREE CELLS
POST-3: @@
POST-3:
POST-3: @@
POST-3: @@ SELECT FIRST CELL
POST-3: @@
POST-3: sel-cell 1
CELL
1 SELECTED
POST-1:
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-s-s x n .01 10000
POST-1: set-axis-type x log
POST-1:
POST-1: enter func diam1=2*poi(carb,u);
POST-1: s-d-a y diam1
POST-1: s-s-s y n 0 1.5e-6
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
s-p-c interf carb upp
app n
set-title Figure C2.4
plo
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1:
POST-1: @@
POST-1: @@ SELECT CELL 2
POST-1: @@
POST-1: sel-cell 2
CELL
2 SELECTED
POST-2:
POST-2: enter func diam2=2*poi(carb,u);
POST-2: s-d-a y diam2
POST-2: s-s-s y n 0 1.5e-6
POST-2:
POST-2: s-p-c interf carb upp
POST-2:
POST-2: set-title Figure C2.5
POST-2: plo
POST-2:
POST-2:
POST-2:
POST-2:
POST-2:@?<_hit_return_to_continue_>
POST-2:
POST-2: @@
POST-2: @@ SELECT CELL 3
POST-2: @@
POST-2: sel-cell 3
CELL
3 SELECTED
POST-3:
POST-3: enter func diam3=2*poi(carb,u);
POST-3: s-d-a y diam3
POST-3: s-s-s y n 0 1.5e-6
POST-3:
POST-3: s-p-c interf carb upp
POST-3:
POST-3: set-title Figure C2.6
POST-3:
POST-3: plo
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:@?<_hit_return_to_continue_>
POST-3:
POST-3: @@
POST-3: @@ LET US NOW PLOT THE VOLUME FRACTION OF CEMENTITE IN THE THREE
POST-3: @@ CELLS.
POST-3: @@
POST-3: s-d-a x time
INFO: Time is set as independent variable
POST-3: s-s-s x n .01 10000
POST-3: set-axis-type x log
POST-3:
POST-3: @@
POST-3: @@ CELL 1
POST-3: @@
POST-3: s-d-a y ivv(1,cem)
POST-3: s-s-s y n 0 0.14
POST-3:
POST-3: s-p-c integral
POST-3:
POST-3: set-title Figure C2.7
POST-3: plo
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:@?<_hit_return_to_continue_>
POST-3:
POST-3: @@
POST-3: @@ CELL 2
POST-3: @@
POST-3: s-d-a y ivv(2,cem)
POST-3:
POST-3: set-title Figure C2.8
POST-3: plo
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:@?<_hit_return_to_continue_>
POST-3:
POST-3: @@
POST-3: @@ CELL 3
POST-3: @@
POST-3: s-d-a y ivv(3,cem)
POST-3:
POST-3: set-title Figure C2.9
POST-3: plo
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:@?<_hit_return_to_continue_>
POST-3:
POST-3: @@
POST-3: @@ FINALLY, LET US ALSO PLOT HOW THE TOTAL VOLUME FRACTION OF
POST-3: @@ CEMENTITE VARIES WITH TIME.
POST-3: @@
POST-3: s-d-a y ivv(cem)
POST-3:
POST-3: set-title Figure C2.10
POST-3: plo
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:@?<_hit_return_to_continue_>
POST-3:
POST-3: set-inter
--OK--POST-3:
Diffusion in dispersed systems
Example d1a
Carburization of a Ni-25% Cr alloy
T = 1123 K
FCC
●● ● ●
●
●
3E-3
ac = 1
●
exd1a-setup
MACRO exd1a\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd1a\setup.DCM"SYS: ?@@
NO SUCH COMMAND, USE HELP
SYS: @@ Diffusion in dispersed systems.
SYS: @@ Setup file for carburization of a Ni-25Cr alloy.
SYS: @@ In this case the M3C2 and M7C3 carbides are entered as
SYS: @@ spheroid phases in a FCC matrix. This case is from
SYS: @@ A. Engström, L. Höglund and J. Ågren: Metall.Trans.A
SYS: @@ v. 25A (1994), pp. 1127-1134. This simulation can be run
SYS: @@ with either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL.
SYS: @@ In this example the DISPERSED SYSTEM MODEL is used, which requires
SYS: @@ that the default HOMOGENIZATION MODEL is disabled.
SYS: @@ With the DISPERSED SYSTEM MODEL the command
SYS: @@ ENTER_LABYRINTH_FUNCTION is used to take into account the
SYS: @@ impeding effect of dispersed phases on long-range diffusion.
SYS: @@ For the HOMOGENIZATION MODEL the command
SYS: @@ ENTER_HOMOGENIZATION_FUNCTION should be used.
SYS: @@
SYS:
SYS: @@ exd1_setup.DCM
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ USE SSOL DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw ssol2
Current database: SGTE Alloy Solutions Database v2.1
VA DEFINED
B2_BCC
L12_FCC
REJECTED
GAS:G
AQUEOUS:A
REJECTED
TDB_SSOL2: def-sys ni cr c
NI
CR
DEFINED
TDB_SSOL2: rej ph * all
LIQUID:L
FCC_A1
HCP_A3
DIAMOND_A4
CBCC_A12
CUB_A13
GRAPHITE
CEMENTITE
M23C6
M7C3
FE4N
AL3NI2
CR3SI
CRSI2 REJECTED
TDB_SSOL2: res ph fcc,m7c3,m3c2,grap
FCC_A1
M7C3
GRAPHITE RESTORED
TDB_SSOL2: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
AL5FE4:
WATER:A
C
BCC_A2
CHI_A12
SIGMA
KSI_CARBIDE
M3C2
ALNI_B2
M3C2
List of references for assessed data
'Byeong-Joo Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'Alan Dinsdale, SGTE Data for Pure Elements, NPL Report DMA(A)195
September 1989'
'Alan Dinsdale, SGTE Data for Pure Elements,
Calphad Vol 15(1991) p 317-425,
also in NPL Report DMA(A)195 Rev. August 1990'
'A. Gabriel, C. Chatillon, I. Ansara, to be published in
High Temp. Sci. (parameters listed in
Calphad Vol 11 (1987) pp 203-218); C-NI'
'A. Dinsdale, T. Chart, MTDS NPL, Unpublished work (1986); CR-NI'
'NPL, unpublished work (1989); C-Cr-Ni'
-OKTDB_SSOL2:
TDB_SSOL2: @@
TDB_SSOL2: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_SSOL2: @@
TDB_SSOL2: app mob2
Current database: Alloys Mobility v2.4
VA DEFINED
GAS:G REJECTED
APP: def-sys ni c cr
NI
C
DEFINED
APP: rej ph * all
BCC_A2
CEMENTITE
FCC_A1
FE4N
HCP_A3
KSI_CARBIDE
M23C6
M3C2
SIGMA REJECTED
APP: res ph fcc,m7c3,m3c2,grap
FCC_A1
M7C3
GRAPHITE RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Z. Metallkunde 85(1994)502-509;
CR
DIAMOND_A4
GRAPHITE
LIQUID:L
M7C3
M3C2
C diffusion in fcc Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27;
Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27;
Cr and Ni diffusion fcc Cr-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27;
Ni self-diffusion'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
NO TIME STEP DEFINED
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING M3C2 AS A DIFFUSION NONE PHASE
*** ENTERING M7C3 AS A DIFFUSION NONE PHASE
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1123; * N
DIC>
DIC> @@
DIC> @@ SET REFERENCE STATE FOR CARBON
DIC> @@
DIC> set-reference-state
Component: C
Reference state: grap
Temperature /*/: *
Pressure /100000/: 101325
DIC>
DIC> @@
DIC> @@ ENTER REGION aus
DIC> @@
DIC> enter-region aus
DIC>
DIC> @@
DIC> @@ ENTER GEOMETRICAL GRID INTO THE REGION
DIC> @@
DIC> enter-grid aus 3e-3 geo 100 1.02
DIC>
DIC> @@
DIC> @@ ENTER MATRIX PHASE IN THE REGION
DIC> @@
DIC> enter-phase act aus matrix fcc_a1#1
DIC>
DIC> @@
DIC> @@ ENTER THE START COMPOSITION FOR THE MATRIX PHASE
DIC> @@
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /NI/: ni
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: cr
TYPE /LINEAR/: lin 25 25
PROFILE FOR /CR/: c
TYPE /LINEAR/: lin 1e-4 1e-4
DIC>
DIC> @@
DIC> @@ ENTER SPHEROIDAL PHASES IN THE REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: m7c3
DIC>
DIC> @@
DIC> @@ ENTER STOICHOMETRIC SPHEROIDAL PHASE IN THE REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: m3c2
DIC>
DIC>
DIC> @@
DIC> @@ ENTER START COMPOSITION FOR SPHEROIDAL PHASES
DIC> @@
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: m7c3
USE EQUILIBRIUM VALUE /Y/: Y
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: m3c2
USE EQUILIBRIUM VALUE /Y/: Y
DIC>
DIC> @@
DIC> @@ SET BOUNDARY CONDITION
DIC> @@
DIC> set-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary
BOUNDARY /LOWER/: lower
CONDITION TYPE /CLOSED_SYSTEM/: mixed
Dependent substitutional element:NI
Dependent interstitial element:VA
TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: activity
LOW TIME LIMIT /0/: 0
ACR(C)(TIME)= 1;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
TYPE OF CONDITION FOR COMPONENT CR /ZERO_FLUX/: zero-flux
DIC>
DIC> @@
DIC> @@ ENTER LABYRINTH FACTOR
DIC> @@
DIC> enter-lab
REGION NAME : aus
f(T,P,VOLFR,X)= volfr**2;
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME. REMEMBER WE MUST BE CAREFUL WITH THE
DIC> @@ TIMESTEP WHEN WE HAVE SPHEROIDAL PHASES PRESENT. IN THIS CASE
DIC> @@ WE DON'T ALLOW THE TIMESTEP TO BE LARGER THAN 1800s.
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 3600000
AUTOMATIC TIMESTEP CONTROL /YES/: YES
MAX TIMESTEP DURING INTEGRATION /360000/: 1800
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> @@
DIC> @@ IN ORDER SO SAVE SOME SPACE ON THE DISK WE ONLY STORE THE RESULT
DIC> @@ SELECTIVELY, ELSE THE STORE-RESULT-FILE FROM THIS EXAMPLE WOULD BE
DIC> @@ VERY LARGE.
DIC> @@
DIC> set-simulation-condition
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/:
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/:
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC>
DIC> @@ AS OF DICTRA VERSION 27 IT IS BY DEFAULT THE "HOMOGENIZATION MODEL"
DIC> @@ THAT IS USED WHEN MULTIPLE PHASES ARE ENTERED IN A SINGLE REGION
DIC> @@ DISABLE THE HOMOGENIZATION MODEL:
DIC> ho n
HOMOGENIZATION DISABLED
DIC>
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exd1 y
DIC>
DIC> set-inter
--OK--DIC>
exd1a-run
MACRO exd1a\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd1a\run.DCM"DIC>
DIC>
DIC> @@ exd1_run.DCM
DIC>
DIC> @@
DIC> @@ READ THE SETUP FILE AND START THE SIMULATION
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING M3C2 AS A DIFFUSION NONE PHASE
*** ENTERING M7C3 AS A DIFFUSION NONE PHASE
DIC> read exd1
OK
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = 4.73399698964897E-06 CR = .273386070506604
NI = .726613929493396
TOTAL SIZE OF SYSTEM: .003 [m]
WARNING:M7C3 HAS NO VOLUME FRACTION, CREATING ONE
WARNING:M3C2 HAS NO VOLUME FRACTION, CREATING ONE
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
C = 4.73399698964897E-06
NI = .726613929493396
.003 [m]
CR = .273386070506604
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = 7.37829265031515E-05 CR = .273386070506603
NI = .726613929493397
TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
0
seconds
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = 1.07765273658405E-04 CR = .273386070506579
NI = .726613929493421
TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
TIME = 0.40010010
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
1
seconds
0
seconds
0
seconds
DT =
462.31701
SUM OF SQUARES =
0.0000000
C = 4.86579533187524E-04 CR = .273386064383138
NI = .726613935616862
.003 [m]
CPU time used in timestep
TIME =
2003.0736
U-FRACTION IN SYSTEM:
0
DT =
269.37585
SUM OF SQUARES =
0.0000000
C = 3.91398501422713E-04 CR = .273386065452223
NI = .726613934547777
.003 [m]
CPU time used in timestep
TIME =
1140.3108
U-FRACTION IN SYSTEM:
seconds
DT =
165.94156
SUM OF SQUARES =
0.0000000
C = 3.16829365327127E-04 CR = .273386066351576
NI = .726613933648424
.003 [m]
CPU time used in timestep
TIME =
677.99375
U-FRACTION IN SYSTEM:
0
DT =
107.32821
SUM OF SQUARES =
0.0000000
C = 2.57253556459831E-04 CR = .273386067317191
NI = .726613932682809
.003 [m]
CPU time used in timestep
TIME =
408.61790
U-FRACTION IN SYSTEM:
seconds
DT =
74.126429
SUM OF SQUARES =
0.0000000
C = 2.08836403949598E-04 CR = .273386068335923
NI = .726613931664077
.003 [m]
CPU time used in timestep
TIME =
242.67634
U-FRACTION IN SYSTEM:
0
DT =
60.821607
SUM OF SQUARES =
0.0000000
C = 1.67985911285439E-04 CR = .273386069358852
NI = .726613930641148
.003 [m]
CPU time used in timestep
TIME =
135.34814
U-FRACTION IN SYSTEM:
seconds
DT = 0.40000000
SUM OF SQUARES =
0.0000000
C = 1.29844980713892E-04 CR = .273386070500949
NI = .726613929499051
.003 [m]
CPU time used in timestep
TIME =
61.221707
U-FRACTION IN SYSTEM:
0
0
seconds
DT =
862.76284
SUM OF SQUARES =
0.0000000
C = 6.16999894543281E-04 CR = .273386063110096
NI = .726613936889904
.003 [m]
CPU time used in timestep
0
seconds
TIME =
3701.3810
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
DT =
1698.3074
SUM OF SQUARES =
0.0000000
C = 8.03308317133787E-04 CR = .273386061634911
NI = .726613938365089
.003 [m]
CPU time used in timestep
TIME =
5501.3810
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
0
seconds
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .00114736292032063 CR = .273386060181809
NI = .726613939818191
.003 [m]
CPU time used in timestep
TIME =
9101.3810
U-FRACTION IN SYSTEM:
seconds
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = 9.81626963664712E-04 CR = .27338606076244
NI = .72661393923756
.003 [m]
CPU time used in timestep
TIME =
7301.3810
U-FRACTION IN SYSTEM:
0
0
seconds
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .00130395620915012 CR = .273386059222276
NI = .726613940777724
.003 [m]
output ignored...
... output resumed
CPU time used in timestep
TIME =
3574559.7
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
0
seconds
1
seconds
0
seconds
0
seconds
0
seconds
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0316490570607107 CR = .273385942357493
NI = .726614057642508
.003 [m]
CPU time used in timestep
TIME =
3594359.7
U-FRACTION IN SYSTEM:
0
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0316411351014865 CR = .273385942389253
NI = .726614057610747
.003 [m]
CPU time used in timestep
TIME =
3592559.7
U-FRACTION IN SYSTEM:
seconds
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0316332114378795 CR = .27338594242078
NI = .726614057579219
.003 [m]
CPU time used in timestep
TIME =
3590759.7
U-FRACTION IN SYSTEM:
0
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0316252860531568 CR = .273385942452074
NI = .726614057547926
.003 [m]
CPU time used in timestep
TIME =
3588959.7
U-FRACTION IN SYSTEM:
seconds
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0316173589305067 CR = .273385942483135
NI = .726614057516865
.003 [m]
CPU time used in timestep
TIME =
3587159.7
U-FRACTION IN SYSTEM:
0
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0316094300530421 CR = .273385942513963
NI = .726614057486037
.003 [m]
CPU time used in timestep
TIME =
3585359.7
U-FRACTION IN SYSTEM:
seconds
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0316014994038047 CR = .273385942544559
NI = .726614057455441
.003 [m]
CPU time used in timestep
TIME =
3583559.7
U-FRACTION IN SYSTEM:
0
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0315935669657689 CR = .273385942574922
NI = .726614057425078
.003 [m]
CPU time used in timestep
TIME =
3581759.7
U-FRACTION IN SYSTEM:
seconds
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0315856327218463 CR = .273385942605054
NI = .726614057394946
.003 [m]
CPU time used in timestep
TIME =
3579959.7
U-FRACTION IN SYSTEM:
1
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0315776966548907 CR = .273385942634954
NI = .726614057365046
.003 [m]
CPU time used in timestep
TIME =
3578159.7
U-FRACTION IN SYSTEM:
seconds
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0315697587477024 CR = .273385942664622
NI = .726614057335378
.003 [m]
CPU time used in timestep
TIME =
3576359.7
U-FRACTION IN SYSTEM:
0
0
seconds
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0316569773322022 CR = .273385942325498
NI = .726614057674502
TOTAL SIZE OF SYSTEM:
.003 [m]
CPU time used in timestep
TIME =
3596159.7
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0316648959325255 CR = .27338594229327
NI = .72661405770673
.003 [m]
CPU time used in timestep
TIME =
3597959.7
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
1
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
seconds
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0316807281854781 CR = .273385942228109
NI = .726614057771891
.003 [m]
CPU time used in timestep
TIME =
3600000.0
U-FRACTION IN SYSTEM:
seconds
DT =
1800.0000
SUM OF SQUARES =
0.0000000
C = .0316728128781563 CR = .273385942260807
NI = .726614057739193
.003 [m]
CPU time used in timestep
TIME =
3599759.7
U-FRACTION IN SYSTEM:
seconds
0
seconds
DT =
240.30748
SUM OF SQUARES =
0.0000000
C = .031681789133322 CR = .273385942223668
NI = .726614057776332
.003 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-06
0.10010000E-03
163559.69
341759.69
519959.69
698159.69
876359.69
1054559.7
1232759.7
1410959.7
1589159.7
1767359.7
1945559.7
2123759.7
2301959.7
2480159.7
2658359.7
2836559.7
3014759.7
3192959.7
3371159.7
3549359.7
3596159.7
3597959.7
3599759.7
3600000.0
exd1a-plot
MACRO exd1a\plot.DCMDIC>
DIC>
DIC> @@ exd1_plot.DCM
DIC>
DIC> @@
DIC> @@ FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 3.60000E+06
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING M3C2 AS A DIFFUSION NONE PHASE
*** ENTERING M7C3 AS A DIFFUSION NONE PHASE
DIC> read exd1
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: @@ LET US PLOT THE TOTAL CARBON CONCENTRATION PROFILE.
POST-1: @@
POST-1: s-d-a y w-p c
POST-1: s-d-a x distance global
INFO: Distance is set as independent variable
POST-1: s-s-s x n 0 2e-3
POST-1: s-p-c time 3600000
POST-1:
POST-1: app y exd1.exp
PROLOGUE NUMBER: /0/: 1
DATASET NUMBER(s): /-1/: 1
POST-1:
POST-1: @@
POST-1: @@ SET TITLE ON DIAGRAM
POST-1: @@
POST-1: set-tit d1.1
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: @@ LET US NOW PLOT THE AMOUNT OF CARBIDES FORMED.
POST-1: @@
POST-1: s-d-a y npm(*)
POST-1: s-s-s y n 0 0.4
POST-1: app n
POST-1:
POST-1: set-tit d1.2
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: set-inter
--OK--POST-1:
Example d1b
Carburization of a Ni-25% Cr alloy
using homogenization model
T = 1123 K
FCC
●● ● ●
●
●
3E-3
ac = 1
●
exd1b-setup
MACRO exd1b\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd1b\setup.DCM"SYS: ?@@
NO SUCH COMMAND, USE HELP
SYS: @@ Diffusion in dispersed systems.
SYS: @@ Setup file for carburization of a Ni-25Cr alloy.
SYS: @@ In this case the M3C2 and M7C3 carbides are entered as
SYS: @@ spheroid phases in a FCC matrix. This case is from
SYS: @@ A. Engström, L. Höglund and J. Ågren: Metall.Trans. A,
SYS: @@ v.25A (1994), pp. 1127-1134. This simulation can be run
SYS: @@ with either the DISPERSED SYSTEM MODEL or the
SYS: @@ HOMOGENIZATION MODEL. The default HOMOGENIZATION MODEL is used
SYS: @@ and then ENTER_HOMOGENIZATION_FUNCTION should be used instead of
SYS: @@ ENTER_LABYRINTH_FUNCTION.
SYS: @@
SYS:
SYS: @@ exd1b_setup.DCM
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ USE SSOL DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw ssol2
Current database: SGTE Alloy Solutions Database v2.1
VA DEFINED
B2_BCC
L12_FCC
REJECTED
GAS:G
AQUEOUS:A
REJECTED
TDB_SSOL2: def-sys ni cr c
NI
CR
DEFINED
TDB_SSOL2: rej ph * all
LIQUID:L
FCC_A1
HCP_A3
DIAMOND_A4
CBCC_A12
CUB_A13
GRAPHITE
CEMENTITE
M23C6
M7C3
FE4N
AL3NI2
CR3SI
CRSI2 REJECTED
TDB_SSOL2: res ph fcc,m7c3,m3c2,grap
FCC_A1
M7C3
GRAPHITE RESTORED
TDB_SSOL2: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
AL5FE4:
WATER:A
C
BCC_A2
CHI_A12
SIGMA
KSI_CARBIDE
M3C2
ALNI_B2
M3C2
List of references for assessed data
'Byeong-Joo Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'Alan Dinsdale, SGTE Data for Pure Elements, NPL Report DMA(A)195
September 1989'
'Alan Dinsdale, SGTE Data for Pure Elements,
Calphad Vol 15(1991) p 317-425,
also in NPL Report DMA(A)195 Rev. August 1990'
'A. Gabriel, C. Chatillon, I. Ansara, to be published in
High Temp. Sci. (parameters listed in
Calphad Vol 11 (1987) pp 203-218); C-NI'
'A. Dinsdale, T. Chart, MTDS NPL, Unpublished work (1986); CR-NI'
'NPL, unpublished work (1989); C-Cr-Ni'
-OKTDB_SSOL2:
TDB_SSOL2: @@
TDB_SSOL2: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_SSOL2: @@
TDB_SSOL2: app mob2
Current database: Alloys Mobility v2.4
VA DEFINED
GAS:G REJECTED
APP: def-sys ni c cr
NI
C
DEFINED
APP: rej ph * all
BCC_A2
CEMENTITE
FCC_A1
FE4N
HCP_A3
KSI_CARBIDE
M23C6
M3C2
SIGMA REJECTED
APP: res ph fcc,m7c3,m3c2,grap
FCC_A1
M7C3
GRAPHITE RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Z. Metallkunde 85(1994)502-509;
C diffusion in fcc Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27;
Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27;
Cr and Ni diffusion fcc Cr-Ni'
CR
DIAMOND_A4
GRAPHITE
LIQUID:L
M7C3
M3C2
'B. Jonsson: Scand. J. Metall. 24(1995)21-27;
Ni self-diffusion'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
NO TIME STEP DEFINED
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING M3C2 AS A DIFFUSION NONE PHASE
*** ENTERING M7C3 AS A DIFFUSION NONE PHASE
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1123; * N
DIC>
DIC> @@
DIC> @@ SET REFERENCE STATE FOR CARBON
DIC> @@
DIC> set-reference-state
Component: C
Reference state: grap
Temperature /*/: *
Pressure /100000/: 101325
DIC>
DIC> @@
DIC> @@ ENTER REGION aus
DIC> @@
DIC> enter-region aus
DIC>
DIC> @@
DIC> @@ ENTER GEOMETRICAL GRID INTO THE REGION
DIC> @@
DIC> enter-grid aus 3e-3 geo 100 1.02
DIC>
DIC> @@
DIC> @@ ENTER MATRIX PHASE IN THE REGION
DIC> @@
DIC> enter-phase act aus matrix fcc_a1#1
DIC>
DIC> @@
DIC> @@ ENTER THE START COMPOSITION FOR THE MATRIX PHASE
DIC> @@
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /NI/: ni
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: cr
TYPE /LINEAR/: lin 25 25
PROFILE FOR /CR/: c
TYPE /LINEAR/: lin 1e-4 1e-4
DIC>
DIC> @@
DIC> @@ ENTER SPHEROIDAL PHASES IN THE REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: m7c3
DIC>
DIC> @@
DIC> @@ ENTER STOICHOMETRIC SPHEROIDAL PHASE IN THE REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: m3c2
DIC>
DIC>
DIC> @@
DIC> @@ ENTER START COMPOSITION FOR SPHEROIDAL PHASES
DIC> @@
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: m7c3
USE EQUILIBRIUM VALUE /Y/: Y
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: m3c2
USE EQUILIBRIUM VALUE /Y/: Y
DIC>
DIC> @@
DIC> @@ SET BOUNDARY CONDITION
DIC> @@
DIC> set-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary
BOUNDARY /LOWER/: lower
CONDITION TYPE /CLOSED_SYSTEM/: mixed
Dependent substitutional element:NI
Dependent interstitial element:VA
TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: activity
LOW TIME LIMIT /0/: 0
ACR(C)(TIME)= 1;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
TYPE OF CONDITION FOR COMPONENT CR /ZERO_FLUX/: zero-flux
DIC>
DIC> @@
DIC> @@ SELECT A HOMOGENIZATION FUNCTION
DIC> @@
DIC> enter-homo
INFO: ENABLING HOMOGENIZATION MODEL
ENTER HOMOGENIZATION FUNCTION # /5/: 8
SELECTED FUNCTION IS LABYRINTH FACTOR f**2 WITH PRESCRIBED MATRIX PHASE
PHASE NAME:: fcc#1
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME. REMEMBER WE MUST BE CAREFUL WITH THE
DIC> @@ TIMESTEP WHEN WE HAVE SPHEROIDAL PHASES PRESENT. IN THIS CASE
DIC> @@ WE DON'T ALLOW THE TIMESTEP TO BE LARGER THAN 1800s.
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 3600000
AUTOMATIC TIMESTEP CONTROL /YES/: YES
MAX TIMESTEP DURING INTEGRATION /360000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> @@
DIC> @@ IN ORDER SO SAVE SOME SPACE ON THE DISK WE ONLY STORE THE RESULT
DIC> @@ SELECTIVELY, ELSE THE STORE-RESULT-FILE FROM THIS EXAMPLE WOULD BE
DIC> @@ VERY LARGE.
DIC> @@
DIC> set-simulation-condition
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/:
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/:
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exd1 y
DIC>
DIC> set-inter
--OK--DIC>
exd1b-run
MACRO exd1b\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd1b\run.DCM"DIC>
DIC>
DIC> @@ exd1_run.DCM
DIC>
DIC> @@
DIC> @@ READ THE SETUP FILE AND START THE SIMULATION
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING M3C2 AS A DIFFUSION NONE PHASE
*** ENTERING M7C3 AS A DIFFUSION NONE PHASE
DIC> read exd1
OK
DIC> sim
STARTING SIMULATION USING HOMOGENIZATION MODEL
---------------------------------------------INFO: PHASE WITH LIMITED SOLUBILITY OF ELEMENT(S) EXIST
A FALLBACK PHASE ZZDICTRA_GHOST WILL BE DEFINED
ALONG WITH THE FOLLOWING PARAMETERS:
G(ZZDICTRA_GHOST,C;0)-H298(GRAPHITE,C;0)
G(ZZDICTRA_GHOST,CR;0)-H298(BCC_A2,CR;0)
G(ZZDICTRA_GHOST,NI;0)-H298(FCC_A1,NI;0)
L(ZZDICTRA_GHOST,C,CR;0)
L(ZZDICTRA_GHOST,C,NI;0)
L(ZZDICTRA_GHOST,CR,NI;0)
Saving results
-----------------------------------------------WARNING:M7C3 HAS NO VOLUME FRACTION, CREATING ONE
WARNING:M3C2 HAS NO VOLUME FRACTION, CREATING ONE
Starting time-step t0= 0.000000000000000E+000 dt= 1.000000000000000E-007
Stage 1
Stage 2
Stage 3
Moles of elements / mole fractions in system:
C
1.420199165858907E-008 /
4.733974808906108E-006
CR
8.201582115198115E-004 /
0.273384776303833
NI
2.179841788480188E-003 /
0.726610489721358
Time-step converged t0= 0.000000000000000E+000 dt= 1.000000000000000E-007
-----------------------------------------------Saving results
-----------------------------------------------Starting time-step t0= 1.000000000000000E-007 dt= 2.000000000000000E-007
Stage 1
Stage 2
Stage 3
Moles of elements / mole fractions in system:
C
1.420199303787341E-008 /
4.733975268663203E-006
CR
8.201582115198115E-004 /
0.273384776303707
NI
2.179841788480188E-003 /
0.726610489721024
Time-step converged t0= 1.000000000000000E-007 dt= 2.000000000000000E-007
-----------------------------------------------Starting time-step t0= 3.000000000000000E-007 dt= 4.000000000000000E-007
Stage 1
Evaluating Jacobian
Iteration #
1 sum residual **2:
8.592925588816543E-004
Stage 2
Stage 3
Moles of elements / mole fractions in system:
C
1.420199579644213E-008 /
4.733976188177402E-006
CR
8.201582115198115E-004 /
0.273384776303456
NI
2.179841788480188E-003 /
0.726610489720356
Time-step converged t0= 3.000000000000000E-007 dt= 4.000000000000000E-007
-----------------------------------------------Starting time-step t0= 7.000000000000000E-007 dt= 8.000000000000000E-007
Stage 1
Iteration #
1 sum residual **2:
1.435648489343165E-004
Stage 2
Stage 3
Moles of elements / mole fractions in system:
C
1.420200131357960E-008 /
4.733978027205813E-006
CR
8.201582115198115E-004 /
0.273384776302953
NI
2.179841788480188E-003 /
0.726610489719020
Time-step converged t0= 7.000000000000000E-007 dt= 8.000000000000000E-007
-----------------------------------------------Starting time-step t0= 1.500000000000000E-006 dt= 1.600000000000000E-006
Stage 1
Iteration #
1 sum residual **2:
6.186519495508916E-005
Stage 2
Stage 3
Moles of elements / mole fractions in system:
C
1.420201234785418E-008 /
4.733981705262516E-006
CR
8.201582115198115E-004 /
0.273384776301948
NI
2.179841788480188E-003 /
0.726610489716347
Time-step converged t0= 1.500000000000000E-006 dt= 1.600000000000000E-006
-----------------------------------------------Starting time-step t0= 3.100000000000000E-006 dt= 3.200000000000000E-006
Stage 1
Iteration #
1 sum residual **2:
4.261106992515092E-005
Stage 2
Stage 3
Moles of elements / mole fractions in system:
C
1.420203441639994E-008 /
4.733989061374788E-006
CR
8.201582115198115E-004 /
0.273384776299937
NI
2.179841788480188E-003 /
0.726610489711002
Time-step converged t0= 3.100000000000000E-006 dt= 3.200000000000000E-006
-----------------------------------------------Starting time-step t0= 6.300000000000000E-006 dt= 6.400000000000000E-006
Stage 1
Iteration #
1 sum residual **2:
3.571801231626558E-005
Stage 2
Stage 3
Moles of elements / mole fractions in system:
C
1.420207855351028E-008 /
4.734003773605606E-006
CR
8.201582115198115E-004 /
0.273384776295914
NI
2.179841788480188E-003 /
0.726610489700312
Time-step converged t0= 6.300000000000000E-006 dt= 6.400000000000000E-006
-----------------------------------------------Starting time-step t0= 1.270000000000000E-005 dt= 1.280000000000000E-005
Stage 1
Iteration #
1 sum residual **2:
3.276725225871970E-005
Stage 2
Stage 3
Moles of elements / mole fractions in system:
C
1.420216682766344E-008 /
4.734033198044733E-006
CR
8.201582115198115E-004 /
0.273384776287870
NI
2.179841788480188E-003 /
0.726610489678932
Time-step converged t0= 1.270000000000000E-005 dt= 1.280000000000000E-005
-----------------------------------------------Starting time-step t0= 2.550000000000000E-005 dt= 2.560000000000000E-005
Stage 1
Iteration #
1 sum residual **2:
3.138169207816513E-005
Stage 2
Stage 3
Moles of elements / mole fractions in system:
C
1.420234337570845E-008 /
4.734092046835878E-006
CR
8.201582115198115E-004 /
0.273384776271782
NI
2.179841788480188E-003 /
0.726610489636171
output ignored...
... output resumed
-----------------------------------------------Starting time-step t0=
3599860.60328877
dt=
139.396711231209
Stage 1
Iteration #
1 sum residual **2:
3034.82389596271
Iteration #
2 sum residual **2:
1159.44358151116
Iteration #
3 sum residual **2:
443.317656209093
Iteration #
4 sum residual **2:
169.419789193486
Iteration #
5 sum residual **2:
64.5951002739962
Iteration #
6 sum residual **2:
24.4724721299679
Iteration #
7 sum residual **2:
9.13969600884041
Iteration #
8 sum residual **2:
3.38427234845210
Iteration #
9 sum residual **2:
1.20148931924190
Iteration #
10 sum residual **2:
0.351609750865291
Stage 2
Iteration #
1 sum residual **2:
158.379323323045
Iteration #
2 sum residual **2:
92.7895813656680
Iteration #
3 sum residual **2:
54.2954569811537
Iteration #
4 sum residual **2:
31.7019034130323
Iteration #
5 sum residual **2:
18.4355566997660
Iteration #
6 sum residual **2:
10.6635048651363
Iteration #
7 sum residual **2:
6.16133651136274
Iteration #
8 sum residual **2:
3.54575453732810
Iteration #
9 sum residual **2:
2.01771583932736
Iteration #
10 sum residual **2:
1.12179899502801
Iteration #
11 sum residual **2:
0.590881299438492
Stage 3
Iteration #
1 sum residual **2:
336.945485443411
Iteration #
2 sum residual **2:
197.832125755300
Iteration #
3 sum residual **2:
116.034613252757
Iteration #
4 sum residual **2:
67.9659842110170
Iteration #
5 sum residual **2:
39.7313958334749
Iteration #
6 sum residual **2:
23.1490726561094
Iteration #
7 sum residual **2:
13.4134616987171
Iteration #
8 sum residual **2:
7.74793926116461
Iteration #
9 sum residual **2:
4.46773988695486
Iteration #
10 sum residual **2:
2.55536337698932
Iteration #
11 sum residual **2:
1.43662815417144
Iteration #
12 sum residual **2:
0.778031835165766
Moles of elements / mole fractions in system:
C
1.045622037563976E-004 /
3.368017675080932E-002
CR
8.201582115198121E-004 /
0.264178379330732
NI
2.179841788480189E-003 /
0.702141443918458
Time-step converged t0=
3599860.60328877
dt=
-----------------------------------------------Saving results
-----------------------------------------------MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
0.0000000
DELETING TIME-RECORD FOR TIME
0.10000000E-06
DELETING TIME-RECORD FOR TIME
18931.620
DELETING TIME-RECORD FOR TIME
75410.440
DELETING TIME-RECORD FOR TIME
152934.60
DELETING TIME-RECORD FOR TIME
204259.46
DELETING TIME-RECORD FOR TIME
246779.64
DELETING TIME-RECORD FOR TIME
289299.81
DELETING TIME-RECORD FOR TIME
331819.99
DELETING TIME-RECORD FOR TIME
374340.16
DELETING TIME-RECORD FOR TIME
416860.34
DELETING TIME-RECORD FOR TIME
459380.52
DELETING TIME-RECORD FOR TIME
501900.69
DELETING TIME-RECORD FOR TIME
544420.87
DELETING TIME-RECORD FOR TIME
586941.05
DELETING TIME-RECORD FOR TIME
629461.22
DELETING TIME-RECORD FOR TIME
671981.40
DELETING TIME-RECORD FOR TIME
714501.57
DELETING TIME-RECORD FOR TIME
757021.75
DELETING TIME-RECORD FOR TIME
799541.93
DELETING TIME-RECORD FOR TIME
842062.10
DELETING TIME-RECORD FOR TIME
884582.28
DELETING TIME-RECORD FOR TIME
927102.45
DELETING TIME-RECORD FOR TIME
969622.63
DELETING TIME-RECORD FOR TIME
1012142.8
DELETING TIME-RECORD FOR TIME
1054663.0
DELETING TIME-RECORD FOR TIME
1097183.2
DELETING TIME-RECORD FOR TIME
1139703.3
DELETING TIME-RECORD FOR TIME
1182223.5
DELETING TIME-RECORD FOR TIME
1224743.7
DELETING TIME-RECORD FOR TIME
1267263.9
DELETING TIME-RECORD FOR TIME
1309784.0
DELETING TIME-RECORD FOR TIME
1352304.2
139.396711231209
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
DELETING
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
TIME-RECORD
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
1394824.4
1437344.6
1479864.7
1522384.9
1564905.1
1607425.3
1649945.5
1692465.6
1734985.8
1777506.0
1820026.2
1862546.3
1905066.5
1947586.7
1990106.9
2032627.0
2075147.2
2117667.4
2160187.6
2202707.7
2245227.9
2287748.1
2330268.3
2372788.4
2415308.6
2457828.8
2500349.0
2542869.2
2585389.3
2627909.5
2670429.7
2712949.9
2755470.0
2797990.2
2840510.4
2883030.6
2925550.7
2968070.9
3010591.1
3053111.3
3095631.4
3138151.6
3180671.8
3223192.0
3265712.1
3308232.3
3350752.5
3393272.7
3435792.9
3478313.0
3520833.2
KEEPING TIME-RECORD FOR TIME
3563353.4
AND FOR TIME
3600000.0
WORKSPACE RECLAIMED
-----------------------------------------------INTERPOLATION SCHEME USED THIS FRACTION OF
THE ALLOCATED MEMORY:
0.111958041667877
EFFICIENCY FACTOR:
92.8628488500846
-----------------------------------------------DEALLOCATING
-----------------------------------------------DIC>
DIC> set-inter
--OK--DIC>
exd1b-plot
MACRO exd1b\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd1b\plot.DCM"DIC>
DIC>
DIC> @@ exd1_plot.DCM
DIC>
DIC> @@
DIC> @@ FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 3.60000E+06
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING M3C2 AS A DIFFUSION NONE PHASE
*** ENTERING M7C3 AS A DIFFUSION NONE PHASE
DIC> read exd1
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: @@ LET US PLOT THE TOTAL CARBON CONCENTRATION PROFILE.
POST-1: @@
POST-1: s-d-a y w-p c
POST-1: s-d-a x distance global
INFO: Distance is set as independent variable
POST-1: s-s-s x n 0 2e-3
POST-1: s-p-c time 3600000
POST-1:
POST-1: app y exd1.exp
PROLOGUE NUMBER: /0/: 1
DATASET NUMBER(s): /-1/: 1
POST-1:
POST-1: @@
POST-1: @@ SET TITLE ON DIAGRAM
POST-1: @@
POST-1: set-tit d1.1
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: @@ LET US NOW PLOT THE AMOUNT OF CARBIDES FORMED.
POST-1: @@
POST-1: s-d-a y npm(*)
POST-1: s-s-s y n 0 0.4
POST-1: app n
POST-1:
POST-1: set-tit d1.2
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: set-inter
--OK--POST-1:
Example d2a
diffusion couple of Fe-Ni-Cr alloys
(Initially we have a step-profile)
T = 1473 K
FCC
●
FCC+BCC
● ● ● ●
●
●
29.4% Ni
40.0% Cr
10.0% Ni
16.2% Cr
4E-3
exd2a-setup
MACRO exd2a\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd2a\setup.DCM"SYS: ?@@
NO SUCH COMMAND, USE HELP
SYS: @@ Diffusion in dispersed systems.
SYS: @@ Setup file for calculating the interdiffusion in a diffusion
SYS: @@ couple between a two-phase (FCC+BCC) and a single-phase (FCC)
SYS: @@ Fe-Ni-Cr alloy.@@ This case is from A. Engström: Scand. J. Met., v. 24,
SYS: @@ 1995, pp.12-20. This simulation can be run with either the DISPERSED
SYS: @@ SYSTEM MODEL or the HOMOGENIZATION MODEL.
SYS: @@ In this example the DISPERSED SYSTEM MODEL is used, which requires
SYS: @@ that the default HOMOGENIZATION MODEL is disabled.
SYS: @@ With the DISPERSED SYSTEM MODEL the command
SYS: @@ ENTER_LABYRINTH_FUNCTION is used to take into account the
SYS: @@ impeding effect of dispersed phases on long-range diffusion.
SYS: @@ For the HOMOGENIZATION MODEL the command
SYS: @@ ENTER_HOMOGENIZATION_FUNCTION should be used.
SYS: @@
SYS:
SYS: @@ exd2_setup.DCM
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7: def-sys fe ni cr
FE
NI
DEFINED
TDB_TCFE7: rej ph * all
LIQUID:L
BCC_A2
HCP_A3
A1_KAPPA
SIGMA
CHI_A12
CR3SI
NBNI3
REJECTED
TDB_TCFE7: res ph fcc,bcc
FCC_A1
BCC_A2 RESTORED
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
CR
FCC_A1
KAPPA
LAVES_PHASE_C14
NI3TI
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270
(1986); CR-FE'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_TCFE7: @@
TDB_TCFE7: app mobfe2
Current database: Steels/Fe-Alloys Mobility v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe ni cr
FE
DEFINED
APP: rej ph * all
BCC_A2
LIQUID:L REJECTED
APP: res ph fcc,bcc
FCC_A1
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
NI
CR
FCC_A1
HCP_A3
BCC_A2
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni'
'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc
Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni
diffusion bcc Cr-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1473; * N
DIC>
DIC> @@
DIC> @@ ENTER REGION fer
DIC> @@
DIC> enter-region fer
DIC>
DIC>
DIC> @@
DIC> @@ ENTER DOUBLE-GEOMETRICAL GRID INTO THE REGION
DIC> @@ THIS WILL GIVE A SHORT DISTANCE BETWEEN THE GRIDPOINTS
DIC> @@ IN THE MIDDLE OF THE REGION WHERE THE INITIAL INTERFACE IS
DIC> @@
DIC> enter-grid fer
WIDTH OF REGION /1/: 4e-3
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 200
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.97
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.03093
DIC>
DIC> @@
DIC> @@ ENTER MATRIX PHASE IN THE REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act fer matrix fcc
DIC>
DIC> @@
DIC> @@ ENTER THE START COMPOSITION FOR THE MATRIX PHASE FROM FILES
DIC> @@
DIC> enter-composition
REGION NAME : /FER/: fer
PHASE NAME: /FCC_A1/: fcc
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /CR/: cr
TYPE /LINEAR/: read d2cr.dat
PROFILE FOR /NI/: ni
TYPE /LINEAR/: read d2ni.dat
DIC>
DIC> @@
DIC> @@ ENTER FERRITE AS SPHEROIDAL PHASE IN THE REGION
DIC> @@ SINCE THE FRACTION OF FERRITE IS SMALL AND THEY APPEAR
DIC> @@ AS ISOLATED PARTICLES WE ENTER FERRITE AS A SPHEROIDAL PHASE
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /FER/: fer
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: bcc
DIC>
DIC> @@
DIC> @@ ENTER COMPOSITION FOR THE SPHEROIDAL PHASE
DIC> @@ WE USE THE EQUILIBRIUM VALUE
DIC> @@
DIC> enter-composition
REGION NAME : /FER/: fer
PHASE NAME: /FCC_A1/: bcc
USE EQUILIBRIUM VALUE /Y/: y
DIC>
DIC>
DIC> @@
DIC> @@ ENTER LABYRINTH FACTOR
DIC> @@ IN THIS CASE THE LOW DIFFUSIVITY PHASE IS THE MATRIX AND THE
DIC> @@ "EFFECTIVE" DIFFUSIVITY IN THE AUSTENITE+FERRITE TWO-PHASE
DIC> @@ REGION IS EXPECTED TO BE HIGHER THAN THE DIFFUSIVITY IN THE
DIC> @@ AUSTENITE.
DIC> enter-lab
REGION NAME : fer
f(T,P,VOLFR,X)= 1+3*(1-volfr)/volfr;
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 720000
AUTOMATIC TIMESTEP CONTROL /YES/: YES
MAX TIMESTEP DURING INTEGRATION /72000/: 5000
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC> set-simulation-condition
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /NO/:
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/:
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC> @@ AS OF DICTRA VERSION 27 IT IS BY DEFAULT THE "HOMOGENIZATION MODEL"
DIC> @@ THAT IS USED WHEN MULTIPLE PHASES ARE ENTERED IN A SINGLE REGION
DIC> @@ DISABLE THE HOMOGENIZATION MODEL:
DIC> ho n
HOMOGENIZATION DISABLED
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC> @@
DIC>
DIC> save exd2 y
DIC>
DIC> set-inter
--OK--DIC>
exd2a-run
MACRO exd2a\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd2a\run.DCM"DIC>
DIC>
DIC> @@ exd2_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING THE SIMULATION OF EXAMPLE D2
DIC> @@
DIC>
DIC> @@
DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exd2
OK
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: CR = .297842647391913 FE = .517227320517284
NI = .184930032090802
TOTAL SIZE OF SYSTEM: .004 [m]
WARNING:BCC_A2 HAS NO VOLUME FRACTION, CREATING ONE
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
CR = .297842647391914
NI = .184930032090802
.004 [m]
FE = .517227320517284
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .297842647356821 FE = .517227320600574
NI = .184930032042606
TOTAL SIZE OF SYSTEM: .004 [m]
CPU time used in timestep
0
seconds
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: CR = .297842648005431 FE = .517227319061159
NI = .18493003293341
TOTAL SIZE OF SYSTEM: .004 [m]
CPU time used in timestep
TIME = 0.40010010
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
0
seconds
0
seconds
0
seconds
0
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .29785188345351 FE = .517209584045532
NI = .184938532500958
.004 [m]
CPU time used in timestep
TIME =
23721.379
U-FRACTION IN SYSTEM:
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297851732113691 FE = .517209740277052
NI = .184938527609257
.004 [m]
CPU time used in timestep
TIME =
18721.379
U-FRACTION IN SYSTEM:
0
DT =
4501.1504
SUM OF SQUARES =
0.0000000
CR = .297851494954336 FE = .517210020163941
NI = .184938484881723
.004 [m]
CPU time used in timestep
TIME =
13721.379
U-FRACTION IN SYSTEM:
seconds
DT =
2250.5752
SUM OF SQUARES =
0.0000000
CR = .297851119000641 FE = .517210569323811
NI = .184938311675548
.004 [m]
CPU time used in timestep
TIME =
8721.3789
U-FRACTION IN SYSTEM:
1
DT =
1125.2876
SUM OF SQUARES =
0.0000000
CR = .297850550731974 FE = .517211426818696
NI = .184938022449329
.004 [m]
CPU time used in timestep
TIME =
4220.2286
U-FRACTION IN SYSTEM:
seconds
DT =
562.64380
SUM OF SQUARES =
0.0000000
CR = .297849615184743 FE = .517212946633452
NI = .184937438181806
.004 [m]
CPU time used in timestep
TIME =
1969.6534
U-FRACTION IN SYSTEM:
0
DT =
281.32190
SUM OF SQUARES =
0.0000000
CR = .297847760270075 FE = .517216317308819
NI = .184935922421105
.004 [m]
CPU time used in timestep
TIME =
844.36579
U-FRACTION IN SYSTEM:
seconds
DT = 0.40000000
SUM OF SQUARES =
0.0000000
CR = .297842676377595 FE = .517227251840506
NI = .184930071781899
.004 [m]
CPU time used in timestep
TIME =
281.72200
U-FRACTION IN SYSTEM:
0
0
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297851977657557 FE = .517209483265971
NI = .184938539076472
.004 [m]
CPU time used in timestep
TIME =
28721.379
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
CPU time used in timestep
TIME =
33721.379
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
0
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852049766013 FE = .517209361691075
NI = .184938588542912
.004 [m]
CPU time used in timestep
TIME =
38721.379
U-FRACTION IN SYSTEM:
1
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852029985829 FE = .517209412426188
NI = .184938557587983
.004 [m]
0
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852045015472 FE = .517209326359907
NI = .184938628624621
.004 [m]
output ignored...
... output resumed
CPU time used in timestep
TIME =
638721.38
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
1
seconds
0
seconds
0
seconds
0
seconds
1
seconds
0
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852035107033 FE = .517209102778461
NI = .184938862114505
.004 [m]
CPU time used in timestep
TIME =
698721.38
U-FRACTION IN SYSTEM:
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852031720922 FE = .517209104528001
NI = .184938863751077
.004 [m]
CPU time used in timestep
TIME =
693721.38
U-FRACTION IN SYSTEM:
0
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852037481164 FE = .517209102185645
NI = .184938860333193
.004 [m]
CPU time used in timestep
TIME =
688721.38
U-FRACTION IN SYSTEM:
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852047560723 FE = .517209099016376
NI = .184938853422902
.004 [m]
CPU time used in timestep
TIME =
683721.38
U-FRACTION IN SYSTEM:
0
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852056000146 FE = .51720909638732
NI = .184938847612534
.004 [m]
CPU time used in timestep
TIME =
678721.38
U-FRACTION IN SYSTEM:
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .29785206282505 FE = .517209094290037
NI = .184938842884913
.004 [m]
CPU time used in timestep
TIME =
673721.38
U-FRACTION IN SYSTEM:
0
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852068061711 FE = .51720909271906
NI = .184938839219229
.004 [m]
CPU time used in timestep
TIME =
668721.38
U-FRACTION IN SYSTEM:
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852071737297 FE = .51720909167323
NI = .184938836589473
.004 [m]
CPU time used in timestep
TIME =
663721.38
U-FRACTION IN SYSTEM:
0
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852073880061 FE = .517209091158173
NI = .184938834961767
.004 [m]
CPU time used in timestep
TIME =
658721.38
U-FRACTION IN SYSTEM:
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852074518782 FE = .517209091190445
NI = .184938834290772
.004 [m]
CPU time used in timestep
TIME =
653721.38
U-FRACTION IN SYSTEM:
1
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852073681695 FE = .517209091807032
NI = .184938834511272
.004 [m]
CPU time used in timestep
TIME =
648721.38
U-FRACTION IN SYSTEM:
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .29785207139255 FE = .517209093083929
NI = .18493883552352
.004 [m]
CPU time used in timestep
TIME =
643721.38
U-FRACTION IN SYSTEM:
0
0
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852041265684 FE = .517209100862437
TOTAL SIZE OF SYSTEM:
NI = .184938857871879
.004 [m]
CPU time used in timestep
TIME =
703721.38
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
CPU time used in timestep
TIME =
708721.38
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
1
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852066979963 FE = .517209095891388
NI = .184938837128649
.004 [m]
CPU time used in timestep
TIME =
720000.00
U-FRACTION IN SYSTEM:
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852061470743 FE = .517209096580471
NI = .184938841948786
.004 [m]
CPU time used in timestep
TIME =
718721.38
U-FRACTION IN SYSTEM:
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852055131712 FE = .517209097666818
NI = .18493884720147
.004 [m]
CPU time used in timestep
TIME =
713721.38
U-FRACTION IN SYSTEM:
seconds
DT =
5000.0000
SUM OF SQUARES =
0.0000000
CR = .297852048239018 FE = .517209099115001
NI = .184938852645982
.004 [m]
0
seconds
DT =
1278.6211
SUM OF SQUARES =
0.0000000
CR = .297852071767323 FE = .517209095429354
NI = .184938832803323
.004 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC>
DIC>
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-06
0.10010000E-03
468721.38
708721.38
713721.38
718721.38
720000.00
exd2a-plot
MACRO exd2a\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd2a\plot.DCM"DIC>
DIC>
DIC> @@ exd2_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE D2
DIC> @@
DIC> @@ ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 7.20000E+05
DIC> read exd2
OK
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
@@
@@ LET US FIRST SEE HOW THE FRACTION OF FERRITE
@@ AS A RESULT OF THE DIFFUSION
@@
s-d-a y npm(bcc)
s-d-a x distance global
Distance is set as independent variable
s-p-c time 0 720000
set-tit Figure D2.1
pl
HAS CHANGED
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
POST-1: @@ LET US NOW PLOT HOW THE AVERAGE CR-CONCENTRATION VARIES WITH DISTANCE
POST-1: @@
POST-1: s-d-a y w-p cr
POST-1: s-p-c time last
POST-1: set-tit Figure D2.2
POST-1: pl
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
POST-1: @@ WE SELECT A BETTER SCALING AND APPEND EXPERIMENTAL DATA
POST-1: @@
POST-1:
POST-1: app y exd2.exp
PROLOGUE NUMBER: /0/: 1
DATASET NUMBER(s): /-1/: 4
POST-1:
POST-1: s-s-s y n 0 50
POST-1: s-s-s x n 10e-4 30e-4
POST-1:
POST-1: set-tit Figure D2.3
POST-1: pl
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
POST-1: @@ NOW WE DO THE SAME FOR NICKEL
POST-1: @@
POST-1:
POST-1: s-d-a y w-p ni
POST-1:
POST-1: app y exd2.exp
PROLOGUE NUMBER: /1/: 1
DATASET NUMBER(s): /-1/: 5
POST-1:
POST-1: s-s-s x n 10e-4 30e-4
POST-1: s-s-s y n 0 40
POST-1:
POST-1: set-tit Figure D2.4
POST-1: pl
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
POST-1: @@ LET US PLOT THE DIFFUSION PATH FOR THE COUPLE
POST-1: @@ WE APPEND THE TERNARY PHASE-DIAGRAM CALCULATED IN THERMO-CALC
POST-1: @@ AND THE EXPERIMENTAL DATA
POST-1: @@
POST-1: s-d-a x w-p cr
POST-1: s-d-a y w-p ni
POST-1: s-i-v dis gl
POST-1: s-p-c time last
POST-1:
POST-1: app y exd2.exp
PROLOGUE NUMBER: /1/: 1
DATASET NUMBER(s): /-1/: 6 7 8
POST-1:
POST-1: s-s-s x n 10 50
POST-1: s-s-s y n 5 35
POST-1:
POST-1: set-tit Figure D2.5
POST-1: pl
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: set-interactive
--OK--POST-1:
Example d2b
diffusion couple of Fe-Ni-Cr alloys
using homogenization model
(Initially we have a step-profile)
T = 1473 K
FCC
●
FCC+BCC
● ● ● ●
●
●
29.4% Ni
40.0% Cr
10.0% Ni
16.2% Cr
4E-3
exd2b-setup
MACRO exd2b\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd2b\setup.DCM"SYS: ?@@
NO SUCH COMMAND, USE HELP
SYS: @@ Diffusion in dispersed systems.
SYS: @@ Setup file for calculating the interdiffusion in a diffusion
SYS: @@ couple between a two-phase (FCC+BCC) and a single-phase (FCC)
SYS: @@ Fe-Ni-Cr alloy. This case is from A. Engström: Scand. J. Met.,
SYS: @@ v. 24, 1995, pp.12-20. This simulation can be run with either
SYS: @@ the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL.
SYS: @@ Here the default HOMOGENIZATION MODEL is used and then
SYS: @@ ENTER_HOMOGENIZATION_FUNCTION should be used instead of
SYS: @@ ENTER_LABYRINTH_FUNCTION.
SYS: @@
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7: def-sys fe ni cr
FE
NI
DEFINED
TDB_TCFE7: rej ph * all
LIQUID:L
BCC_A2
HCP_A3
A1_KAPPA
SIGMA
CHI_A12
CR3SI
NBNI3
REJECTED
TDB_TCFE7: res ph fcc,bcc
FCC_A1
BCC_A2 RESTORED
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
CR
FCC_A1
KAPPA
LAVES_PHASE_C14
NI3TI
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270
(1986); CR-FE'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_TCFE7: @@
TDB_TCFE7: app mobfe2
Current database: Steels/Fe-Alloys Mobility v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe ni cr
FE
DEFINED
APP: rej ph * all
BCC_A2
LIQUID:L REJECTED
APP: res ph fcc,bcc
FCC_A1
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
NI
CR
FCC_A1
HCP_A3
BCC_A2
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni'
'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc
Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni
diffusion bcc Cr-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1473; * N
DIC>
DIC> @@
DIC> @@ ENTER REGION fer
DIC> @@
DIC> enter-region fer
DIC>
DIC>
DIC> @@
DIC> @@ ENTER DOUBLE-GEOMETRICAL GRID INTO THE REGION
DIC> @@ THIS WILL GIVE A SHORT DISTANCE BETWEEN THE GRIDPOINTS
DIC> @@ IN THE MIDDLE OF THE REGION WHERE THE INITIAL INTERFACE IS
DIC> @@
DIC> enter-grid fer
WIDTH OF REGION /1/: 4e-3
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 200
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.97
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.03093
DIC>
DIC> @@
DIC> @@ ENTER MATRIX PHASE IN THE REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act fer matrix fcc
DIC>
DIC> @@
DIC> @@ ENTER THE START COMPOSITION FOR THE MATRIX PHASE FROM FILES
DIC> @@
DIC> enter-composition
REGION NAME : /FER/: fer
PHASE NAME: /FCC_A1/: fcc
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /CR/: cr
TYPE /LINEAR/: read d2cr.dat
PROFILE FOR /NI/: ni
TYPE /LINEAR/: read d2ni.dat
DIC>
DIC> @@
DIC> @@ ENTER FERRITE AS SPHEROIDAL PHASE IN THE REGION
DIC> @@ SINCE THE FRACTION OF FERRITE IS SMALL AND THEY APPEAR
DIC> @@ AS ISOLATED PARTICLES WE ENTER FERRITE AS A SPHEROIDAL PHASE
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /FER/: fer
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: bcc
DIC>
DIC> @@
DIC> @@ ENTER COMPOSITION FOR THE SPHEROIDAL PHASE
DIC> @@ WE USE THE EQUILIBRIUM VALUE
DIC> @@
DIC> enter-composition
REGION NAME : /FER/: fer
PHASE NAME: /FCC_A1/: bcc
USE EQUILIBRIUM VALUE /Y/: y
DIC>
DIC> @@ SELECT A HOMOGENIZATION FUNCTION
DIC> @@ IN THIS CASE THE LOWER HASHIN-SHTRIKMAN BOUND
DIC> en-ho 1
INFO: ENABLING HOMOGENIZATION MODEL
SELECTED FUNCTION IS HASHIN-SHTRIKMAN BOUND: GENERAL LOWER
DIC>
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 720000
AUTOMATIC TIMESTEP CONTROL /YES/: YES
MAX TIMESTEP DURING INTEGRATION /72000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC> set-simulation-condition
NS01A PRINT CONTROL : /0/: 0
FLUX CORRECTION FACTOR : /1/: 1
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: 2
CHECK INTERFACE POSITION /NO/: n
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: act
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: y
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: 1
MAX TIMESTEP CHANGE PER TIMESTEP : /2/: 2
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: n
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: y
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: n
DIC>
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC> @@
DIC>
DIC> save exd2 y
DIC>
DIC> set-inter
--OK--DIC>
exd2b-run
MACRO exd2b\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd2b\run.DCM"DIC>
DIC>
DIC> @@ exd2_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING THE SIMULATION OF EXAMPLE D2
DIC> @@
DIC>
DIC> @@
DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exd2
OK
DIC> sim
STARTING SIMULATION USING HOMOGENIZATION MODEL
---------------------------------------------Saving results
-----------------------------------------------WARNING:BCC_A2 HAS NO VOLUME FRACTION, CREATING ONE
Starting time-step t0= 0.000000000000000E+000 dt= 1.000000000000000E-007
Stage 1
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391914
FE
2.068909282069137E-003 /
0.517227320517284
NI
7.397201283632084E-004 /
0.184930032090802
Time-step converged t0= 0.000000000000000E+000 dt= 1.000000000000000E-007
-----------------------------------------------Saving results
-----------------------------------------------Starting time-step t0= 1.000000000000000E-007 dt= 2.000000000000000E-007
Stage 1
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391914
FE
2.068909282069137E-003 /
0.517227320517284
NI
7.397201283632084E-004 /
0.184930032090802
Time-step converged t0= 1.000000000000000E-007 dt= 2.000000000000000E-007
-----------------------------------------------Starting time-step t0= 3.000000000000000E-007 dt= 4.000000000000000E-007
Stage 1
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391914
FE
2.068909282069137E-003 /
0.517227320517284
NI
7.397201283632084E-004 /
0.184930032090802
Time-step converged t0= 3.000000000000000E-007 dt= 4.000000000000000E-007
-----------------------------------------------Starting time-step t0= 7.000000000000000E-007 dt= 8.000000000000000E-007
Stage 1
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391914
FE
2.068909282069137E-003 /
0.517227320517284
NI
7.397201283632084E-004 /
0.184930032090802
Time-step converged t0= 7.000000000000000E-007 dt= 8.000000000000000E-007
-----------------------------------------------Starting time-step t0= 1.500000000000000E-006 dt= 1.600000000000000E-006
Stage 1
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391914
FE
2.068909282069137E-003 /
0.517227320517284
NI
7.397201283632084E-004 /
0.184930032090802
Time-step converged t0= 1.500000000000000E-006 dt= 1.600000000000000E-006
-----------------------------------------------Starting time-step t0= 3.100000000000000E-006 dt= 3.200000000000000E-006
Stage 1
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391914
FE
2.068909282069137E-003 /
0.517227320517284
NI
7.397201283632084E-004 /
0.184930032090802
Time-step converged t0= 3.100000000000000E-006 dt= 3.200000000000000E-006
-----------------------------------------------Starting time-step t0= 6.300000000000000E-006 dt= 6.400000000000000E-006
Stage 1
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391914
FE
2.068909282069137E-003 /
0.517227320517284
NI
7.397201283632084E-004 /
0.184930032090802
Time-step converged t0= 6.300000000000000E-006 dt= 6.400000000000000E-006
-----------------------------------------------Starting time-step t0= 1.270000000000000E-005 dt= 1.280000000000000E-005
Stage 1
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391914
FE
2.068909282069137E-003 /
0.517227320517284
NI
7.397201283632084E-004 /
0.184930032090802
Time-step converged t0= 1.270000000000000E-005 dt=
------------------------------------------------
1.280000000000000E-005
Starting time-step t0= 2.550000000000000E-005 dt=
Stage 1
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391914
FE
2.068909282069137E-003 /
0.517227320517284
NI
7.397201283632084E-004 /
0.184930032090802
2.560000000000000E-005
Time-step converged t0= 2.550000000000000E-005 dt= 2.560000000000000E-005
-----------------------------------------------Starting time-step t0= 5.110000000000000E-005 dt= 5.120000000000000E-005
Stage 1
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391914
FE
2.068909282069137E-003 /
0.517227320517284
NI
7.397201283632084E-004 /
0.184930032090802
output ignored...
... output resumed
Iteration #
8 sum residual **2:
Reducing dt to
27487.7906944000
Stage 1
Evaluating Jacobian
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Evaluating Jacobian
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Reducing dt to
13743.8953472000
Stage 1
Evaluating Jacobian
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Evaluating Jacobian
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Iteration #
7 sum residual **2:
Stage 2
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Evaluating Jacobian
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Iteration #
7 sum residual **2:
Iteration #
8 sum residual **2:
Evaluating Jacobian
Iteration #
9 sum residual **2:
Iteration #
10 sum residual **2:
Iteration #
11 sum residual **2:
Stage 3
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391913
FE
2.068909282069138E-003 /
0.517227320517285
NI
7.397201283632083E-004 /
0.184930032090802
Time-step converged t0=
628407.402495900
dt=
-----------------------------------------------Starting time-step t0=
642151.297843100
dt=
Stage 1
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Stage 2
Iteration #
1 sum residual **2:
Stage 3
Iteration #
1 sum residual **2:
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391914
FE
2.068909282069138E-003 /
0.517227320517284
NI
7.397201283632085E-004 /
0.184930032090802
Time-step converged t0=
642151.297843100
dt=
-----------------------------------------------Starting time-step t0=
655895.193190300
dt=
Stage 1
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Iteration #
7 sum residual **2:
Iteration #
8 sum residual **2:
Iteration #
9 sum residual **2:
Stage 2
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Stage 3
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391913
FE
2.068909282069138E-003 /
0.517227320517284
NI
7.397201283632083E-004 /
0.184930032090802
Time-step converged t0=
655895.193190300
dt=
------------------------------------------------
203258.607725639
831466.030879433
7983473.86629958
684162.093803402
686295.673624685
169276.146125021
110251.860529170
390394.022782019
3561.27730260060
167.776428538954
7.30088751020015
2.753237614476837E-002
59814.1795277212
60122.8389390526
32834.4655664678
18241.1957542826
15116.9960701884
2380.81624259528
1873.53992374841
2569.94502835430
98.4579992591595
3.99071721503402
7.283723101384035E-003
786.284934457136
92.1863322532699
3.31537008161831
7.843614362314693E-003
13743.8953472000
13743.8953472000
17104.1192725741
751.595335741003
46.0701155378701
1.35634451430566
3.870163373112630E-002
9.964827969280103E-003
13743.8953472000
27487.7906944000
596457.262440395
45866.6288227245
14738.0462297679
6992.29139967807
933.702937849485
431.435735559867
38.9354462199352
6.61722461172414
7.936849589233788E-002
7.90486718786478
0.562821331341239
19.9525932435355
2.21966270338752
0.264561138053278
27487.7906944000
Starting time-step t0=
683382.983884700
dt=
Stage 1
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Iteration #
7 sum residual **2:
Iteration #
8 sum residual **2:
Iteration #
9 sum residual **2:
Iteration #
10 sum residual **2:
Iteration #
11 sum residual **2:
Evaluating Jacobian
Iteration #
12 sum residual **2:
Stage 2
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Stage 3
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Moles of elements / mole fractions in system:
CR
1.191370589567654E-003 /
0.297842647391914
FE
2.068909282069137E-003 /
0.517227320517284
NI
7.397201283632084E-004 /
0.184930032090802
Time-step converged t0=
683382.983884700
dt=
-----------------------------------------------Saving results
-----------------------------------------------MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
0.0000000
DELETING TIME-RECORD FOR TIME
0.10000000E-06
KEEPING TIME-RECORD FOR TIME
188602.75
AND FOR TIME
720000.00
WORKSPACE RECLAIMED
-----------------------------------------------INTERPOLATION SCHEME USED THIS FRACTION OF
THE ALLOCATED MEMORY:
7.391347451088573E-002
EFFICIENCY FACTOR:
36.9481572195008
-----------------------------------------------DEALLOCATING
-----------------------------------------------DIC>
DIC>
DIC>
DIC>
DIC> set-inter
--OK--DIC>
36617.0161153004
1418597.36959368
1351912.47501260
1285450.21665684
815543.946112943
20767.6419557718
14308.4307521629
12105.2829342820
2432.42468386528
19.6980499078557
16.7553684382103
16.5885863623907
2.641898651755886E-003
660.937731538268
143.926833741535
28.0110434242570
4.81595354209370
0.488136089230660
87.0940420842275
41.0545363864839
8.77263388202189
1.30526771779996
36617.0161153004
exd2b-plot
MACRO exd2b\plot.DCMDIC>
DIC>
DIC> @@ exd2_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE D2
DIC> @@
DIC> @@ ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 7.20000E+05
DIC> read exd2
OK
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
@@
@@ LET US FIRST SEE HOW THE FRACTION OF FERRITE
@@ AS A RESULT OF THE DIFFUSION
@@
s-d-a y npm(bcc)
s-d-a x distance global
Distance is set as independent variable
s-p-c time 0 720000
set-tit Figure D2.1
pl
HAS CHANGED
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
POST-1: @@ LET US NOW PLOT HOW THE AVERAGE CR-CONCENTRATION VARIES WITH DISTANCE
POST-1: @@
POST-1: s-d-a y w-p cr
POST-1: s-p-c time last
POST-1: set-tit Figure D2.2
POST-1: pl
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
POST-1: @@ WE SELECT A BETTER SCALING AND APPEND EXPERIMENTAL DATA
POST-1: @@
POST-1:
POST-1: app y exd2.exp
PROLOGUE NUMBER: /0/: 1
DATASET NUMBER(s): /-1/: 4
POST-1:
POST-1: s-s-s y n 0 50
POST-1: s-s-s x n 10e-4 30e-4
POST-1:
POST-1: set-tit Figure D2.3
POST-1: pl
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
POST-1: @@ NOW WE DO THE SAME FOR NICKEL
POST-1: @@
POST-1:
POST-1: s-d-a y w-p ni
POST-1:
POST-1: app y exd2.exp
PROLOGUE NUMBER: /1/: 1
DATASET NUMBER(s): /-1/: 5
POST-1:
POST-1: s-s-s x n 10e-4 30e-4
POST-1: s-s-s y n 0 40
POST-1:
POST-1: set-tit Figure D2.4
POST-1: pl
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
POST-1: @@ LET US PLOT THE DIFFUSION PATH FOR THE COUPLE
POST-1: @@ WE APPEND THE TERNARY PHASE-DIAGRAM CALCULATED IN THERMO-CALC
POST-1: @@ AND THE EXPERIMENTAL DATA
POST-1: @@
POST-1: s-d-a x w-p cr
POST-1: s-d-a y w-p ni
POST-1: s-i-v dis gl
POST-1: s-p-c time last
POST-1:
POST-1: app y exd2.exp
PROLOGUE NUMBER: /1/: 1
DATASET NUMBER(s): /-1/: 6 7 8
POST-1:
POST-1: s-s-s x n 10 50
POST-1: s-s-s y n 5 35
POST-1:
POST-1: set-tit Figure D2.5
POST-1: pl
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: set-interactive
--OK--POST-1:
exd3-setup
MACRO exd3\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd3\setup.DCM" ?@@
NO SUCH COMMAND, USE HELP
SYS: @@ Diffusion in dispersed systems.
SYS: @@ This example shows the use of the homogenization model.
SYS: @@ It is taken from H. Larsson and A. Engström, Acta. Mater. v.54
SYS: @@ (2006), pp. 2431-2439. Experimental data from A. Engström,
SYS: @@ Scand J Metall, v.243 (1995), p.12.
SYS: @@ The homogenization model can be used for multiphase simulations
SYS: @@ like the dispersed system model, but unlike the dispersed system model
SYS: @@ there is no need to have a single continuous matrix phase and, furthermore,
SYS: @@ there is no need to limit the size of time-steps.
SYS: @@ The set-up is performed in the same manner as for the dispersed system
SYS: @@ model, which means that a certain phase is entered as the matrix phase
SYS: @@ and the other phases are entered as spheroidal, but the choice of matrix
SYS: @@ phase will not affect the simulation.
SYS: @@
SYS:
SYS: @@ exd3_setup.DCM
SYS:
SYS:
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7: def-sys fe cr ni
FE
CR
DEFINED
TDB_TCFE7: rej-ph *
LIQUID:L
BCC_A2
HCP_A3
A1_KAPPA
SIGMA
CHI_A12
CR3SI
NBNI3
REJECTED
TDB_TCFE7: rest-ph bcc,fcc
BCC_A2
FCC_A1 RESTORED
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
NI
FCC_A1
KAPPA
LAVES_PHASE_C14
NI3TI
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270
(1986); CR-FE'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: app mobfe2
Current database: Steels/Fe-Alloys Mobility v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe cr ni
FE
DEFINED
APP: rej-ph *
BCC_A2
LIQUID:L REJECTED
APP: rest-ph bcc,fcc
BCC_A2
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
CR
NI
FCC_A1
HCP_A3
FCC_A1
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni'
'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc
Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni
diffusion bcc Cr-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
-OKAPP:
APP: go -m
NO TIME STEP DEFINED
DIC>
DIC> set-cond glob T 0 1373.15; * N
DIC>
DIC> ent-geo 0
DIC>
DIC> ent-reg
REGION NAME : fecrni
DIC>
DIC> ent-grid
REGION NAME : /FECRNI/: fecrni
WIDTH OF REGION /1/: 3e-3
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 60
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.85
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.15
DIC>
DIC> ent-ph
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /FECRNI/: fecrni
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> ent-ph
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /FECRNI/: fecrni
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: bcc
DIC>
DIC> ent-comp
REGION NAME : /FECRNI/: fecrni
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: m-f
PROFILE FOR /CR/: cr
TYPE /LINEAR/: read cr.dat
PROFILE FOR /NI/: ni
TYPE /LINEAR/: read ni.dat
DIC>
DIC> ent-comp
REGION NAME : /FECRNI/: fecrni
PHASE NAME: /FCC_A1/: bcc
USE EQUILIBRIUM VALUE /Y/: y
DIC>
DIC> se-si-ti
END TIME FOR INTEGRATION /.1/: 3.6e5
AUTOMATIC TIMESTEP CONTROL /YES/: yes
MAX TIMESTEP DURING INTEGRATION /36000/: 3.6e4
INITIAL TIMESTEP : /1E-07/: 1
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: 1e-7
DIC>
DIC> @@ Simulations will run faster if results are not saved every
DIC> @@ time-step
DIC> s-s-c
NS01A PRINT CONTROL : /0/: 0
FLUX CORRECTION FACTOR : /1/: 1
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: 2
CHECK INTERFACE POSITION /NO/: n
VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: act
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: y
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: .5
MAX TIMESTEP CHANGE PER TIMESTEP : /2/: 2
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: n
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: y
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC>
DIC> @@ There are a certain number of options available for the
DIC> @@ homogenization model. In particular, an interpolation
DIC> @@ scheme has been implemented that may drastically reduce
DIC> @@ simulation times. Here, however, default settings are
DIC> @@ chosen and the interpolation scheme is then turned off.
DIC> homogen yes yes
HOMOGENIZATION ENABLED
DIC>
DIC> @@ There are a large number of homogenization functions
DIC> @@ available. These determine how the average kinetics
DIC> @@ of the multiphase mixture is evaluated. For this example
DIC> @@ the General lower Hashin-Shtrikman bound is a good choice.
DIC> en-ho
ENTER HOMOGENIZATION FUNCTION # /5/: 1
SELECTED FUNCTION IS HASHIN-SHTRIKMAN BOUND: GENERAL LOWER
DIC>
DIC>
DIC>
DIC> save exd3 Y
DIC>
DIC>
DIC> set-inter
--OK--DIC>
exd3-run
MACRO exd3\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd3\run.DCM"DIC>
DIC>
DIC> @@ exd3_run.DCM
DIC>
DIC> @@
DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exd3
OK
DIC>
DIC> sim
STARTING SIMULATION USING HOMOGENIZATION MODEL
---------------------------------------------Saving results
-----------------------------------------------WARNING:BCC_A2 HAS NO VOLUME FRACTION, CREATING ONE
Starting time-step t0= 0.000000000000000E+000 dt=
1.00000000000000
Stage 1
Evaluating Jacobian
Iteration #
1 sum residual **2:
9.120180692446643E-004
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.020229808644575E-003 /
0.340076602881525
FE
1.469790221088491E-003 /
0.489930073696164
NI
5.099799702669341E-004 /
0.169993323422311
Time-step converged t0= 0.000000000000000E+000 dt=
-----------------------------------------------Saving results
-----------------------------------------------Starting time-step t0=
1.00000000000000
dt=
Stage 1
Iteration #
1 sum residual **2:
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.020229808644575E-003 /
0.340076602881525
FE
1.469790221088492E-003 /
0.489930073696164
NI
5.099799702669341E-004 /
0.169993323422311
Time-step converged t0=
1.00000000000000
dt=
-----------------------------------------------Starting time-step t0=
3.00000000000000
dt=
Stage 1
Iteration #
1 sum residual **2:
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.020229808644575E-003 /
0.340076602881525
FE
1.469790221088491E-003 /
0.489930073696164
NI
5.099799702669341E-004 /
0.169993323422311
Time-step converged t0=
3.00000000000000
dt=
-----------------------------------------------Starting time-step t0=
7.00000000000000
dt=
Stage 1
Iteration #
1 sum residual **2:
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.020229808644575E-003 /
0.340076602881525
FE
1.469790221088491E-003 /
0.489930073696164
NI
5.099799702669341E-004 /
0.169993323422311
Time-step converged t0=
7.00000000000000
dt=
-----------------------------------------------Starting time-step t0=
15.0000000000000
dt=
Stage 1
Iteration #
1 sum residual **2:
Stage 2
Stage 3
Moles of elements / mole fractions in system:
CR
1.020229808644575E-003 /
0.340076602881525
FE
1.469790221088491E-003 /
0.489930073696164
NI
5.099799702669341E-004 /
0.169993323422311
Time-step converged t0=
15.0000000000000
dt=
-----------------------------------------------Starting time-step t0=
31.0000000000000
dt=
Stage 1
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Stage 2
Iteration #
1 sum residual **2:
Stage 3
Moles of elements / mole fractions in system:
CR
1.020229808644575E-003 /
0.340076602881525
FE
1.469790221088491E-003 /
0.489930073696164
NI
5.099799702669341E-004 /
0.169993323422311
Time-step converged t0=
31.0000000000000
dt=
-----------------------------------------------Starting time-step t0=
63.0000000000000
dt=
Stage 1
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Stage 2
Iteration #
1 sum residual **2:
Stage 3
Moles of elements / mole fractions in system:
CR
1.020229808644575E-003 /
0.340076602881525
FE
1.469790221088491E-003 /
0.489930073696164
NI
5.099799702669341E-004 /
0.169993323422311
Time-step converged t0=
63.0000000000000
dt=
-----------------------------------------------Starting time-step t0=
127.000000000000
dt=
Stage 1
1.00000000000000
2.00000000000000
4.906132675411064E-004
2.00000000000000
4.00000000000000
3.518450668995808E-004
4.00000000000000
8.00000000000000
3.227494705941410E-003
8.00000000000000
16.0000000000000
0.824146500758431
16.0000000000000
32.0000000000000
22.4929239936594
4.124859032892367E-003
2.468606119331676E-003
32.0000000000000
64.0000000000000
318.007588767526
1.143675460546489E-002
1.198981658997104E-003
64.0000000000000
128.000000000000
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Stage 2
Iteration #
1 sum residual **2:
Stage 3
Iteration #
1 sum residual **2:
Moles of elements / mole fractions in system:
CR
1.020229808644575E-003 /
0.340076602881525
FE
1.469790221088491E-003 /
0.489930073696164
NI
5.099799702669341E-004 /
0.169993323422311
3329.18606784344
7.78905658057673
3.277409706968439E-003
Time-step converged t0=
127.000000000000
dt=
-----------------------------------------------Starting time-step t0=
255.000000000000
dt=
Stage 1
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Stage 2
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
128.000000000000
0.131821299548065
2.021182073547698E-003
256.000000000000
24934.0181206181
200.021723873599
2.78303386047289
1.436363601993135E-003
6.61692545486211
1.134594314761221E-003
output ignored...
... output resumed
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Iteration #
7 sum residual **2:
Iteration #
8 sum residual **2:
Iteration #
9 sum residual **2:
Iteration #
10 sum residual **2:
Iteration #
11 sum residual **2:
Iteration #
12 sum residual **2:
Iteration #
13 sum residual **2:
Iteration #
14 sum residual **2:
Stage 2
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Stage 3
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Iteration #
7 sum residual **2:
Iteration #
8 sum residual **2:
Moles of elements / mole fractions in system:
CR
1.020229808644575E-003 /
0.340076602881525
FE
1.469790221088491E-003 /
0.489930073696164
NI
5.099799702669341E-004 /
0.169993323422311
13655.9639290068
6475.00102925700
3965.11859733405
1996.92274973293
1107.49003319401
539.306484071880
276.738330196162
129.107419349482
61.9956402763803
27.0800714064624
11.9172786028644
4.09789335108518
1.63120658462706
0.121451111843551
Time-step converged t0=
294911.000000000
dt=
-----------------------------------------------Starting time-step t0=
311295.000000000
dt=
Stage 1
Evaluating Jacobian
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Stage 2
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Stage 3
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Iteration #
7 sum residual **2:
Moles of elements / mole fractions in system:
CR
1.020229808644575E-003 /
0.340076602881525
FE
1.469790221088491E-003 /
0.489930073696164
NI
5.099799702669341E-004 /
0.169993323422311
16384.0000000000
Time-step converged t0=
311295.000000000
dt=
-----------------------------------------------Starting time-step t0=
327679.000000000
dt=
Stage 1
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Stage 2
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Iteration #
7 sum residual **2:
Iteration #
8 sum residual **2:
Stage 3
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
5434.70524430049
1078.30689166348
212.998929828111
40.5561458644670
7.39845157557391
1.47744461934400
16571.9037332633
3291.53522325984
659.156535582426
131.361260911548
31.8564332612383
9.61577979719794
2.71258885179893
0.397930253238309
16384.0000000000
5.27039921357063
7.159967769966637E-003
6435.85538245050
1364.36098596646
287.019661257604
58.9585781824738
11.2571513001234
1.59881546230279
19691.8598240832
4174.79444119640
882.537657876792
184.858302139656
37.4129054134817
6.87473816433940
0.744738051091054
16384.0000000000
16384.0000000000
176835.296233280
24172.1835970822
7148.58476451709
569.981591890298
106.269053356745
5.684607595464755E-002
11104.0538679634
3040.14613267801
862.414367640503
235.196069878964
64.5126896356297
16.0238535837918
3.37028237795913
0.297237912017114
22815.8208660278
4906.71346820302
1092.76374704571
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Iteration #
7 sum residual **2:
Iteration #
8 sum residual **2:
Moles of elements / mole fractions in system:
CR
1.020229808644575E-003 /
0.340076602881525
FE
1.469790221088491E-003 /
0.489930073696163
NI
5.099799702669341E-004 /
0.169993323422311
Time-step converged t0=
327679.000000000
dt=
-----------------------------------------------Starting time-step t0=
344063.000000000
dt=
Stage 1
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Stage 2
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Iteration #
7 sum residual **2:
Stage 3
Iteration #
1 sum residual **2:
Iteration #
2 sum residual **2:
Iteration #
3 sum residual **2:
Iteration #
4 sum residual **2:
Iteration #
5 sum residual **2:
Iteration #
6 sum residual **2:
Iteration #
7 sum residual **2:
Moles of elements / mole fractions in system:
CR
1.020229808644575E-003 /
0.340076602881525
FE
1.469790221088490E-003 /
0.489930073696163
NI
5.099799702669341E-004 /
0.169993323422311
Time-step converged t0=
344063.000000000
dt=
-----------------------------------------------Saving results
-----------------------------------------------MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
0.0000000
KEEPING TIME-RECORD FOR TIME
1.00000000
AND FOR TIME
360000.00
WORKSPACE RECLAIMED
-----------------------------------------------INTERPOLATION SCHEME USED THIS FRACTION OF
THE ALLOCATED MEMORY:
4.744378654030481E-002
EFFICIENCY FACTOR:
7.14806716809515
-----------------------------------------------DEALLOCATING
-----------------------------------------------DIC>
DIC>
DIC> set-inter
--OK--DIC>
264.897188155683
74.5261739623531
19.5566233476854
4.48213556790957
0.469535690378270
16384.0000000000
15937.0000000000
10946.6167863779
155.426954430152
1.54475665633901
9.339032915760354E-003
7842.67524892009
1748.74421212992
392.975619747945
88.0040660811491
19.7954669508743
4.23850661231605
0.419238607540761
23989.8203616302
5334.31296893841
1183.91699058663
260.791165969814
56.1644157391815
11.2458728660036
1.71560212484594
15937.0000000000
exd3-plot
MACRO exd3\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd3\plot.DCM"DIC>
DIC>
DIC> @@ exd3_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE D3
DIC> @@
DIC> @@ ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 3.60000E+05
DIC> read exd3
OK
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
@@
@@ First study the composition profiles of Cr and Ni
@@
s-d-a x distance global
Distance is set as independent variable
s-d-a y w-p Cr
s-p-c time 0 360000
set-tit Figure D3.1
app yes k5k7cr.exp 0; 1
s-s-s x n 1e-3 2e-3
s-s-s y n 20 45
plot
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: s-d-a y w-p Ni
POST-1: set-tit Figure D3.2
POST-1:
POST-1: app yes k5k7ni.exp 0; 1
POST-1:
POST-1: s-s-s y n 0 35
POST-1:
POST-1: plot
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
POST-1: @@ then study the amount of FCC and BCC
POST-1: @@
POST-1: app no
POST-1: s-d-a y npm(fcc)
POST-1: set-tit Figure D3.3
POST-1: plot
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: s-d-a y npm(bcc)
POST-1: set-tit Figure D3.4
POST-1: plot
POST-1:
POST-1:
POST-1: set-interactive
--OK--POST-1:
Cooperative growth
ν
Example e1
Growth of pearlite in an Fe-Mn-C alloy
T = 900 - Time * 10
ν
pearlite
austenite
4E-5
exe1-setup
MACRO exe1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exe1\setup.DCM"SYS: ?@@
NO SUCH COMMAND, USE HELP
SYS: @@ Cooperative growth.
SYS: @@ This is an example file for a setup and a calculation of PEARLITE
SYS: @@ growth in an Fe-0.50wt%C - 0.91wt%Mn steel.
SYS: @@
SYS:
SYS: @@ exe1_setup.DCM
SYS:
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ DEFINE THE SYSTEM
TDB_TCFE7: @@
TDB_TCFE7: def-sys fe c mn
FE
C
MN
DEFINED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ KEEP ONLY THE AUSTENITE, FERRITE AND CEMENTITE PHASES
TDB_TCFE7: @@
TDB_TCFE7: rej-ph /all
GAS:G
LIQUID:L
BCC_A2
FCC_A1
HCP_A3
DIAMOND_FCC_A4
GRAPHITE
CEMENTITE
M23C6
M7C3
M5C2
KSI_CARBIDE
A1_KAPPA
KAPPA
FE4N_LP1
FECN_CHI
LAVES_PHASE_C14
G_PHASE
REJECTED
TDB_TCFE7: rest-ph fcc,bcc,cem
FCC_A1
BCC_A2
CEMENTITE
RESTORED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ GET THE THERMODYNAMIC DATA
TDB_TCFE7: @@
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo-C, C-Mn'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'W. Huang, Metall. Trans. A, 21A (1990), 2115-2123; TRITA-MAC 411 (Rev
1989); C-FE-MN'
'W. Huang, Calphad, 13 (1989), 243-252; TRITA-MAC 388 (rev 1989); FE-MN'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
'P. Villars and L.D. Calvert (1985). Pearsons handbook of crystallographic
data for intermetallic phases. Metals park, Ohio. American Society for
Metals; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ APPEND THE KINETIC DATA FROM THE MOBILITY DATABASE
TDB_TCFE7: @@
TDB_TCFE7: append mobfe2
Current database: Steels/Fe-Alloys Mobility v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe c mn
FE
DEFINED
APP: rej-ph /all
BCC_A2
FE4N_LP1
REJECTED
APP: rest-ph bcc,fcc,cem
BCC_A2
RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
C
MN
CEMENTITE
HCP_A3
FCC_A1
LIQUID:L
FCC_A1
CEMENTITE
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'Bae et al.: Z. Metallkunde 91(2000)672-674; fcc Fe-Mn
Mn-Ni'
'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr
-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
'Assessed from data presented in Landholt-Bornstein, Vol. 26, ed. H.
Mehrer, springer (1990); Impurity diff of Mn in bcc Fe.'
-OKAPP:
APP: @@
APP: @@ OK, ALL THERMODYNAMIC AND KINETIC DATA HAVE BEEN FETCHED
APP: @@ GO TO THE DICTRA MONITOR TO SETUP YOUR PROBLEM
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ SET CONDITION ON TEMPERATURE
DIC> @@
DIC> set-cond glob t 0 900-time*10; * n
DIC>
DIC> @@
DIC> @@ ENTER REGIONS
DIC> @@
DIC> enter-reg pearlite
DIC>
DIC> @@
DIC> @@ ENTER A SMALL INITIAL SIZE OF THE GRID IN THE 'PEARLITE' REGION
DIC> @@
DIC> enter-grid pearlite 5e-10 lin 5
DIC>
DIC> @@
DIC> @@ ENTER INTO THE 'PEARLITE' REGION THE PHASES 'BCC' AND 'CEM' AND SPECIFY
DIC> @@ THAT THEY WILL BE PRESENT IN THE FORM OF A 'LAMELLAR AGGREGATE. SET THEIR
DIC> @@ STATUS TO 'ACTIVE'. A LOT OF QUESTIONS FOLLOWS CONCERNING THE VALUES OF
DIC> @@ THE PARAMETERS PRESENT IN THE PEARLITE GROWTH MODEL SUCH AS SURFACE
DIC> @@ TENSION, OPTIMUM GROWTH RATE FACTOR, BOUNDARY DIFFUSION COEFFICIENTS.
DIC> @@ CARBON(C) IS TREATED IN A SPECIAL WAY INSIDE THE PROGRAM, IF AUTOMATIC
DIC> @@ IS ENTERED THE DIFFUSION OF C IS CALCULATED ACCORDING TO AN EQUATION
DIC> @@ FOR MIXED BOUNDARY AND VOLUME DIFFUSION. YOU MAY CHOOSE BETWEEN
DIC> @@ MANUAL OR AUTOMATIC START VALUES FOR ALL VARIABLES EXCEPT THE GROWTH
DIC> @@ RATE, LET US TRY 1E-6
DIC> @@
DIC> @@ FOR MORE INFORMATION ABOUT THE PEARLITE GROWTH MODEL CONSULT
DIC> @@ B. JÖNSSON: INTERNAL REPORT, TRITA-MAC-0478, DIVISION OF
DIC> @@ PHYSICAL METALLURGY, ROYAL INSTITUTE OF TECHNOLOGY, S-10044
DIC> @@ STOCKHOLM, SWEDEN, 1992.
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /PEARLITE/: pearlite
PHASE TYPE /MATRIX/: lam
Eutectiod reaction is "GAMMA" ==> "ALPHA" + "BETA"
Enter name of "ALPHA" phase /BCC_A2/: bcc_a2
Enter name of "BETA" phase /CEMENTITE/: cementite
Enter name of "GAMMA" phase /FCC_A1/: fcc_a1
Enter "ALPHA"/"BETA" surface tension
LOW TIME LIMIT /0/: 0
Surface tension(T,P,TIME)= 1;
HIGH TIME LIMIT /*/: 1000
ANY MORE RANGES /N/: N
Enter "ALPHA"/"GAMMA" surface tension
LOW TIME LIMIT /0/: 0
Surface tension(T,P,TIME)= 1;
HIGH TIME LIMIT /*/: 1000
ANY MORE RANGES /N/: N
Enter "BETA"/"GAMMA" surface tension
LOW TIME LIMIT /0/: 0
Surface tension(T,P,TIME)= 1;
HIGH TIME LIMIT /*/: 1000
ANY MORE RANGES /N/: N
Optimum growth condition factor /2/: 2
Name of dependent element /FE/: fe
INPUT OF DIFFUSION DATA
Growth model (VOLUME/BOUNDARY/KIRKALDY) for element C /BOUNDARY/: boundary
DF(C) = /value/AUTOMATIC/MIXED/: auto
Growth model (VOLUME/BOUNDARY/KIRKALDY) for element MN /BOUNDARY/: boundary
DF(MN) = /value/MIXED/: 5.4e-14
DQ(MN): 155000
Automatic start values for the S0 determination /Y/: Y
Growth rate V: 1E-6
Automatic start values on other variables /Y/: Y
DIC>
DIC> @@
DIC> @@ INITIATE THE COMPOSITION RECORDS FOR THE 'PEARLITE'
DIC> @@
DIC> enter-composition
REGION NAME : /PEARLITE/: pearlite
DIC>
DIC> @@
DIC> @@ WE WILL NOW CONTINUE BY DEFINING A MATRIX PHASE INTO WHICH THE PEARLITE
DIC> @@ WILL GROW. START BY ENTERING A REGION NAME, LET US CALL IT 'AUSTENITE'
DIC> @@
DIC> enter-region austenite
ATTACH TO REGION NAMED /PEARLITE/:
ATTACHED TO THE RIGHT OF PEARLITE /YES/:
DIC> @@
DIC> @@ SPECIFY WHAT PHASE 'FCC' WILL BE PRESENT IN THE 'AUSTENITE' REGION
DIC> @@ AND WHAT TYPE OF PHASE 'MATRIX' IT IS AND ITS INITIAL STATE 'ACTIVE'
DIC> @@
DIC> enter-phase act austenite matrix fcc
DIC>
DIC> @@
DIC> @@ WE ALSO NEED TO HAVE A SPATIAL GRID IN THE 'AUSTENITE' REGION.
DIC> @@ CHOSE SIZE '4E-5' GRIDTYPE 'GEOMETRICAL', '30' GRIDPOINTS AND '1.5'
DIC> @@ AS VALUE FOR THE GEOMETRICAL FACTOR OF THE GRID.
DIC> @@
DIC> enter-grid austenite 4e-5 geo 30 1.5
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ ENTER INITIAL CONCENTRATION PROFILES IN THE 'FCC' PHASE OF THE
DIC> @@ 'AUSTENITE' REGION. CONCENTRATIONS MUST BE GIVEN IN Y-FRACTIONS.
DIC> @@
DIC> enter-composition
REGION NAME : /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc
DEPENDENT COMPONENT ? /MN/: fe
COMPOSITION TYPE /MOLE_FRACTION/: site-fraction
PROFILE FOR MN
TYPE /LINEAR/: lin 9.29232973E-3 9.29232973E-3
PROFILE FOR C
TYPE /LINEAR/: lin 2.3384332E-2 2.3384332E-2
DIC>
DIC> @@
DIC> @@ WE ARE NOW FINNISHED WHITH THE MATRIX PHASE
DIC> @@
DIC>
DIC> @@
DIC> @@ SPECIFY A SPHERICAL '2' GEOMETRY
DIC> @@
DIC> enter-geo 2
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 5
AUTOMATIC TIMESTEP CONTROL /YES/: YES
MAX TIMESTEP DURING INTEGRATION /.5/: 0.1
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exe1 Y
DIC>
DIC> set-inter
--OK--DIC>
exe1-run
MACRO exe1\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exe1\run.DCM"DIC>
DIC>
DIC> @@ exe1_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE e1
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC>
DIC> @@
DIC> @@ READ SETUP FROM FILE
DIC> @@
DIC> read exe1
OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> simulate
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
4
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399293
MN = .0092923297312127
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399293
MN = .0092923297312127
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
17 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUSTENITE
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.76465982E-05 AND
0.76465982E-05
POSITION OF INTERFACE PEARLITE / AUSTENITE IS
0.50076466E-09
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294
MN = .00929232973121271
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
10
GRIDPOINT(S) REMOVED FROM CELL #1
CPU time used in timestep
4 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUSTENITE
0 seconds
REGION: AUSTENITE
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
0.0000000
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.76468335E-05 AND
0.76468335E-05
POSITION OF INTERFACE PEARLITE / AUSTENITE IS
0.12654480E-08
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399295
MN = .00929232973121271
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
CPU time used in timestep
1 GRIDPOINT(S) REMOVED FROM CELL#
0
1 REGION #
seconds
1
TIME = 0.13026424E-02 DT = 0.12025424E-02 SUM OF SQUARES =
0.0000000
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.76496630E-05 AND
0.76496630E-05
POSITION OF INTERFACE PEARLITE / AUSTENITE IS
0.10464492E-07
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294
MN = .00929232973121272
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
CPU time used in timestep
2 GRIDPOINT(S) REMOVED FROM CELL#
1
1 REGION #
seconds
1
TIME = 0.37077272E-02 DT = 0.24050848E-02 SUM OF SQUARES =
0.0000000
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.76553232E-05 AND
0.76553232E-05
POSITION OF INTERFACE PEARLITE / AUSTENITE IS
0.28876193E-07
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294
MN = .00929232973121272
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
CPU time used in timestep
1 GRIDPOINT(S) REMOVED FROM CELL#
0
1 REGION #
seconds
1
TIME = 0.85178967E-02 DT = 0.48101695E-02 SUM OF SQUARES =
0.0000000
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.76666480E-05 AND
0.76666480E-05
POSITION OF INTERFACE PEARLITE / AUSTENITE IS
0.65754070E-07
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399295
MN = .00929232973121272
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
CPU time used in timestep
1 GRIDPOINT(S) REMOVED FROM CELL#
0
1 REGION #
seconds
1
TIME = 0.18138236E-01 DT = 0.96203391E-02 SUM OF SQUARES =
0.0000000
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.76893156E-05 AND
0.76893156E-05
POSITION OF INTERFACE PEARLITE / AUSTENITE IS
0.13972789E-06
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294
MN = .00929232973121272
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
CPU time used in timestep
0
seconds
TIME = 0.37378914E-01 DT = 0.19240678E-01 SUM OF SQUARES =
0.0000000
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.77347217E-05 AND
0.77347217E-05
POSITION OF INTERFACE PEARLITE / AUSTENITE IS
0.28854918E-06
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294
MN = .00929232973121272
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
CPU time used in timestep
0
seconds
TIME = 0.75860270E-01 DT = 0.38481356E-01 SUM OF SQUARES =
0.0000000
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.78258159E-05 AND
0.78258159E-05
POSITION OF INTERFACE PEARLITE / AUSTENITE IS
0.58969719E-06
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294
MN = .00929232973121272
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
CPU time used in timestep
1 GRIDPOINT(S) REMOVED FROM CELL#
0
1 REGION #
seconds
1
TIME = 0.15282298
DT = 0.76962713E-01 SUM OF SQUARES =
0.0000000
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.80091146E-05 AND
0.80091146E-05
POSITION OF INTERFACE PEARLITE / AUSTENITE IS
0.12061004E-05
U-FRACTION IN SYSTEM: C = .0233843320030519 FE = .990707670399294
output ignored...
... output resumed
TIME =
3.5362705
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
3.6362705
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
0
seconds
0
seconds
0
seconds
0
seconds
0
seconds
0
seconds
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
4.8362705
U-FRACTION IN SYSTEM:
seconds
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
4.7362705
U-FRACTION IN SYSTEM:
0
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
4.6362705
U-FRACTION IN SYSTEM:
seconds
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
4.5362705
U-FRACTION IN SYSTEM:
0
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
4.4362705
U-FRACTION IN SYSTEM:
seconds
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
4.3362705
U-FRACTION IN SYSTEM:
0
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
4.2362705
U-FRACTION IN SYSTEM:
seconds
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
4.1362705
U-FRACTION IN SYSTEM:
0
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
4.0362705
U-FRACTION IN SYSTEM:
seconds
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
3.9362705
U-FRACTION IN SYSTEM:
0
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
3.8362705
U-FRACTION IN SYSTEM:
seconds
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
3.7362705
U-FRACTION IN SYSTEM:
0
0
seconds
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
TOTAL SIZE OF SYSTEM:
MN = .00929232973122968
2.67725268543E-13 [m^3]
CPU time used in timestep
TIME =
4.9362705
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
CPU time used in timestep
TIME =
5.0000000
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
DT = 0.10000000E+00 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
0
seconds
DT = 0.63729517E-01 SUM OF SQUARES =
0.0000000
C = .0233843320030518 FE = .990707670399277
MN = .00929232973122968
2.67725268543E-13 [m^3]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
3.2528230
3.3262605
3.3262705
3.3362705
3.4362705
3.5362705
3.6362705
3.7362705
3.8362705
3.9362705
4.0362705
4.1362705
4.2362705
4.3362705
4.4362705
4.5362705
4.6362705
4.7362705
4.8362705
KEEPING TIME-RECORD FOR TIME
4.9362705
AND FOR TIME
5.0000000
WORKSPACE RECLAIMED
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
--OK--DIC>
exe1-plot
MACRO exe1\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exe1\plot.DCM"DIC>
DIC>
DIC> @@ exe1_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 5.00000E+00
DIC> read exe1
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
POST-1:
@@
@@ PLOT THE TEMPERATURE AS FUNCTION OF TIME.
@@
s-d-a x time
Time is set as independent variable
s-d-a y t
s-p-c interface first
plot
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ NOW LETS PLOT THE FRACTION OF PEARLITE VS. TIME.
POST-1: @@
POST-1: s-d-a y ivv(pearlite)
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ THE LAMELLAR SPACING AS FUNCTION OF TIME.
POST-1: @@
POST-1: s-d-a
AXIS (X, Y OR Z) : y
VARIABLE : lamellar-sp
IN REGION: /*/: pearlite
POST-1:
POST-1: s-p-c
CONDITION /INTEGRAL/: interface
INTERFACE : pearlite
UPPER OR LOWER INTERFACE OF REGION PEARLITE#1 /LOWER/: upper
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ LET'S LOOK AT THE LAMELLAR SPACING VS. TEMPERATURE INSTEAD.
POST-1: @@
POST-1: s-d-a x t
POST-1:
POST-1: s-p-c interface pearlite upper
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ AND THE C COMPOSITION IN THE FERRITE VS. TEMP.
POST-1: @@
POST-1: s-d-a y w(bcc,c)
POST-1:
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ FINALLY, LETS LOOK AT THE VELOCITY OF THE INTERFACE VS. TEMP.
POST-1: @@
POST-1: s-d-a y t
POST-1: s-d-a x velocity
INTERFACE : pearlite
UPPER OR LOWER INTERFACE OF REGION PEARLITE#1 /LOWER/: upper
POST-1: set-ax-ty x log
POST-1: s-s-s x n 1e-6 1e-4
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
Coarsening
Matrix
β
Particle
α
_
rp= 1.5 r
Moving phase interface
with α and β in local
equilibrium.
Equilibrium as defined by
the average composition in
the system.
2σVm interfacial energy
contribution for αrp
phase
2σV
_ m interfacial energy
contribution for αr
phase
Example f1
Coarsening of a M6 C precipitate in an Fe-Mo-C alloy
FCC
M 6C
T = 1173K
rp = 0.228 µm
exf1-setup
MACRO exf1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exf1\setup.DCM"SYS: @@
SYS: @@ Coarsening.
SYS: @@ Setup file for calculating the Ostwald-ripening
SYS: @@ of a spherical M6C carbide in an AUSTENITE matrix.
SYS: @@
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8: switch tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1
TDB_TCFE7: def-sys fe mo c
FE
MO
DEFINED
TDB_TCFE7: rej ph * all
GAS:G
LIQUID:L
FCC_A1
HCP_A3
GRAPHITE
CEMENTITE
M7C3
M6C
M3C2
MC_ETA
KSI_CARBIDE
A1_KAPPA
Z_PHASE
FE4N_LP1
SIGMA
MU_PHASE
R_PHASE
CHI_A12
REJECTED
TDB_TCFE7: res ph fcc m6c
FCC_A1
M6C RESTORED
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
REJECTED
C
BCC_A2
DIAMOND_FCC_A4
M23C6
M5C2
MC_SHP
KAPPA
FECN_CHI
P_PHASE
LAVES_PHASE_C14
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'J-O. Andersson, Calphad, 12 (1988), 1-8; TRITA 0317 (1986); C-MO'
'A. Fernandez Guillermet, Calphad, 6 (1982), 127-140; (sigma phase revised
1986); TRITA-MAC 200 (1982); FE-MO'
'J-O. Andersson, Calphad, 12 (1988), 9-23; TRITA 0321 (1986); C-FE-MO'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
'S. Nagakura (1968), Transactions of the Iron and Steel Institute of Japan,
Vol.8, pp. 265-294; Molar volumes'
'Kupalova, IK and Pavlova, VI (988); High speed steels: Physical
Properties, Prop. Data Update, 2, 67-78; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_TCFE7: @@
TDB_TCFE7: app
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
SLAG1
TCOX6
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE7/: mobfe2
Current database: Steels/Fe-Alloys Mobility
v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe mo c
FE
DEFINED
APP: rej ph * all
BCC_A2
FE4N_LP1
REJECTED
APP: res ph fcc m6c
*** M6C INPUT IGNORED
FCC_A1 RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
MO
C
CEMENTITE
HCP_A3
FCC_A1
LIQUID:L
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'H. Oikawa, Tech. Rept. Tohoku Univ., 48(1983)7.; Impurity diffusion of Mo
in fcc Fe.'
-OKAPP:
APP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
NO TIME STEP DEFINED
*** ENTERING M6C AS A DIFFUSION NONE PHASE
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> s-cond glob t 0 1173; * N
DIC>
DIC> @@
DIC> @@ ENTER REGIONS part AND aus
DIC> @@
DIC> enter-region
REGION NAME : part
DIC> enter-region aus
ATTACH TO REGION NAMED /PART/:
ATTACHED TO THE RIGHT OF PART /YES/:
DIC> @@
DIC> @@ ENTER GEOMTRICAL GRIDS INTO THE REGIONS
DIC> @@
DIC>
DIC> @@
DIC> @@ THE INITIAL SIZE OF THE CARBIDE PARTICLE IS ASSUMED TO BE KNOWN
DIC> @@ (IN THIS CASE WE TAKE OUR VALUE FROM NISHIZAWA ET. AL.) THE
DIC> @@ AVERAGE PARTICLE SIZE IS ASSUMED TO BE 0.152E-6 METERS, WE WILL HOWEVER
DIC> @@ PERFORM THE CALCULATIONS ON A MAXIMUM SIZE PARTICLE WHICH IS ASSUMED TO
DIC> @@ 1.5 TIMES THE AVERAGE SIZE. THE SURROUNDING AUSTENITIC MATRIX SIZE IS
DIC> @@ CHOOSEN TO MAINTAIN THE AVERAGE COMPOSITION.
DIC> @@
DIC> enter-grid
REGION NAME : /PART/: part
WIDTH OF REGION /1/: 0.228E-6
TYPE /LINEAR/: geo
NUMBER OF POINTS /50/: 12
VALUE OF R IN THE GEOMETRICAL SERIE : 0.8
DIC>
DIC> enter-grid
REGION NAME : /AUS/: aus
WIDTH OF REGION /1/: 4.53147041E-7
TYPE /LINEAR/: lin
NUMBER OF POINTS /50/: 100
DIC>
DIC> @@
DIC> @@ ENTER PHASES INTO REGIONS
DIC> @@
DIC> enter-phase active part matrix m6c
DIC>
DIC> enter-phase active aus matrix fcc#1
DIC>
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITIONS IN THE PHASES
DIC> @@
DIC> enter-composition
REGION NAME : /PART/: part
PHASE NAME: /M6C/: m6c
DEPENDENT COMPONENT ? /MO/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-f
PROFILE FOR /MO/: mo lin 6.20117E-01 6.20117E-01
DIC>
DIC> ent-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /MO/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-f
PROFILE FOR /C/: mo lin 1.82099E-02 1.82099E-02
PROFILE FOR /MO/: c lin 2.83351E-03 2.83351E-03
DIC>
DIC>
DIC> @@
DIC> @@ SET SPHERICAL GEOMETRY
DIC> @@
DIC> ent-geo 2
DIC>
DIC> @@
DIC> @@ ENTER THE SURFACE TENSION ENERGY CONTRIBUTION AS A FUNCTION OF
DIC> @@ THE INTERFACE POSITION (THE RADIUS OF THE PARTICLE)
DIC> @@ WE WILL ALSO ENTER THE MOLAR VOLUME OF THE PHASE CORRECTED
DIC> @@ TO BE THE MOLAR VOLUME PER SUBSTITIONAL ATOM
DIC> @@ THE SURFACE TENSION IS 0.7, THE MOLAR VOLUME IS 0.71 AND THE
DIC> @@ TRANSFORMATION TO MOLAR VOLUME PER SUBSTITIONAL ATOM IS 7/6
DIC> @@
DIC> set-surf 2*0.7*0.71*(7/6)/X;
ENTERED FUNCTION :2*.7*.71*7/6/X FOR CELL #1
DIC>
DIC>
DIC> @@
DIC> @@ ENABLE THE SIMPLIFIED MODEL THE COARSENING (OSTWALD-RIPENING)
DIC> @@
DIC> coarse YES
DIC>
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS
DIC> @@
DIC> set-simulation-time 1E6
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /100000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exf1 Y
DIC>
DIC> set-inter
--OK--DIC>
exf1-run
MACRO exf1\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exf1\run.DCM"DIC> @@ exf1_run.DCM
DIC>
DIC> @@
DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
*** ENTERING M6C AS A DIFFUSION NONE PHASE
DIC> read exf1
OK
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
4
GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES:
9
EQUILIBRIUM CALCULATIONS
DONE
6 OUT OF
9
Automatic start values
Old start values kept
Automatic start values
Old start values kept
Automatic start values
U-FRACTION IN SYSTEM:
will be set
will be set
will be set
C = .0190652843033664 FE = .970761291162785
MO = .0292387089677228
TOTAL SIZE OF SYSTEM: 1.32376603026E-18 [m^3]
U-FRACTION IN SYSTEM: C = .0190652843033664 FE = .970761291162785
MO = .0292387089677228
TOTAL SIZE OF SYSTEM: 1.32376603026E-18 [m^3]
13 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: PART
0.610226592285138
0.610394670658709
0.610220653636068
2.577463539896956E-002
003
2.478460851859301E-005
5.184921859420048E-008
1.780847860365745E-009
010
3.919748330625496E-010
3.000877739652543E-009
2.993970972330437E-010
010
9.104389372577615E-011
2.190546157852105E-014
3.670092674869471E-019
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.36700927E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.35788519E-05 AND -0.35788519E-05
POSITION OF INTERFACE PART / AUS IS
0.22799964E-06
U-FRACTION IN SYSTEM: C = .0190656979973028 FE = .970759618269961
MO = .0292403818605463
TOTAL SIZE OF SYSTEM: 1.32375979663E-18 [m^3]
2.200891894408349E4.549279086541271E2.168192534687207E-
CPU time used in timestep
0 seconds
4 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: PART
3.008074578885135E-006
3.008676244819642E-006
3.009754725617872E-006
1.376680982020104E-006
1.011983359465107E006
4.731025891306668E-007
8.406400667681804E-008
5.127667259388998E-010
4.656525308209799E013
7.583893567968713E-018
SWITCHING ACTIVITIES FOR INTERFACE #2, CELL #1
FROM: C TO: MO
TIME = 0.13425812E-05 DT = 0.12425812E-05 SUM OF SQUARES = 0.75838936E-17
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.51213559E-08 AND -0.51213559E-08
POSITION OF INTERFACE PART / AUS IS
0.22799964E-06
U-FRACTION IN SYSTEM: C = .0190661091620437 FE = .970759599121351
MO = .0292404010091561
TOTAL SIZE OF SYSTEM: 1.32375968579E-18 [m^3]
CPU time used in timestep
1 seconds
2 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: PART
6.146371057362382E-012
6.147600882243979E-012
2.831717587224274E-012
1.205831176419811E-013
1.204963269274197E013
1.203239571633284E-013
1.199795743691517E-013
7.744460722165853E-013
1.192922861153524E013
1.179236402632697E-013
1.152099533962736E-013
7.698634095603651E-013
1.098771218852313E013
9.958964997264487E-014
8.052809113470314E-014
7.349891036545323E-013
4.846364763050947E014
8.610458667478386E-015
2.892429135437437E-020
TIME = 0.38277435E-05 DT = 0.24851623E-05 SUM OF SQUARES = 0.28924291E-19
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.76134953E-09 AND -0.76134953E-09
POSITION OF INTERFACE PART / AUS IS
0.22799963E-06
U-FRACTION IN SYSTEM: C = .019066553042663 FE = .970759593802221
MO = .0292404063282867
TOTAL SIZE OF SYSTEM: 1.32375965283E-18 [m^3]
CPU time used in timestep
0 seconds
1.632778463579170E-013
1.633044876960578E-013
5.746975806178693E-013
7.255842732915395E-014
7.257692573744666E014
7.253992413653068E-014
1.091881235630359E-012
7.252143243509147E-014
7.248444725808901E014
7.241051392529642E-014
1.091831904471844E-012
7.226275174755050E-014
7.196768878376014E014
7.137936512527487E-014
1.090725438220920E-012
output ignored...
... output resumed
1.086537964317685E-012
3.194166124332671E-012
1.153114345955236E-014
1.128526734309709E-014
1.080155017897460E014
9.865845319153401E-015
5.715241080280748E-013
8.121747769778714E-015
5.142205953233471E015
1.217506507548199E-015
1.654300044062119E-022
TIME =
770779.05
DT = 100000.000
SUM OF SQUARES = 0.16543000E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.42272006E-13 AND
0.42272006E-13
POSITION OF INTERFACE PART / AUS IS
0.26496464E-06
U-FRACTION IN SYSTEM: C = .0195388088573575 FE = .970701109834737
MO = .0292988902957705
TOTAL SIZE OF SYSTEM: 2.07764070011E-18 [m^3]
22
23
GRIDPOINT(S) REMOVED FROM CELL #1
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: PART
REGION: AUS
CPU time used in timestep
1 seconds
8.914295684492852E-013
8.953346599800800E-013
2.820862731818084E-012
8.322611127223334E-015
8.136404059517922E015
7.770370019213560E-015
7.063534607889043E-015
5.508812012737562E-013
5.751069717264901E015
3.530549875076759E-015
7.069390688297672E-016
6.915574824475560E-023
TIME =
870779.05
DT = 100000.000
SUM OF SQUARES = 0.69155748E-22
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.40957063E-13 AND
0.40957063E-13
POSITION OF INTERFACE PART / AUS IS
0.26906034E-06
U-FRACTION IN SYSTEM: C = .0195406086355324 FE = .970703584996729
MO = .0292964151337797
TOTAL SIZE OF SYSTEM: 2.17548339865E-18 [m^3]
21
21
GRIDPOINT(S) REMOVED FROM CELL #1
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: PART
REGION: AUS
CPU time used in timestep
0 seconds
7.395355620749628E-013
7.429667632161040E-013
2.510382312292295E-012
5.969060195253678E-015
5.827862510340339E015
5.550591997254795E-015
5.016284338397679E-015
5.323632719608335E-013
4.028862241105141E015
2.378392231067868E-015
3.749612957663170E-016
1.170894637051278E-023
TIME =
970779.05
DT = 100000.000
SUM OF SQUARES = 0.11708946E-22
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.39739819E-13 AND
0.39739819E-13
POSITION OF INTERFACE PART / AUS IS
0.27303433E-06
U-FRACTION IN SYSTEM: C = .0195423374033332 FE = .97070594027618
MO = .0292940598543277
TOTAL SIZE OF SYSTEM: 2.27330885877E-18 [m^3]
20
20
GRIDPOINT(S) REMOVED FROM CELL #1
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: PART
REGION: AUS
CPU time used in timestep
1 seconds
9.273045311109096E-014
9.381276807094345E-014
1.050634756435667E-012
TIME = 1000000.00
DT =
29220.946
SUM OF SQUARES = 0.17447404E-15
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.38948549E-13 AND
0.38948549E-13
POSITION OF INTERFACE PART / AUS IS
0.27417244E-06
U-FRACTION IN SYSTEM: C = .0195443354401897 FE = .970707192072036
MO = .0292928080584711
TOTAL SIZE OF SYSTEM: 2.3018556344E-18 [m^3]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-06
0.13425812E-05
0.38277435E-05
0.87980681E-05
0.18738717E-04
0.38620016E-04
0.78382613E-04
0.15790781E-03
0.31695819E-03
0.63505897E-03
0.12712605E-02
0.25436636E-02
0.50884698E-02
0.10178082E-01
0.20357307E-01
0.40715757E-01
0.81432656E-01
0.16286645
0.32573405
0.65146925
1.3029396
2.6058804
5.2117620
10.423525
20.847051
41.694104
83.388209
166.77642
333.55284
667.10568
1334.2114
2668.4227
5336.8454
10673.691
21347.382
42694.763
85389.527
170779.05
270779.05
370779.05
470779.05
570779.05
670779.05
770779.05
870779.05
970779.05
1000000.00
1.744740353090811E-016
exf1-plot
MACRO exf1\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exf1\plot.DCM"DIC> @@ exf1_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE f1
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+06
*** ENTERING M6C AS A DIFFUSION NONE PHASE
DIC> read exf1
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: @@ WE WILL NOW PLOT THE AVERAGE PARTICLE SIZE CUBED AS THIS ASSUMED
POST-1: @@ TO SCALE LINEARLY WITH TIME, WE MUST THEN ENTER A FUNCTION TO BE
POST-1: @@ ABLE TO ACCESS THIS QUANTITY
POST-1: @@ WE ALSO WANT TO PLOT THIS QUANTITY VERSUS TIME IN HOURS SO WILL
POST-1: @@ ENTER A FUNCTION FOR THIS
POST-1: @@
POST-1: enter-symbol func rr3=(poi(part,u)/1.5)**3;
POST-1: enter-symbol func hours=time/3600;
POST-1: s-d-a x hours
POST-1: s-d-a y rr3
POST-1:
POST-1: @@
POST-1: @@ AS WE ARE PLOTTING FUNCTIONS ON BOTH AXIS WE MUST EXPLICITLY
POST-1: @@ DEFINE THE INDEPENDENT VARIABLE AND THE PLOT CONDITION
POST-1: @@
POST-1: s-ind time
POST-1: s-p-c inter
INTERFACE : part upper
POST-1:
POST-1:
POST-1: set-axis-text-status x n
AXIS TEXT : Time (hours)
POST-1:
POST-1: @@
POST-1: @@ THIS FAIRLY CRYPTICAL AXIS TEXT WILL GIVE A NICE NOTATION FOR
POST-1: @@ THE AVERAGE RADIUS CUBED ONCE THE PLOT IS PRINTED. FOR MORE
POST-1: @@ INFORMATION ON TEXT MANIPULATION IN THE POST PROCESSOR THE READER
POST-1: @@ IS REFERRED TO THE SECTION ON DATAPLOT GRAPHICAL LANGUAGE IN THE
POST-1: @@ THERMO-CALC USERS GUIDE.
POST-1: @@
POST-1:
POST-1:
POST-1: set-axis-text-status y n
AXIS TEXT : ^CCrm ^UP3$ (m^UP3$)
POST-1:
POST-1:
POST-1: @@
POST-1: @@ WE ALSO WANT TO COMPARE WITH EXPERIMENTAL DATA FROM NISHIZAWA ET AL.
POST-1: @@ TRANS. JPN. INST. MET. VOL. 22 1981 PP. 733-742.
POST-1: @@
POST-1:
POST-1: app y exf1
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: 1
POST-1:
POST-1: s-s-s y n 0 6e-21
POST-1:
POST-1: @@
POST-1: @@ SET TITLE ON DIAGRAM
POST-1: @@
POST-1: set-title Figure f1.1
POST-1:
POST-1: plot
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
POST-1: @@ THE DIFFENCE BETWEEN THE CALCULATION AND THE EQUATION USED BY
POST-1: @@ NISHIZAWA ET AL IS MAINLY DUE TO DIFFERENT THERMODYNAMIC DESCRIPTIONS
POST-1: @@ AND DIFFERENT DIFFUSIVITIES.
POST-1: @@
POST-1:
POST-1: set-inter
--OK--POST-1:
Kinetic data
1400
Research
Normal user
1300
Temperature K
1200
Experimental
data
1100
1000
900
800
700
600
- phase diagram data
500
0
0.2
0.4
0.6
0.8
1.0
Mole fraction Cu
Al
- activity meassurements
- enthalpy meassurements
- cp meassurements
- etc.
Thermodynamic
description
Thermo
database
Poly
Parrot
Mobility
database
DICTRA
Experimental
data
-8
1356 oC
-9
- tracer diffusivities
- chemical diffusivities
- etc.
Kinetic
description
log( D Fe
/ [m 2 s -1] ) + M
NiNi
M=4
-10
1315 oC
M=3
-11
1258 oC
M=2
-12
-13
1200 oC
M=1
-14
1136 oC
M=0
-15
-16
0
0.2
0.4
0.6
xNi
0.8
1.0
Example g1
Checking diffusivities in an Fe-Ni alloy
-8
1356 oC
-9
log( D Fe
/ [m 2 s -1] ) + M
NiNi
M=4
-10
1315 oC
M=3
-11
1258 oC
M=2
-12
-13
1200 oC
M=1
-14
1136 oC
M=0
-15
-16
0
0.2
0.4
0.6
xNi
0.8
1.0
exg1-setup
MACRO exg1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exg1\setup.DCM"SYS: @@
SYS: @@ Kinetic data.
SYS: @@ A file for checking mobilities and diffusivities in an Fe-Ni alloy.
SYS: @@
SYS:
SYS: @@ exg1_setup.DCM
SYS:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE.
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ SELECT DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK
TDB_TCFE7: @@
TDB_TCFE7: def-sys fe ni
FE
NI DEFINED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR
TDB_TCFE7: @@
TDB_TCFE7: rej ph * all
LIQUID:L
BCC_A2
HCP_A3
A1_KAPPA
LAVES_PHASE_C14
NBNI3
REJECTED
TDB_TCFE7: res ph fcc
FCC_A1 RESTORED
TDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE
TDB_TCFE7: @@
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
WITH
THE PHASES THAT IS NOT NEEDED
FCC_A1
KAPPA
NI3TI
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE.
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA
TDB_TCFE7: @@
TDB_TCFE7: app
Use one of these databases
TCFE8
TCFE7
TCFE6
TCFE5
TCFE4
TCFE3
TCFE2
TCFE1
TCNI8
TCNI7
TCNI6
TCNI5
TCNI4
TCNI1
TCAL4
TCAL3
TCAL2
TCAL1
TCMG4
TCMG3
TCMG2
TCMG1
TCCC1
TCHEA1
SSOL5
SSOL4
SSOL2
SSUB5
SSUB4
SSUB3
SSUB2
SNOB3
SNOB1
STBC2
SALT1
SNUX6
SEMC2
SLAG3
SLAG2
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Steels/Fe-Alloys v8.0
Steels/Fe-Alloys v7.0
Steels/Fe-Alloys v6.2
Steels/Fe-Alloys v5.0
Steels/Fe-Alloys v4.1
Steels/Fe-Alloys v3.1
Steels/Fe-Alloys v2.1
Steels/Fe-Alloys v1.0
Ni-Alloys v8.0
Ni-Alloys v7.1
Ni-Alloys v6.0
Ni-Alloys v5.1
Ni-Alloys v4.0
Ni-Alloys v1.3
Al-Alloys v4.0
Al-Alloys v3.0
Al-Alloys v2.0
Al-Alloys v1.2
Mg-Alloys v4.0
Mg-Alloys v3.0
Mg-Alloys v2.0
Mg-Alloys v1.1
Cemented carbide v1.0
High Entropy Alloy v1.0
SGTE Alloy Solutions Database v5.0
SGTE Alloy Solutions Database v4.9f
SGTE Alloy Solutions Database v2.1
SGTE Substances Database v5.1
SGTE Substances Database v4.1
SGTE Substances Database v3.3
SGTE Substances Database v2.2
SGTE Nobel Metal Alloys Database v3.1
SGTE Nobel Metal Alloys Database v1.2
SGTE Thermal Barrier Coating TDB v2.2
SGTE Molten Salts Database v1.2
SGTE In-Vessel Nuclear Oxide TDB v6.2
TC Semi-Conductors v2.1
Fe-containing Slag v3.2
Fe-containing Slag v2.2
SLAG1
TCOX6
TCOX5
TCOX4
ION3
ION2
ION1
NOX2
TCSLD3
TCSLD2
TCSLD1
TCSI1
TCMP2
TCES1
TCSC1
TCFC1
TCNF2
NUMT2
NUOX4
NUTO1
NUTA1
NUCL10
MEPH11
TCAQ2
AQS2
GCE2
PURE5
ALDEMO
FEDEMO
SLDEMO
OXDEMO
SUBDEMO
PTERN
PG35
MOB2
MOB1
MOBFE1
MOBFE2
MOBNI3
MOBNI2
MOBNI1
MOBAL3
MOBAL2
MOBAL1
MOBMG1
MOBSI1
MOBTI1
MFEDEMO
USER
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Fe-containing Slag v1.2
Metal Oxide Solutions v6.0
Metal Oxide Solutions v5.1
Metal Oxide Solutions v4.1
Ionic Solutions v3.0
Ionic Solutions v2.6
Ionic Solutions v1.5
NPL Oxide Solutions Database v2.1
Solder Alloys v3.1
Solder Alloys v2.0
Solder Alloys v1.0
Ultrapure Silicon v1.1
Materials Processing v2.5
Combustion/Sintering v1.1
Super Conductor v1.0
SOFC Database v1.0
Nuclear Fuels v2.1b
Nuclear Materials v2.1
Nuclear Oxides v4.2
U-Zr-Si Ternary Oxides TDB v1.1
Ag-Cd-In Ternary Alloys TDB v1.1
ThermoData NUCLEA Alloys-oxides TDB v10.2
ThermoData MEPHISTA Nuclear Fuels TDB v11
Aqueous Solution v2.5
TGG Aqueous Solution Database v2.5
TGG Geochemical/Environmental TDB v2.3
SGTE Unary (Pure Elements) TDB v5.1
Aluminum Demo Database
Iron Demo Database
Solder Demo Database
Oxide Demo Database
Substance Demo Database
Public Ternary Alloys TDB v1.3
G35 Binary Semi-Conductors TDB v1.2
Alloys Mobility v2.4
Alloys Mobility v1.3
Steels/Fe-Alloys Mobility v1.0
Steels/Fe-Alloys Mobility v2.0
Ni-Alloys Mobility v3.1
Ni-Alloys Mobility v2.4
Ni-Alloys Mobility v1.0
Al-Alloys Mobility v3.0
Al-Alloys Mobility v2.0
Al-Alloys Mobility v1.0
Mg-Alloys Mobility v1.0
Si-Alloys Mobility v1.0
Ti-Alloys Mobility v1.0
Fe-Alloys Mobility demo database
User defined Database
DATABASE NAME /TCFE7/: mobfe2
Current database: Steels/Fe-Alloys Mobility
v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe ni
FE
APP: rej ph * all
BCC_A2
LIQUID:L REJECTED
APP: res ph fcc
FCC_A1 RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
NI
DEFINED
FCC_A1
HCP_A3
List of references for assessed data
'This parameter has not been assessed'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ LIST MOBILITY DATA
DIC> @@
DIC> list-mob-data
Sorry, LIST-DATA disabled for this database
DIC>
DIC>
DIC>
DIC>@?<Hit_return_to_continue>
DIC>
DIC> @@
DIC> @@ CHECK DIFFUSIVITES
DIC> @@
DIC> check
OUTPUT TO SCREEN OR FILE /SCREEN/:
PHASE NAME : fcc
DEPENDENT COMPONENT ? /NI/: fe
CONCENTRATION OF NI IN U-FRACTION /1/: 0.3
Pressure /100000/: 101325
Temperature /298.15/: 1409
OPTION ( dlpbmx0ez or * ) /D/: dl
Dkj (reduced n=FE)
k / j NI
NI
+3.83335E-15
L0kj = Uk*Mvak IF (kES) ELSE Uk*Yva*Mvak
k / j
FE
NI
FE
+2.32266E-19
NI
+9.0901E-20
Volume =
1.000000000000000E-005
DIC>
DIC>
DIC>@?<Hit_return_to_continue>
DIC>
DIC> @@
DIC> @@ CALCULATE DIFFUSIVITIES VS. COMPOSITION BY STEPPING IN POLY-3
DIC> @@
DIC> go p-3
POLY_3: s-c t=1409,p=101325,n=1,x(ni)=0.3
POLY_3: c-e
Using global minimization procedure
Calculated
137 grid points in
0 s
Found the set of lowest grid points in
0 s
Calculated POLY solution
0 s, total time
0 s
POLY_3:
POLY_3: s-a-v
Axis number: /1/: 1
Condition /NONE/: x(ni)
Min value /0/: 0
Max value /1/: 1
Increment /.025/: 1e-3
POLY_3:
POLY_3: step
Option? /NORMAL/: normal
No initial equilibrium, using default
Step will start from axis value
0.300000
...OK
Phase Region from
0.300000
FCC_A1
Global test at 3.08000E-01 ....
Global test at 3.18000E-01 ....
Global test at 3.28000E-01 ....
Global test at 3.38000E-01 ....
Global test at 3.48000E-01 ....
Global test at 3.58000E-01 ....
Global test at 3.68000E-01 ....
Global test at 3.78000E-01 ....
Global test at 3.88000E-01 ....
Global test at 3.98000E-01 ....
Global test at 4.08000E-01 ....
Global test at 4.18000E-01 ....
Global test at 4.28000E-01 ....
Global test at 4.38000E-01 ....
Global test at 4.48000E-01 ....
Global test at 4.58000E-01 ....
Global test at 4.68000E-01 ....
Global test at 4.78000E-01 ....
Global test at 4.88000E-01 ....
Global test at 4.98000E-01 ....
Global test at 5.08000E-01 ....
Global test at 5.18000E-01 ....
Global test at 5.28000E-01 ....
Global test at 5.38000E-01 ....
Global test at 5.48000E-01 ....
Global test at 5.58000E-01 ....
Global test at 5.68000E-01 ....
Global test at 5.78000E-01 ....
Global test at 5.88000E-01 ....
Global test at 5.98000E-01 ....
Global test at 6.08000E-01 ....
Global test at 6.18000E-01 ....
Global test at 6.28000E-01 ....
Global test at 6.38000E-01 ....
Global test at 6.48000E-01 ....
Global test at 6.58000E-01 ....
Global test at 6.68000E-01 ....
Global test at 6.78000E-01 ....
Global test at 6.88000E-01 ....
Global test at 6.98000E-01 ....
Global test at 7.08000E-01 ....
Global test at 7.18000E-01 ....
Global test at 7.28000E-01 ....
Global test at 7.38000E-01 ....
Global test at 7.48000E-01 ....
Global test at 7.58000E-01 ....
Global test at 7.68000E-01 ....
Global test at 7.78000E-01 ....
Global test at 7.88000E-01 ....
Global test at 7.98000E-01 ....
Global test at 8.08000E-01 ....
Global test at 8.18000E-01 ....
Global test at 8.28000E-01 ....
Global test at 8.38000E-01 ....
Global test at 8.48000E-01 ....
Global test at 8.58000E-01 ....
Global test at 8.68000E-01 ....
Global test at 8.78000E-01 ....
Global test at 8.88000E-01 ....
Global test at 8.98000E-01 ....
Global test at 9.08000E-01 ....
Global test at 9.18000E-01 ....
Global test at 9.28000E-01 ....
Global test at 9.38000E-01 ....
Global test at 9.48000E-01 ....
Global test at 9.58000E-01 ....
Global test at 9.68000E-01 ....
Global test at 9.78000E-01 ....
Global test at 9.88000E-01 ....
Global test at 9.98000E-01 ....
Terminating at
1.00000
Calculated
703 equilibria
for:
Phase Region from
0.300000
FCC_A1
Global test at 2.92000E-01 ....
Global test at 2.82000E-01 ....
Global test at 2.72000E-01 ....
Global test at 2.62000E-01 ....
Global test at 2.52000E-01 ....
Global test at 2.42000E-01 ....
Global test at 2.32000E-01 ....
for:
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
Global test at 2.22000E-01 .... OK
Global test at 2.12000E-01 .... OK
Global test at 2.02000E-01 .... OK
Global test at 1.92000E-01 .... OK
Global test at 1.82000E-01 .... OK
Global test at 1.72000E-01 .... OK
Global test at 1.62000E-01 .... OK
Global test at 1.52000E-01 .... OK
Global test at 1.42000E-01 .... OK
Global test at 1.32000E-01 .... OK
Global test at 1.22000E-01 .... OK
Global test at 1.12000E-01 .... OK
Global test at 1.02000E-01 .... OK
Global test at 9.20000E-02 .... OK
Global test at 8.20000E-02 .... OK
Global test at 7.20000E-02 .... OK
Global test at 6.20000E-02 .... OK
Global test at 5.20000E-02 .... OK
Global test at 4.20000E-02 .... OK
Global test at 3.20000E-02 .... OK
Global test at 2.20000E-02 .... OK
Global test at 1.20000E-02 .... OK
Global test at 2.00000E-03 .... OK
Terminating at
0.100000E-11
Calculated
303 equilibria
*** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3
POLY_3:
POLY_3: @@
POLY_3: @@ ENTER POST-PROCESSOR AND PLOT THE RESULT
POLY_3: @@
POLY_3: post
POLY-3 POSTPROCESSOR VERSION 3.2
POST:
POST:
POST:
POST:
POST:
POST:
POST:
POST:
POST:
POST:
@@
@@ PLOT MOBILITY OF NI VS. X(NI)
@@
s-d-a y m(fcc,ni)
s-d-a x m-f ni
plot
POST:
POST:
POST:
POST:@?<Hit_return_to_continue>
POST:
POST: @@
POST: @@ THEN PLOT DIFFUSIVITY OF NI VS. X(NI)
POST: @@
POST: s-d-a y dc(fcc,ni,ni,fe)
POST:
POST: plot
POST:
POST:
POST:@?<Hit_return_to_continue>
POST:
POST: @@
POST: @@ PLOT THE LOGARITHM OF DC AND APPEND EXPERIMENTAL DATA
POST: @@
POST: s-d-a y logdc(fcc,ni,ni,fe)
POST:
POST: app y feni.exp
PROLOGUE NUMBER: /0/: 1
DATASET NUMBER(s): /-1/: 1
POST:
POST: s-s-s y n -15.5 -13.5
POST:
POST: plot
POST:
POST:
POST:@?<Hit_return_to_continue>
POST:
POST: set-inter
POST:
Example g2
Optimization of mobilities in Ni-Al fcc alloys
1400
Research
Normal user
1300
Temperature K
1200
Experimental
data
1100
1000
900
800
700
600
- phase diagram data
500
0
0.2
0.4
0.6
0.8
1.0
Mole fraction Cu
Al
- activity meassurements
- enthalpy meassurements
- cp meassurements
- etc.
Thermodynamic
description
Thermo
database
Poly
Parrot
Mobility
database
DICTRA
Experimental
data
-8
1356 oC
-9
- chemical diffusivities
- etc.
Kinetic
description
log( D Fe
/ [m 2 s -1] ) + M
NiNi
M=4
- tracer diffusivities
-10
1315 oC
M=3
-11
1258 oC
M=2
-12
-13
1200 oC
M=1
-14
1136 oC
M=0
-15
-16
0
0.2
0.4
0.6
xNi
0.8
1.0
exg2-setup
MACRO exg2\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exg2\setup.DCM"SYS: ?@@
NO SUCH COMMAND, USE HELP
SYS: @@ Kinetic data.
SYS: @@ A file for reading thermodynamic data and setting up the kinetic
SYS: @@ parameters which are needed for an optimization of the FCC phase
SYS: @@ in the binary Ni-Al system.
SYS: @@ See also A. Engström and J. Ågren: ("Assessment of Diffusional
SYS: @@ Mobilities in Face-Centered Cubic Ni-Cr-Al Alloys" in
SYS: @@ Z. METALLKUNDE, Feb. 1996).
SYS: @@
SYS:
SYS: @@ exg2_setup.DCM
SYS:
SYS: @@
SYS: @@ RETRIEVE THERMODYNAMIC DATA FROM A USER DEFINED DATABASE
SYS: @@
SYS: go data
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8: sw us tdata
Current database: User defined Database
This database does not support the DATABASE_INFORMATION command
VA DEFINED
TDB_USER: def-sys el
ELEMENTS: al ni
AL
NI DEFINED
TDB_USER: rej ph *
LIQUID
B2_BCC
BCC_A2
FCC_A1
GAMMA_PRIME REJECTED
TDB_USER: rest ph fcc_a1
FCC_A1 RESTORED
TDB_USER: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
-OKTDB_USER:
TDB_USER: @@
TDB_USER: @@ APPEND THE KINETIC DATA FROM THE MOBILITY DATABASE IN ORDER TO
TDB_USER: @@ HAVE SOME DUMMY PARAMETERS.
TDB_USER: @@
TDB_USER: app mob2
Current database: Alloys Mobility v2.4
VA DEFINED
GAS:G REJECTED
APP: def-sys
ELEMENTS: al ni
AL
APP: rej ph *
BCC_A2
HCP_A3
APP: res ph fcc_a1
FCC_A1 RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
NI
DEFINED
FCC_A1
LIQUID:L
FE4N
REJECTED
List of references for assessed data
'This parameter has not been assessed'
'A. Engstrom and J. Agren: Z. Metallkunde 87(1996)92-97;
Al, Cr and Ni diffusion in fcc Al-Cr-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27;
Ni self-diffusion'
-OKAPP:
APP: @@
APP: @@ GO TO THE DICTRA MODULE AND DEFINE THE KINETIC PARAMETERS. THE
APP: @@ VARIABLE V1,V2,V3 AND V4 ARE TO BE OPTIMIZED. NOTE THAT IF
APP: @@ YOU ARE OPTIMIZING PARAMETERS FOR A PHASE WITH MAGNETIC
APP: @@ CONTRIBUTION. I.E. USING BOTH MF- AND MQ-PARAMETERS YOU
APP: @@ MIGHT HAVE TO ENTER THE PARROT MODULE AND GO BACK BEFORE
APP: @@ ENTERING PARAMETERS CONTAINING VARIABLES.
APP: @@
APP: go dic_par
PARROT
VERSION 5.3d RUNNING ON PC/WINDOWS NT
Developed at the Division of Physical Metallurgy
Royal Institute of Technology Stockholm, Sweden
PARROT:
PARROT:
PARROT: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@ MOBILITY OF AL IN AL
DIC> ENTER-MOB-DATA
PARAMETER: MQ(FCC_A1&AL,AL:VA) 298.15 -142000+R*T*LN(1.71E-4); 6000 N
MQ(FCC_A1&AL#1,AL:VA;0)
DIC>
DIC> @@ MOBILITY OF AL IN NI
DIC> ENTER-MOB-DATA
PARAMETER: MQ(FCC_A1&AL,NI:VA) 298.15 -284000+R*T*LN(7.5E-4); 6000 N
MQ(FCC_A1&AL#1,NI:VA;0)
DIC>
DIC> @@ MOBILITY OF AL INTERACTION BETWEEN AL AND NI
DIC> ENTER-MOB-DATA
PARAMETER: MQ(FCC_A1&AL,AL,NI:VA;0) 298.15 V1+V2*T; 6000 N
MQ(FCC_A1&AL#1,AL,NI:VA;0)
DIC>
DIC> @@ MOBILITY OF NI IN AL
DIC> ENTER-MOB-DATA
PARAMETER: MQ(FCC_A1&NI,AL:VA) 298.15 -145900+R*T*LN(4.4E-4); 6000 N
MQ(FCC_A1&NI#1,AL:VA;0)
DIC>
DIC> @@ MOBILITY OF NI IN NI
DIC> ENTER-MOB-DATA
PARAMETER: MQ(FCC_A1&NI,NI:VA) 298.15 -287000-69.8*T; 6000 N
MQ(FCC_A1&NI#1,NI:VA;0)
DIC>
DIC> @@ MOBILITY OF NI INTERACTION BETWEEN NI AND AL
DIC> ENTER-MOB-DATA
PARAMETER: MQ(FCC_A1&NI,NI,AL:VA;0) 298.15 V3+V4*T; 6000 N
MQ(FCC_A1&NI#1,AL,NI:VA;0)
DIC>
DIC> @@
DIC> @@ GO TO PARROT AND SAVE SETUP ON FILE
DIC> @@
DIC> go dic_parrot
PARROT
VERSION 5.3d RUNNING ON PC/WINDOWS NT
PARROT: create-new-store-file opt
PARROT:
PARROT: set-inter
--OK--PARROT:
exg2-run
MACRO exg2\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exg2\run.DCM"PARROT: @@ exg2_run.DCM
PARROT:
PARROT: @@-----------------------------------------------------------------PARROT: @@ FILE FOR DOING THE OPTIMIZATION IN PARROT
PARROT: @@-----------------------------------------------------------------PARROT:
PARROT: @@
PARROT: @@ GO TO PARROT AND READ THE SETUP
PARROT: @@
PARROT: go dic_parrot
PARROT
VERSION 5.3d RUNNING ON PC/WINDOWS NT
PARROT: set-store-file opt
PARROT:
PARROT:
PARROT: @@
PARROT: @@ COMPILE THE EXPERIMENTAL DATA IN exp.DOP INTO STRUCTURED BINARY DATA.
PARROT: @@
PARROT: compile-experiments exp
OUTPUT TO SCREEN OR FILE /SCREEN/:
INITIATE STORE FILE: /Y/:
$---------------------------------------------------------------------$ DOP-FILE CONTAINING EXPERIMENTAL INFORMATION USED DURING THE
$ OTIMIZATION IN PARROT (COMPARE WITH POP-FILE USED WHEN EVALUATING
$ THERMODYNAMIC DATA). THE EXPERIMENTAL DATA HERE STEAM FROM A STUDY BY
$ YAMAMOTO ET AL. TRANS. JPN. INST. MET. VOL. 21,NO. 9 (1980), P. 601.
$
$ CONSULT THE THERMO-CALC USER'S GUIDE TO LEARN MORE ABOUT SYNTAXES
$ FOR OPTIMIZATION OF THERMODYNAMIC DATA.
$---------------------------------------------------------------------ENTER CONST P0=101325
TABLE_HEAD 10
CREATE_NEW 0010,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.01055
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.6:.1
CREATE_NEW 0011,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.02032
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.56:.1
CREATE_NEW 0012,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.02957
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.65:.1
CREATE_NEW 0013,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.03884
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.52:.1
CREATE_NEW 0014,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.03884
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.52:.1
CREATE_NEW 0015,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.04927
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.48:.1
CREATE_NEW 0016,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.06062
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.43:.1
CREATE_NEW 0017,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.07029
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.41:.1
CREATE_NEW 0018,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.08113
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.37:.1
CREATE_NEW 0019,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.09166
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.32:.1
CREATE_NEW 0020,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.09945
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.28:.1
CREATE_NEW 0021,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.1099
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.24:.1
CREATE_NEW 0022,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.1207
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.2:.1
CREATE_NEW 0023,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.129
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.18:.1
CREATE_NEW 0024,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.1392
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.16:.1
CREATE_NEW 0025,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.1503
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.1:.1
CREATE_NEW 0026,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.1589
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.08:.1
CREATE_NEW 0027,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.1716
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.02:.1
CREATE_NEW 0028,1
C-S PH FCC=ENT 1
output ignored...
... output resumed
V3
-1.32972465E+05
-1.32959170E+05
-1.32959170E+05
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
3.97449913E+00
V4
7.81857821E+01
7.81857821E+01
7.81857821E+01
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
4.46532133E+00
NUMBER OF OPTIMIZING VARIABLES :
4
ALL OTHER VARIABLES ARE FIX WITH THE VALUE ZERO
THE SUM OF SQUARES HAS CHANGED FROM
2.02977003E+01 TO
2.02976923E+01
DEGREES OF FREEDOM 113. REDUCED SUM OF SQUARES
1.79625595E-01
Sorry, LIST-DATA disabled for this database
======
BLOCK NUMBER
1
DEFINED CONSTANTS
P0=101325
LOGDC(F...,AL,NI)=-12.6
LOGDC(F...,AL,NI)=-12.56
LOGDC(F...,AL,NI)=-12.65
LOGDC(F...,AL,NI)=-12.52
LOGDC(F...,AL,NI)=-12.52
LOGDC(F...,AL,NI)=-12.48
LOGDC(F...,AL,NI)=-12.43
LOGDC(F...,AL,NI)=-12.41
LOGDC(F...,AL,NI)=-12.37
LOGDC(F...,AL,NI)=-12.32
LOGDC(F...,AL,NI)=-12.28
LOGDC(F...,AL,NI)=-12.24
LOGDC(F...,AL,NI)=-12.2
LOGDC(F...,AL,NI)=-12.18
LOGDC(F...,AL,NI)=-12.16
LOGDC(F...,AL,NI)=-12.1
LOGDC(F...,AL,NI)=-12.08
LOGDC(F...,AL,NI)=-12.02
LOGDC(F...,AL,NI)=-11.98
LOGDC(F...,AL,NI)=-11.94
LOGDC(F...,AL,NI)=-13
LOGDC(F...,AL,NI)=-12.96
LOGDC(F...,AL,NI)=-12.92
LOGDC(F...,AL,NI)=-12.9
LOGDC(F...,AL,NI)=-12.77
LOGDC(F...,AL,NI)=-12.74
LOGDC(F...,AL,NI)=-12.82
LOGDC(F...,AL,NI)=-12.82
LOGDC(F...,AL,NI)=-12.69
LOGDC(F...,AL,NI)=-12.65
LOGDC(F...,AL,NI)=-12.64
LOGDC(F...,AL,NI)=-12.61
LOGDC(F...,AL,NI)=-12.55
LOGDC(F...,AL,NI)=-12.53
LOGDC(F...,AL,NI)=-12.47
LOGDC(F...,AL,NI)=-12.41
LOGDC(F...,AL,NI)=-12.38
LOGDC(F...,AL,NI)=-12.36
LOGDC(F...,AL,NI)=-12.36
LOGDC(F...,AL,NI)=-12.3
LOGDC(F...,AL,NI)=-13.23
LOGDC(F...,AL,NI)=-13.23
LOGDC(F...,AL,NI)=-13.19
LOGDC(F...,AL,NI)=-13.15
LOGDC(F...,AL,NI)=-13.12
LOGDC(F...,AL,NI)=-13.09
LOGDC(F...,AL,NI)=-13.06
LOGDC(F...,AL,NI)=-13.02
LOGDC(F...,AL,NI)=-12.99
LOGDC(F...,AL,NI)=-12.96
LOGDC(F...,AL,NI)=-12.91
LOGDC(F...,AL,NI)=-12.88
LOGDC(F...,AL,NI)=-12.86
LOGDC(F...,AL,NI)=-12.86
LOGDC(F...,AL,NI)=-12.83
LOGDC(F...,AL,NI)=-12.8
LOGDC(F...,AL,NI)=-12.75
LOGDC(F...,AL,NI)=-12.71
LOGDC(F...,AL,NI)=-12.67
LOGDC(F...,AL,NI)=-13.5
LOGDC(F...,AL,NI)=-13.47
LOGDC(F...,AL,NI)=-13.45
LOGDC(F...,AL,NI)=-13.42
LOGDC(F...,AL,NI)=-13.39
LOGDC(F...,AL,NI)=-13.36
LOGDC(F...,AL,NI)=-13.34
LOGDC(F...,AL,NI)=-13.31
LOGDC(F...,AL,NI)=-13.24
LOGDC(F...,AL,NI)=-13.22
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
70
71
72
73
74
75
76
77
78
79
-12.56
-12.55
-12.53
-12.51
-12.51
-12.49
-12.46
-12.43
-12.39
-12.36
-12.33
-12.29
-12.26
-12.22
-12.18
-12.14
-12.10
-12.04
-11.99
-11.95
-12.86
-12.85
-12.84
-12.82
-12.79
-12.75
-12.72
-12.72
-12.68
-12.65
-12.62
-12.58
-12.54
-12.51
-12.47
-12.42
-12.38
-12.32
-12.32
-12.27
-13.19
-13.19
-13.18
-13.16
-13.13
-13.10
-13.07
-13.04
-13.00
-12.96
-12.93
-12.89
-12.85
-12.85
-12.81
-12.77
-12.72
-12.68
-12.63
-13.54
-13.53
-13.50
-13.48
-13.44
-13.40
-13.37
-13.33
-13.29
-13.26
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
4.3827E-02
1.2341E-02
0.1167
5.8843E-03
5.8843E-03
-8.4123E-03
-2.6851E-02
-1.7821E-02
-2.3493E-02
-3.8626E-02
-5.1933E-02
-5.4919E-02
-5.5128E-02
-4.3400E-02
-2.2927E-02
-3.6888E-02
-1.9703E-02
-2.2272E-02
-9.0917E-03
-9.1618E-03
0.1360
0.1059
8.4799E-02
8.2549E-02
-1.5173E-02
-1.1192E-02
9.5223E-02
9.5223E-02
5.7856E-03
2.6229E-03
1.9222E-02
2.8492E-02
9.2091E-03
2.1034E-02
2.0402E-03
-1.0621E-02
-1.6323E-04
3.6255E-02
3.6255E-02
3.0494E-02
3.8416E-02
3.8416E-02
1.3209E-02
-5.5530E-03
-1.4736E-02
-1.2913E-02
-6.9397E-03
-1.5971E-02
-1.0672E-02
8.0069E-04
-2.0470E-02
-7.3947E-03
1.4312E-02
1.4312E-02
1.7076E-02
2.9558E-02
2.5293E-02
2.6861E-02
4.4033E-02
-4.2456E-02
-5.5160E-02
-5.0384E-02
-5.6139E-02
-5.3034E-02
-4.3865E-02
-3.0943E-02
-2.0539E-02
-5.0311E-02
-4.1318E-02
0.4383
0.1234
1.167
5.8843E-02
5.8843E-02
-8.4123E-02
-0.2685
-0.1782
-0.2349
-0.3863
-0.5193
-0.5492
-0.5513
-0.4340
-0.2293
-0.3689
-0.1970
-0.2227
-9.0917E-02
-9.1618E-02
1.360
1.059
0.8480
0.8255
-0.1517
-0.1119
0.9522
0.9522
5.7856E-02
2.6229E-02
0.1922
0.2849
9.2091E-02
0.2103
2.0402E-02
-0.1062
-1.6323E-03
0.3626
0.3626
0.3049
0.3842
0.3842
0.1321
-5.5530E-02
-0.1474
-0.1291
-6.9397E-02
-0.1597
-0.1067
8.0069E-03
-0.2047
-7.3947E-02
0.1431
0.1431
0.1708
0.2956
0.2529
0.2686
0.4403
-0.4246
-0.5516
-0.5038
-0.5614
-0.5303
-0.4386
-0.3094
-0.2054
-0.5031
-0.4132
80 LOGDC(F...,AL,NI)=-13.19
81 LOGDC(F...,AL,NI)=-13.13
82 LOGDC(F...,AL,NI)=-13.12
83 LOGDC(F...,AL,NI)=-13.08
84 LOGDC(F...,AL,NI)=-13.04
85 LOGDC(F...,AL,NI)=-13.03
90 LOGDC(F...,AL,NI)=-13.97
91 LOGDC(F...,AL,NI)=-13.92
92 LOGDC(F...,AL,NI)=-13.88
93 LOGDC(F...,AL,NI)=-13.85
94 LOGDC(F...,AL,NI)=-13.82
95 LOGDC(F...,AL,NI)=-13.78
96 LOGDC(F...,AL,NI)=-13.9
97 LOGDC(F...,AL,NI)=-13.85
98 LOGDC(F...,AL,NI)=-13.65
99 LOGDC(F...,AL,NI)=-13.62
100 LOGDC(F...,AL,NI)=-13.57
101 LOGDC(F...,AL,NI)=-13.52
102 LOGDC(F...,AL,NI)=-13.47
103 LOGDC(F...,AL,NI)=-13.45
104 LOGDC(F...,AL,NI)=-13.4
110 LOGDC(F...,AL,NI)=-14.32
111 LOGDC(F...,AL,NI)=-14.32
112 LOGDC(F...,AL,NI)=-14.28
113 LOGDC(F...,AL,NI)=-14.25
114 LOGDC(F...,AL,NI)=-14.22
115 LOGDC(F...,AL,NI)=-14.17
116 LOGDC(F...,AL,NI)=-14.15
117 LOGDC(F...,AL,NI)=-14.1
118 LOGDC(F...,AL,NI)=-14.03
119 LOGDC(F...,AL,NI)=-14
120 LOGDC(F...,AL,NI)=-13.95
121 LOGDC(F...,AL,NI)=-13.9
122 LOGDC(F...,AL,NI)=-13.85
130 LOGDC(F...,AL,NI)=-14.73
131 LOGDC(F...,AL,NI)=-14.71
132 LOGDC(F...,AL,NI)=-14.68
133 LOGDC(F...,AL,NI)=-14.66
134 LOGDC(F...,AL,NI)=-14.61
135 LOGDC(F...,AL,NI)=-14.61
136 LOGDC(F...,AL,NI)=-14.58
137 LOGDC(F...,AL,NI)=-14.54
138 LOGDC(F...,AL,NI)=-14.5
139 LOGDC(F...,AL,NI)=-14.46
140 LOGDC(F...,AL,NI)=-14.41
141 LOGDC(F...,AL,NI)=-14.35
142 LOGDC(F...,AL,NI)=-14.27
143 LOGDC(F...,AL,NI)=-14.2
PARROT:
PARROT:
PARROT: set-inter
--OK--PARROT:
-13.22
-13.17
-13.14
-13.09
-13.05
-13.01
-13.92
-13.90
-13.87
-13.84
-13.81
-13.77
-13.74
-13.69
-13.65
-13.62
-13.57
-13.53
-13.49
-13.45
-13.40
-14.32
-14.30
-14.27
-14.24
-14.20
-14.16
-14.12
-14.07
-14.03
-14.00
-13.95
-13.91
-13.87
-14.76
-14.73
-14.70
-14.67
-14.63
-14.63
-14.58
-14.54
-14.49
-14.44
-14.41
-14.36
-14.31
-14.27
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
1.00E-01
-2.6230E-02
-4.3098E-02
-1.9773E-02
-1.4457E-02
-9.4618E-03
2.2404E-02
5.1241E-02
2.0497E-02
9.3921E-03
5.2264E-03
1.1044E-02
1.3352E-02
0.1640
0.1576
1.5604E-03
4.9052E-03
-9.5589E-04
-5.4819E-03
-2.0262E-02
4.9628E-03
2.8073E-03
-3.9760E-03
1.9307E-02
1.0664E-02
8.9412E-03
1.8329E-02
1.2994E-02
3.0489E-02
2.5593E-02
-1.4483E-03
2.7074E-03
-1.9282E-03
-5.2349E-03
-1.6645E-02
-3.0493E-02
-2.3757E-02
-1.9446E-02
-8.5997E-03
-1.5314E-02
-1.5314E-02
3.4408E-03
3.3897E-03
9.2113E-03
1.5390E-02
1.6005E-03
-1.1351E-02
-4.1487E-02
-7.4774E-02
-0.2623
-0.4310
-0.1977
-0.1446
-9.4618E-02
0.2240
0.5124
0.2050
9.3921E-02
5.2264E-02
0.1104
0.1335
1.640
1.576
1.5604E-02
4.9052E-02
-9.5589E-03
-5.4819E-02
-0.2026
4.9628E-02
2.8073E-02
-3.9760E-02
0.1931
0.1066
8.9412E-02
0.1833
0.1299
0.3049
0.2559
-1.4483E-02
2.7074E-02
-1.9282E-02
-5.2349E-02
-0.1665
-0.3049
-0.2376
-0.1945
-8.5997E-02
-0.1531
-0.1531
3.4408E-02
3.3897E-02
9.2113E-02
0.1539
1.6005E-02
-0.1135
-0.4149
-0.7477
exg2-plot
MACRO exg2\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exg2\plot.DCM"PARROT: @@ exg2_plot.DCM
PARROT:
PARROT: @@-----------------------------------------------------------------PARROT: @@ FILE FOR PLOTTING THE RESULT AFTER THE OPTIMIZATION. HERE
PARROT: @@ DIFFUSIVITIES CALCULATED FROM THE OPTIMIZED VARIABLES ARE
PARROT: @@ COMPARED WITH EXPERIMENTALLY MEASURED ONES.
PARROT: @@-----------------------------------------------------------------PARROT:
PARROT: @@
PARROT: @@ GO TO PARROT AND READ THE FILE CONTAINING THE RESULT FROM
PARROT: @@ THE OPTIMIZATION.
PARROT: @@
PARROT: go dic_parrot
PARROT
VERSION 5.3d RUNNING ON PC/WINDOWS NT
PARROT: set-store-file opt
PARROT:
PARROT: @@
PARROT: @@ GO TO POLY3 AND STEP IN X(AL)
PARROT: @@
PARROT: go p-3
POLY_3: s-c n=1,p=101325,t=1573
POLY_3: s-c x(al)=.1
POLY_3: c-e,,,,
Using global minimization procedure
Calculated
137 grid points in
Found the set of lowest grid points in
Calculated POLY solution
0 s, total time
POLY_3: add,,
POLY_3:
POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY_3: step
Option? /NORMAL/:
Step will start from axis value
0.100000E+00
...OK
Phase Region from
0.100000E+00
FCC_A1
Global test at 1.08000E-01 ....
Global test at 1.18000E-01 ....
Global test at 1.28000E-01 ....
Global test at 1.38000E-01 ....
Global test at 1.48000E-01 ....
Global test at 1.58000E-01 ....
Global test at 1.68000E-01 ....
Global test at 1.78000E-01 ....
Global test at 1.88000E-01 ....
Global test at 1.98000E-01 ....
Terminating at
0.200000
Calculated
103 equilibria
0 s
0 s
0 s
for:
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
Phase Region from
0.100000E+00 for:
FCC_A1
Global test at 9.20000E-02 .... OK
Global test at 8.20000E-02 .... OK
Global test at 7.20000E-02 .... OK
Global test at 6.20000E-02 .... OK
Global test at 5.20000E-02 .... OK
Global test at 4.20000E-02 .... OK
Global test at 3.20000E-02 .... OK
Global test at 2.20000E-02 .... OK
Global test at 1.20000E-02 .... OK
Global test at 2.00000E-03 .... OK
Terminating at
0.100000E-03
Calculated
103 equilibria
*** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3
POLY_3: @@
POLY_3: @@ REPEATE THE PROCEDURE FOR SOME OTHER TEMPERATURES.
POLY_3: @@
POLY_3: s-c t=1523,x(al)=.1
POLY_3: c-e,,,,,,,
Using global minimization procedure
Calculated
137 grid points in
0 s
Found the set of lowest grid points in
0 s
Calculated POLY solution
1 s, total time
1 s
POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY_3: step
Option? /NORMAL/:
Step will start from axis value
0.100000E+00
...OK
Phase Region from
0.100000E+00
FCC_A1
Global test at 1.08000E-01 ....
Global test at 1.18000E-01 ....
Global test at 1.28000E-01 ....
Global test at 1.38000E-01 ....
Global test at 1.48000E-01 ....
Global test at 1.58000E-01 ....
Global test at 1.68000E-01 ....
Global test at 1.78000E-01 ....
Global test at 1.88000E-01 ....
Global test at 1.98000E-01 ....
Terminating at
0.200000
Calculated
103 equilibria
for:
Phase Region from
0.100000E+00
FCC_A1
Global test at 9.20000E-02 ....
Global test at 8.20000E-02 ....
Global test at 7.20000E-02 ....
Global test at 6.20000E-02 ....
Global test at 5.20000E-02 ....
Global test at 4.20000E-02 ....
Global test at 3.20000E-02 ....
Global test at 2.20000E-02 ....
Global test at 1.20000E-02 ....
Global test at 2.00000E-03 ....
Terminating at
0.100000E-03
Calculated
103 equilibria
for:
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
*** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3
POLY_3: s-c t=1473,x(al)=.1
POLY_3: c-e,,,,,,,
Using global minimization procedure
Calculated
137 grid points in
0 s
Found the set of lowest grid points in
0 s
Calculated POLY solution
0 s, total time
0 s
POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY_3: step
Option? /NORMAL/:
Step will start from axis value
0.100000E+00
...OK
Phase Region from
0.100000E+00
FCC_A1
Global test at 1.08000E-01 ....
Global test at 1.18000E-01 ....
Global test at 1.28000E-01 ....
Global test at 1.38000E-01 ....
Global test at 1.48000E-01 ....
Global test at 1.58000E-01 ....
Global test at 1.68000E-01 ....
Global test at 1.78000E-01 ....
Global test at 1.88000E-01 ....
Global test at 1.98000E-01 ....
Terminating at
0.200000
Calculated
103 equilibria
for:
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
Phase Region from
0.100000E+00 for:
FCC_A1
Global test at 9.20000E-02 .... OK
Global test at 8.20000E-02 .... OK
Global test at 7.20000E-02 .... OK
Global test at 6.20000E-02 .... OK
Global test at 5.20000E-02 .... OK
Global test at 4.20000E-02 .... OK
Global test at 3.20000E-02 .... OK
Global test at 2.20000E-02 .... OK
Global test at 1.20000E-02 .... OK
Global test at 2.00000E-03 .... OK
Terminating at
0.100000E-03
Calculated
103 equilibria
*** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3
POLY_3: s-c t=1423,x(al)=.1
POLY_3: c-e,,,,,,,
Using global minimization procedure
Calculated
137 grid points in
0 s
Found the set of lowest grid points in
0 s
Calculated POLY solution
0 s, total time
0 s
POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY_3: step
Option? /NORMAL/:
Step will start from axis value
0.100000E+00
...OK
Phase Region from
0.100000E+00
FCC_A1
Global test at 1.08000E-01 ....
Global test at 1.18000E-01 ....
Global test at 1.28000E-01 ....
Global test at 1.38000E-01 ....
Global test at 1.48000E-01 ....
Global test at 1.58000E-01 ....
Global test at 1.68000E-01 ....
Global test at 1.78000E-01 ....
Global test at 1.88000E-01 ....
Global test at 1.98000E-01 ....
Terminating at
0.200000
Calculated
103 equilibria
for:
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
Phase Region from
0.100000E+00 for:
FCC_A1
Global test at 9.20000E-02 .... OK
Global test at 8.20000E-02 .... OK
Global test at 7.20000E-02 .... OK
Global test at 6.20000E-02 .... OK
Global test at 5.20000E-02 .... OK
Global test at 4.20000E-02 .... OK
Global test at 3.20000E-02 .... OK
Global test at 2.20000E-02 .... OK
Global test at 1.20000E-02 .... OK
Global test at 2.00000E-03 .... OK
Terminating at
0.100000E-03
Calculated
103 equilibria
*** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3
POLY_3: s-c t=1373,x(al)=.1
POLY_3: c-e,,,,,,,
Using global minimization procedure
Calculated
137 grid points in
0 s
Found the set of lowest grid points in
0 s
Calculated POLY solution
0 s, total time
0 s
POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY_3: step
Option? /NORMAL/:
Step will start from axis value
0.100000E+00
...OK
Phase Region from
0.100000E+00
FCC_A1
Global test at 1.08000E-01 ....
Global test at 1.18000E-01 ....
Global test at 1.28000E-01 ....
Global test at 1.38000E-01 ....
Global test at 1.48000E-01 ....
Global test at 1.58000E-01 ....
Global test at 1.68000E-01 ....
Global test at 1.78000E-01 ....
Global test at 1.88000E-01 ....
Global test at 1.98000E-01 ....
Terminating at
0.200000
Calculated
103 equilibria
for:
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
Phase Region from
0.100000E+00 for:
FCC_A1
Global test at 9.20000E-02 .... OK
Global test at 8.20000E-02 .... OK
Global test at 7.20000E-02 .... OK
Global test at 6.20000E-02 .... OK
Global test at 5.20000E-02 .... OK
Global test at 4.20000E-02 .... OK
Global test at 3.20000E-02 .... OK
Global test at 2.20000E-02 .... OK
Global test at 1.20000E-02 .... OK
Global test at 2.00000E-03 .... OK
Terminating at
0.100000E-03
Calculated
103 equilibria
*** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3
POLY_3: s-c t=1323,x(al)=.1
POLY_3: c-e,,,,,,,
Using global minimization procedure
Calculated
137 grid points in
0 s
Found the set of lowest grid points in
0 s
Calculated POLY solution
0 s, total time
0 s
POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY_3: step
Option? /NORMAL/:
Step will start from axis value
0.100000E+00
...OK
Phase Region from
0.100000E+00
FCC_A1
Global test at 1.08000E-01 ....
Global test at 1.18000E-01 ....
Global test at 1.28000E-01 ....
Global test at 1.38000E-01 ....
Global test at 1.48000E-01 ....
Global test at 1.58000E-01 ....
Global test at 1.68000E-01 ....
Global test at 1.78000E-01 ....
Global test at 1.88000E-01 ....
Global test at 1.98000E-01 ....
Terminating at
0.200000
Calculated
103 equilibria
for:
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
Phase Region from
0.100000E+00 for:
FCC_A1
Global test at 9.20000E-02 .... OK
Global test at 8.20000E-02 .... OK
Global test at 7.20000E-02 .... OK
Global test at 6.20000E-02 .... OK
Global test at 5.20000E-02 .... OK
Global test at 4.20000E-02 .... OK
Global test at 3.20000E-02 .... OK
Global test at 2.20000E-02 .... OK
Global test at 1.20000E-02 .... OK
Global test at 2.00000E-03 .... OK
Terminating at
0.100000E-03
Calculated
103 equilibria
*** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3
POLY_3: s-c t=1273,x(al)=.1
POLY_3: c-e,,,,,,,
Using global minimization procedure
Calculated
137 grid points in
0 s
Found the set of lowest grid points in
0 s
Calculated POLY solution
0 s, total time
0 s
POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY_3: step
Option? /NORMAL/:
Step will start from axis value
0.100000E+00
...OK
Phase Region from
0.100000E+00
FCC_A1
Global test at 1.08000E-01 ....
Global test at 1.18000E-01 ....
Global test at 1.28000E-01 ....
Global test at 1.38000E-01 ....
Global test at 1.48000E-01 ....
Global test at 1.58000E-01 ....
Global test at 1.68000E-01 ....
Global test at 1.78000E-01 ....
Global test at 1.88000E-01 ....
Global test at 1.98000E-01 ....
Terminating at
0.200000
Calculated
103 equilibria
for:
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
Phase Region from
0.100000E+00 for:
FCC_A1
Global test at 9.20000E-02 .... OK
Global test at 8.20000E-02 .... OK
Global test at 7.20000E-02 .... OK
Global test at 6.20000E-02 .... OK
Global test at 5.20000E-02 .... OK
Global test at 4.20000E-02 .... OK
Global test at 3.20000E-02 .... OK
Global test at 2.20000E-02 .... OK
Global test at 1.20000E-02 .... OK
Global test at 2.00000E-03 .... OK
Terminating at
0.100000E-03
Calculated
103 equilibria
*** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3
POLY_3: @@
POLY_3: @@ ENTER THE POST MODULE, PLOT THE DIFFUSIVITY ON THE Y-AXIS
POLY_3: @@ AND MOLE-FRACTION AL ON THE X-AXIS.
POLY_3: @@
POLY_3: post
POLY-3 POSTPROCESSOR VERSION 3.2
POST:
POST: s-d-a x m-f al
POST: s-d-a y logdc(fcc,al,al,ni)
POST:
POST: app y yama.exp
PROLOGUE NUMBER: /0/: 1
DATASET NUMBER(s): /-1/: 1 2 3 4 5 6 7
POST:
POST:
POST: s-t-m-s y
COMMAND NOT SUPPORTED IN THIS PLOT DRIVER
POST: s-s-s y n -15 -11.7
POST: s-t-m-s y
COMMAND NOT SUPPORTED IN THIS PLOT DRIVER
POST: plo
POST:
POST:@?<Hit_return_to_continue>
POST:
POST: set-inter
POST:
Deviation from local equilibrium
exh1-setup
MACRO exh1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh1\setup.DCM"SYS: @@
SYS: @@ Deviation from local equilibrium.
SYS: @@ Setup file for calculating the growth of FERRITE into AUSTENITE
SYS: @@ with a limited interface mobility.
SYS: @@ This is achieved by adding a Gibbs-energy contribution to the FERRITE
SYS: @@ using the SET-SURFACE-ENERGY command.
SYS: @@
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ USE A PUBLIC DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw FEDEMO
Current database: Iron Demo Database
VA
/- DEFINED
TDB_FEDEMO: def-sys fe c
FE
C DEFINED
TDB_FEDEMO: rej ph * all
GAS:G
LIQUID:L
CEMENTITE
DIAMOND_FCC_A4
GRAPHITE
HCP_A3
LAVES_PHASE_C14
M23C6
M7C3 REJECTED
TDB_FEDEMO: res ph bcc fcc
BCC_A2
FCC_A1 RESTORED
TDB_FEDEMO: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
BCC_A2
FCC_A1
KSI_CARBIDE
M5C2
List of references for assessed data
'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo -C, C-Mn'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
-OKTDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_FEDEMO: @@
TDB_FEDEMO: app mob2
Current database: Alloys Mobility v2.4
VA DEFINED
GAS:G REJECTED
APP: def-sys fe c
FE
APP: rej ph * all
BCC_A2
FCC_A1
HCP_A3
M23C6
REJECTED
APP: res ph bcc fcc
BCC_A2
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
C
DEFINED
CEMENTITE
FE4N
KSI_CARBIDE
M5C2
FCC_A1
DIAMOND_A4
GRAPHITE
LIQUID:L
M7C3
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diffusion in fcc C-Fe'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208;
Fe and Ni diffusion fcc Fe-Ni'
'B. Jonsson: Z. Metallkunde 85(1994)498-501;
C and N diffusion in bcc Cr-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355;
Cr, Co, Fe and Ni diffusion in bcc Fe'
-OKAPP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T.
DIC> @@
DIC> set-cond glob T 0 1000; * N
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
@@
@@ WE START BY ENTERING REGION ferrite AND austenite WHEREIN WE
@@ PUT THE BCC AND FCC PHASE RESPECTIVELY. THE ferrite REGION IS
@@ ASSUMED INITIALLY TO BE VERY THIN, 1E-9 METERS.
@@
enter-region
REGION NAME : ferrite
DIC>
DIC> enter-region
REGION NAME : austenite
ATTACH TO REGION NAMED /FERRITE/:
ATTACHED TO THE RIGHT OF FERRITE /YES/:
DIC>
DIC> @@
DIC> @@ ENTER GRIDS INTO THE REGIONS.
DIC> @@
DIC> enter-grid
REGION NAME : /FERRITE/: ferrite
WIDTH OF REGION /1/: 1e-9
TYPE /LINEAR/: linear
NUMBER OF POINTS /50/: 16
DIC>
DIC> enter-grid austenite
WIDTH OF REGION /1/: 0.999e-6
TYPE /LINEAR/: geo
NUMBER OF POINTS /50/: 100
VALUE OF R IN THE GEOMETRICAL SERIE : 1.07
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGIONS
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /FERRITE/: ferrite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: bcc
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITION INTO BCC.
DIC> @@
DIC> enter-composition
REGION NAME : /FERRITE/: ferrite
PHASE NAME: /BCC_A2/: bcc
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 0.019091893
VALUE OF LAST POINT : /1.9091893E-2/: 0.019091893
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITION INTO FCC.
DIC> @@
DIC> enter-composition
REGION NAME : /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 0.0191
VALUE OF LAST POINT : /1.91E-2/: 0.0191
DIC>
DIC> s-a-s-v 1E-6,,,,,,,,,,
STARTING VALUES WILL BE TAKEN FROM PROFILES
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exh1 y
DIC>
DIC> set-inter
--OK--DIC>
exh1-run
MACRO exh1\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh1\run.DCM"
DIC>
DIC> @@
DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC>
DIC> read exh1
OK
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-sim-time
END TIME FOR INTEGRATION /.1/: 2.5E-3
AUTOMATIC TIMESTEP CONTROL /YES/: YES
MAX TIMESTEP DURING INTEGRATION /2.5E-04/:
INITIAL TIMESTEP : /1E-07/: 1E-5
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: 1E-5
DIC>
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
3
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = 8.8825328568563E-04 FE = 1
TOTAL SIZE OF SYSTEM: 1E-06 [m]
U-FRACTION IN SYSTEM: C = 8.8825328568563E-04 FE = 1
TOTAL SIZE OF SYSTEM: 1E-06 [m]
8 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: FERRITE
5 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUSTENITE
1.03110666181551
1.03110597183369
5.385246425284908E-002
1.715859197209767E-002
5.269454793162359E003
1.307990235766189E-003
4.202476786297147E-004
1.948411908006568E-004
1.188567017945998E004
9.839878488869812E-005
9.128893667442597E-005
8.866544431792533E-005
8.690550585936149E005
8.538360708680218E-005
8.332726556390685E-005
7.999858657785934E-005
7.354651855517240E005
6.145612079007278E-005
4.053019497661872E-005
1.169782221443648E-005
TIME = 0.10000000E-04 DT = 0.10000000E-04 SUM OF SQUARES =
0.0000000
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.24566276E-01 AND
0.24566276E-01
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.24666276E-06
U-FRACTION IN SYSTEM: C = 8.88752483361515E-04 FE = 1
TOTAL SIZE OF SYSTEM: 1E-06 [m]
15
18
GRIDPOINT(S) REMOVED FROM CELL #1
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: FERRITE
REGION: AUSTENITE
CPU time used in timestep
0 seconds
9.532773377098078E-005
9.534680027085068E-005
1.08068530282314
9.356200412242730E-005
9.268532915874290E005
9.224853914102172E-005
9.181278076795938E-005
9.135438265217894E-005
9.044102801855774E005
8.862808513869768E-005
8.505726492311199E-005
7.813588667255182E-005
6.517417889517592E005
4.277495823453930E-005
1.207329648901820E-005
1.08068383068100
1.199299080265181E005
1.195293844791592E-005
1.193293739261372E-005
1.192294314545148E-005
1.191295308533091E005
1.190167282365429E-005
1.187912832962478E-005
1.183410345888553E-005
1.174431018685852E005
1.156574952126933E-005
1.121273170305182E-005
1.052311011956729E-005
9.209523163412100E006
6.844974094433803E-006
3.166375329878734E-006
0.201011782572525
3.142871672208493E006
3.131152677551541E-006
3.125301388805292E-006
3.121850224457948E-006
3.118400966702946E006
3.114440438044005E-006
3.106526930607043E-006
3.090730115382171E-006
3.059257283434525E006
2.996794813479531E-006
2.873802649595959E-006
2.635549425498196E-006
2.189967392240294E-006
output ignored...
... output resumed
9.819794020258727E-017
TIME = 0.22002544E-02 DT = 0.75087107E-04 SUM OF SQUARES = 0.98197940E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.28402963E-03 AND
0.28402963E-03
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.92199873E-06
U-FRACTION IN SYSTEM: C = 8.88747631242596E-04 FE = 1
TOTAL SIZE OF SYSTEM: 1E-06 [m]
CPU time used in timestep
1 seconds
7.986840729251211E-011
7.489714882055226E-011
4.900896524284950E-015
TIME = 0.22777000E-02 DT = 0.77445643E-04 SUM OF SQUARES = 0.32540743E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.27923624E-03 AND
0.27923624E-03
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.94362436E-06
U-FRACTION IN SYSTEM: C = 8.88747661251603E-04 FE = 1
TOTAL SIZE OF SYSTEM: 1E-06 [m]
CPU time used in timestep
1 seconds
2.809078081149325E-008
2.796037451260986E-008
3.923159526458546E-010
015
9.704675107466606E-021
TIME = 0.23495691E-02 DT = 0.71869036E-04 SUM OF SQUARES = 0.97046751E-20
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.28725723E-03 AND
0.28725723E-03
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.96426926E-06
U-FRACTION IN SYSTEM: C = 8.88747618654981E-04 FE = 1
TOTAL SIZE OF SYSTEM: 1E-06 [m]
1
GRIDPOINT(S) REMOVED FROM CELL #1
3.254074310359978E-019
7.220381817392545E-012
1.962053506687926E-
5.154698173071349E-009
8.601555018078858E-
REGION: FERRITE
CPU time used in timestep
2 seconds
9.454347916326056E-007
9.438322424857598E-007
5.227076162124419E-008
011
2.463240904969070E-013
1.179017220946856E-017
TIME = 0.24009106E-02 DT = 0.51341569E-04 SUM OF SQUARES = 0.11790172E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.33032575E-03 AND
0.33032575E-03
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.98122870E-06
U-FRACTION IN SYSTEM: C = .00101130149105949 FE = 1
TOTAL SIZE OF SYSTEM: 1E-06 [m]
CPU time used in timestep
1 seconds
7.148101462428815E-007
7.150000017031756E-007
3.435620109693077E-009
012
2.227047122794264E-015
1.181074220042402E-020
TIME = 0.24807770E-02 DT = 0.79866406E-04 SUM OF SQUARES = 0.11810742E-19
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.10642994E-03 AND
0.10642994E-03
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.98972888E-06
U-FRACTION IN SYSTEM: C = .00107539130909825 FE = 1
TOTAL SIZE OF SYSTEM: 1E-06 [m]
CPU time used in timestep
2 seconds
7.633423967067742E-009
7.691011645701482E-009
8.607873865095893E-014
TIME = 0.25000000E-02 DT = 0.19222960E-04 SUM OF SQUARES = 0.94556842E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.10154032E-03 AND
0.10154032E-03
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.99168078E-06
U-FRACTION IN SYSTEM: C = .00108581293494078 FE = 1
TOTAL SIZE OF SYSTEM: 1E-06 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-04
0.30000000E-04
0.51398715E-04
0.74164928E-04
0.98282873E-04
0.12374568E-03
0.15055410E-03
0.17871784E-03
0.20825724E-03
0.23919959E-03
0.27157705E-03
0.30544641E-03
0.34086769E-03
0.37792599E-03
0.41672114E-03
0.45738349E-03
0.50006274E-03
0.54496668E-03
0.59232869E-03
0.64246086E-03
0.69576815E-03
0.75273484E-03
0.81358958E-03
0.87864139E-03
0.94553878E-03
0.10125488E-02
0.10797329E-02
0.11472694E-02
0.12151918E-02
0.12833104E-02
0.13515445E-02
0.14198808E-02
0.14885622E-02
0.15573693E-02
0.16266608E-02
0.16961600E-02
0.17661995E-02
0.18366000E-02
0.19075164E-02
0.19791354E-02
0.20516011E-02
0.21251673E-02
0.22002544E-02
0.22777000E-02
0.23495691E-02
0.24009106E-02
0.24807770E-02
0.25000000E-02
5.124599971765541E-010
9.455684161680719E-019
2.312794327765358E-
exh1-plot
MACRO exh1\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh1\plot.DCM"DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 2.50000E-03
DIC>
DIC> read exh1
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: @@ SET THE DATA APPENDED FROM THE "EXP"-FILE TO BE RED
POST-1: @@
POST-1: set-col for for red
COMMAND NOT SUPPORTED IN THIS PLOT DRIVER
POST-1:
POST-1: @@
POST-1: @@ WE WILL COMPARE THE POSITION OF THE INTERFACE AS A FUNCTION OF TIME
POST-1: @@
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-d-a y posi aus low
POST-1:
POST-1: @@
POST-1: @@ APPEND THE SIMULATION WITHOUT THE ENERGY CONTRIBUTION FROM FILE
POST-1: @@
POST-1: app y noadd.exp 1; 1
POST-1:
POST-1: @@
POST-1: @@ SET TITLE ON DIAGRAM
POST-1: @@
POST-1: set-title Figure h1
POST-1:
POST-1: @@
POST-1: @@ PLOT THE RESULTS
POST-1: @@
POST-1: plot
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
Example h2
α/γ para-equilibrium in a Fe-Ni-C alloy
ν
T = 973 K
γ
α
●
● ●
● ●●
●
5E-4
●
●
exh2-setup
MACRO exh2\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh2\setup.DCM"SYS: @@
SYS: @@ Deviation from local equilibrium
SYS: @@ Setup file for calculation of the growth of FERRITE into AUSTENITE
SYS: @@ in an Fe-2.02%Ni-0.0885%C alloy using the para-equilibrium model.
SYS: @@ The results are compared with experimental information from
SYS: @@ Hutchinson, C. R., A. Fuchsmann, and Yves Brechet. "The diffusional
SYS: @@ formation of ferrite from austenite in Fe-C-Ni alloys." Metall.
SYS: @@ Mat. Trans. A 35.4 (2004): 1211-1221.
SYS: @@
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ SELECT DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7: def-sys fe ni c
FE
NI
DEFINED
TDB_TCFE7: rej ph * all
GAS:G
LIQUID:L
FCC_A1
HCP_A3
GRAPHITE
CEMENTITE
M7C3
M5C2
A1_KAPPA
KAPPA
FECN_CHI
LAVES_PHASE_C14
NI3TI REJECTED
TDB_TCFE7: res ph bcc fcc
BCC_A2
FCC_A1 RESTORED
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
C
BCC_A2
DIAMOND_FCC_A4
M23C6
KSI_CARBIDE
FE4N_LP1
NBNI3
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo-C, C-Mn'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'A. Gabriel, C. Chatillon, and I. Ansara, published in High Temp. Sci.
(parameters listed in Calphad, 11 (1987), 203-218); C-NI'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
'A. Gabriel, P. Gustafson, and I. Ansara, Calphad, 11 (1987), 203-218;
TRITA-MAC 285 (1986); C-FE-NI'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
-OKTDB_TCFE7:
TDB_TCFE7: @@
TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_TCFE7: @@
TDB_TCFE7: app mobfe2
Current database: Steels/Fe-Alloys Mobility v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe ni c
FE
DEFINED
APP: rej ph * all
BCC_A2
FE4N_LP1
REJECTED
APP: res ph bcc fcc
BCC_A2
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
NI
C
CEMENTITE
HCP_A3
FCC_A1
LIQUID:L
FCC_A1
RESTORED
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Z. Metallkunde 85(1994)502-509; C diffusion in fcc Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr
-Fe-Ni'
'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion
in bcc Fe'
'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni
diffusion bcc Cr-Fe-Ni'
-OKAPP:
APP: @@
APP: @@ ENTER
APP: @@
APP: go d-m
NO TIME STEP
DIC>
DIC> @@
DIC> @@ ENTER
DIC> @@
DIC> set-cond
THE DICTRA MONITOR
DEFINED
GLOBAL CONDITION T.
glob T 0 973; * N
DIC>
DIC> @@
DIC> @@ WE START BY ENTERING REGION ferrite AND austenite WHEREIN WE
DIC> @@ PUT THE BCC AND FCC PHASE RESPECTIVELY. THE ferrite REGION IS
DIC> @@ ASSUMED INITIALLY TO BE VERY THIN, 1E-9 METERS.
DIC> @@
DIC> enter-region
REGION NAME : ferrite
DIC>
DIC> enter-region
REGION NAME : austenite
ATTACH TO REGION NAMED /FERRITE/:
ATTACHED TO THE RIGHT OF FERRITE /YES/:
DIC>
DIC> @@
DIC> @@ ENTER GRIDS INTO THE REGIONS.
DIC> @@
DIC> enter-grid
REGION NAME : /FERRITE/: ferrite
WIDTH OF REGION /1/: 1e-9
TYPE /LINEAR/: linear
NUMBER OF POINTS /50/: 10
DIC>
DIC> enter-grid austenite
WIDTH OF REGION /1/: 50e-6
TYPE /LINEAR/: geo
NUMBER OF POINTS /50/: 64
VALUE OF R IN THE GEOMETRICAL SERIE : 1.05
DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO REGIONS
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /FERRITE/: ferrite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: bcc
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITION INTO BCC.
DIC> @@
DIC> enter-composition
REGION NAME : /FERRITE/: ferrite
PHASE NAME: /BCC_A2/: bcc
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: c
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 0.0885
VALUE OF LAST POINT : /8.85E-2/: 0.0885
PROFILE FOR /NI/: ni
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 2.02
VALUE OF LAST POINT : /2.02/: 2.02
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITION INTO FCC.
DIC> @@
DIC> enter-composition
REGION NAME : /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: c
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 0.0885
VALUE OF LAST POINT : /8.85E-2/: 0.0885
PROFILE FOR /NI/: ni
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 2.02
VALUE OF LAST POINT : /2.02/: 2.02
DIC>
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exh2 y
DIC>
DIC> set-inter
--OK--DIC>
exh2-run
MACRO exh2\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh2\run.DCM"DIC>
DIC>
DIC>
DIC> @@
DIC> @@ FILE TO RUN EXH2
DIC> @@
DIC>
DIC> @@
DIC> @@ READ THE SETUP FROM FILE
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC>
DIC> read exh2
OK
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-sim-time 50,,,,,,,,,,
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ ENABLE PARA-EQUILIBRIUM MODEL
DIC> @@
DIC> para
ENABLE PARAEQ : /NO/: YES
U-FRACTION OF COMPONENT FE /AUTO/: AUTO
U-FRACTION OF COMPONENT NI /AUTO/: AUTO
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
4
GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES:
9
EQUILIBRIUM CALCULATIONS
DONE
6 OUT OF
9
Automatic start values
Old start values kept
Automatic start values
Old start values kept
Automatic start values
U-FRACTION IN SYSTEM:
will be set
will be set
will be set
C = .00412262676333 FE = .980742621143593
NI = .0192573788564064
TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]
U-FRACTION IN SYSTEM: C = .00412262676333 FE = .980742621143593
NI = .0192573788564064
TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]
4 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: FERRITE
1 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: AUSTENITE
13403.6958648069
13403.6958648086
13396.6824560157
181.652848456235
003
2.869921999404734E-004
9.689074565152364E-006
8.925381150645216E-008
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.76505013E-17
CELL # 1 VELOCITY AT INTERFACE # 2 IS
2.9919796
AND
2.9919796
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.30019796E-06
U-FRACTION IN SYSTEM: C = .00413341100651837 FE = .980742621143595
NI = .0192573788564042
TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]
6
4
GRIDPOINT(S) REMOVED FROM CELL #1
GRIDPOINT(S) REMOVED FROM CELL #1
1.24968990159338
7.650501290270586E-018
6.13050095628349
REGION: FERRITE
REGION: AUSTENITE
CPU time used in timestep
1 seconds
1.109277806781959E-004
1.109499673738690E-004
2.506979175345796E-003
1.109055959870900E-004
1.108834139500934E004
1.108390558913144E-004
2.506947733048917E-003
1.107503670848005E-004
1.105730955198385E004
1.102189802380486E-004
2.506270528566505E-003
1.095124556233115E-004
1.081062081348880E004
1.053209699054010E-004
2.501429518391718E-003
9.985953878408749E-005
8.937286231983667E005
7.014433942510795E-005
2.466206730146323E-003
3.866650685347768E-005
3.626051657591454E006
1.572092477628580E-014
2.190983295130420E-022
output ignored...
... output resumed
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.19409623E-06 AND
0.19409623E-06
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.13001736E-04
U-FRACTION IN SYSTEM: C = .00411809624594486 FE = .980742621140336
NI = .0192573788596635
TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]
20
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: FERRITE
CPU time used in timestep
2 seconds
2.179415636911405E-008
2.193703832772930E-008
2.396119507550611E-003
2.165173974316267E-008
2.150978853142959E008
2.122728219908968E-008
2.396119416977283E-003
2.066785466337352E-008
1.957134305750423E008
1.746772029096504E-008
2.396115182836484E-003
1.361828607854980E-008
7.353356256718305E009
5.667946278982394E-010
1.710601161882932E-015
1.626357531345084E-022
TIME =
44.369820
DT =
4.5307820
SUM OF SQUARES = 0.16263575E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.18441068E-06 AND
0.18441068E-06
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.13837261E-04
U-FRACTION IN SYSTEM: C = .0041174798024505 FE = .980742621140136
NI = .0192573788598644
TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]
11
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: FERRITE
CPU time used in timestep
2 seconds
1.605854297458510E-008
1.617614084768895E-008
2.396113827522016E-003
1.594137296112404E-008
1.582463086602039E008
1.559243035621518E-008
2.396113768444017E-003
1.513316461511122E-008
1.423517679895237E008
1.252139874063835E-008
2.396110130450634E-003
9.422812808432532E-009
4.543358257459242E-
009
6.491004788810043E-011
4.825898839100316E-016
3.264294301225279E-022
TIME =
49.033653
DT =
4.6638338
SUM OF SQUARES = 0.32642943E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.17578279E-06 AND
0.17578279E-06
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.14657082E-04
U-FRACTION IN SYSTEM: C = .00411691192103735 FE = .980742621139938
NI = .0192573788600617
TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]
12
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: FERRITE
CPU time used in timestep
1 seconds
4.229054054927214E-008
4.227110832796976E-008
2.396140594304140E-003
4.227110832529617E-008
4.225168056868244E008
4.221283844466601E-008
2.396140346901875E-003
4.213520776550274E-008
4.198016067429139E008
4.167092356618738E-008
2.396139891419141E-003
4.105587765842707E-008
3.983949921701282E008
3.746766281446290E-008
2.396135601115320E-003
3.293725592383893E-008
2.475168530793918E008
1.177748566559647E-008
2.396109931933447E-003
1.124099428349586E-010
3.699450585032613E-019
TIME =
50.000000
DT = 0.96634651
SUM OF SQUARES = 0.36994506E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS
0.24664769E-06 AND
0.24664769E-06
POSITION OF INTERFACE FERRITE / AUSTENITE IS
0.14895430E-04
U-FRACTION IN SYSTEM: C = .00411613499699454 FE = .980742621139896
NI = .0192573788601039
TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-06
0.20000000E-06
0.39861233E-06
0.79583700E-06
0.15902863E-05
0.31791850E-05
0.63569824E-05
0.12712577E-04
0.25423766E-04
0.50846145E-04
0.10169090E-03
0.20338042E-03
0.40675945E-03
0.81351751E-03
0.16270336E-02
0.32540659E-02
0.65081304E-02
0.13016259E-01
0.26032517E-01
0.52065033E-01
0.10413006
0.20826013
0.41652026
0.83304051
1.6660810
3.3321620
6.2055245
9.1368069
12.349235
15.762388
19.366560
23.146992
27.092683
31.194722
35.445627
39.839038
44.369820
49.033653
50.000000
exh2-plot
MACRO exh2\plot.DCMDIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 5.00000E+01
DIC>
DIC> read exh2
OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1: @@
POST-1: @@ WE WANT TO PLOT THE POSITION OF THE INTERFACE AS A FUNCTION OF TIME
POST-1: @@ I.E. THE FERRITE HALF-THICKNESS
POST-1: @@
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-d-a y posi aus low
POST-1:
POST-1: @@
POST-1: @@ APPEND THE EXPERIMENTAL INFORMATION
POST-1: @@
POST-1: app y exh2.exp 1; 1
POST-1:
POST-1: @@
POST-1: @@ SET TITLE ON DIAGRAM
POST-1: @@
POST-1: set-title Figure h2
POST-1:
POST-1: @@
POST-1: @@ RENAME AXIS LABELS
POST-1: @@
POST-1: set-axis-text-status
AXIS (X, Y OR Z) : x
AUTOMATIC AXIS TEXT (Y OR N) /N/: NO
AXIS TEXT : Time (s)
POST-1:
POST-1: set-axis-text-status
AXIS (X, Y OR Z) : y
AUTOMATIC AXIS TEXT (Y OR N) /N/: NO
AXIS TEXT : Ferrite half-thickness
POST-1:
POST-1: @@
POST-1: @@ PLOT THE RESULTS
POST-1: @@
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
exh3-setup
MACRO exh3\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh3\setup.DCM"SYS: @@
SYS: @@ Deviation from local equilibrium.
SYS: @@ This calculation shows how a temperature gradient induces
SYS: @@ diffusion.
SYS: @@
SYS:
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8: sw tcfe7
Current database: Steels/Fe-Alloys v7.0
VA DEFINED
L12_FCC
B2_BCC
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE7: def-sys fe ni c
FE
NI
DEFINED
TDB_TCFE7: rej ph * all
GAS:G
LIQUID:L
FCC_A1
HCP_A3
GRAPHITE
CEMENTITE
M7C3
M5C2
A1_KAPPA
KAPPA
FECN_CHI
LAVES_PHASE_C14
NI3TI REJECTED
TDB_TCFE7: res ph fcc graph
FCC_A1
GRAPHITE RESTORED
TDB_TCFE7: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
B2_VACANCY
C
BCC_A2
DIAMOND_FCC_A4
M23C6
KSI_CARBIDE
FE4N_LP1
NBNI3
List of references for assessed data
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni'
'A. Gabriel, C. Chatillon, and I. Ansara, published in High Temp. Sci.
(parameters listed in Calphad, 11 (1987), 203-218); C-NI'
'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI'
'A. Gabriel, P. Gustafson, and I. Ansara, Calphad, 11 (1987), 203-218;
TRITA-MAC 285 (1986); C-FE-NI'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes'
'B. Uhrenius (1993-1994), International journal of refractory metals and
hard mater, Vol. 12, pp. 121-127; Molar volumes'
-OKTDB_TCFE7: app mobfe2
Current database: Steels/Fe-Alloys Mobility v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
VA DEFINED
APP: def-sys fe ni c
FE
DEFINED
APP: rej ph * all
BCC_A2
FE4N_LP1
REJECTED
APP: res ph fcc
FCC_A1 RESTORED
APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
NI
C
CEMENTITE
HCP_A3
FCC_A1
LIQUID:L
List of references for assessed data
'This parameter has not been assessed'
'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe'
'B. Jonsson: Z. Metallkunde 85(1994)502-509; C diffusion in fcc Cr-Fe-Ni'
'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe
-Ni'
'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion'
-OKAPP:
APP: go d-m
NO TIME STEP DEFINED
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC>
DIC> @@ Enter a gaussian shaped temperature gradient
DIC> set-cond glob T 0 1000+400*exp(-3.35074E4*(x-11e-3)**2); * N
DIC>
DIC> set-ref C grap,,,,,,,,,,
DIC>
DIC> ent-reg aus,,,,,,
DIC>
DIC> ent-grid aus 25e-3 lin 64
DIC>
DIC> ent-pha act aus matrix fcc#1
DIC>
DIC> ent-comp aus fcc#1 fe w-p
PROFILE FOR /C/: c lin 0.14 0.14
PROFILE FOR /NI/: ni lin 32.5 32.5
DIC>
DIC> s-s-time 5E7,,,,,,,,,,,,
DIC>
DIC> @@ Enter the heat of transfer parameter for Carbon
DIC> ent-heat-tra-p
HEAT TRANSFER PARAMETER FOR PHASE: fcc
ELEMENT: C
PARAMETER /0/: -42000
DIC>
DIC>
DIC> save exh3 y
DIC>
DIC> set-inter
--OK--DIC>
exh3-run
MACRO exh3\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh3\run.DCM"DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC>
DIC> read exh3
OK
DIC>
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = .00662305741857947 FE = .68534915460493
NI = .31465084539507
TOTAL SIZE OF SYSTEM: .025 [m]
U-FRACTION IN SYSTEM: C = .00662305741857947 FE = .68534915460493
NI = .31465084539507
TOTAL SIZE OF SYSTEM: .025 [m]
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .00662305741857946 FE = .68534915460493
NI = .31465084539507
TOTAL SIZE OF SYSTEM: .025 [m]
CPU time used in timestep
0
seconds
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: C = .00662305741857946 FE = .68534915460493
NI = .31465084539507
TOTAL SIZE OF SYSTEM: .025 [m]
CPU time used in timestep
TIME = 0.40010010
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
1
seconds
0
seconds
0
seconds
0
seconds
1
seconds
DT =
2353182.2
SUM OF SQUARES =
0.0000000
C = .00662305741831685 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
13430776.
U-FRACTION IN SYSTEM:
seconds
DT =
2689541.9
SUM OF SQUARES =
0.0000000
C = .00662305741830992 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
11225058.
U-FRACTION IN SYSTEM:
0
DT =
3026585.7
SUM OF SQUARES =
0.0000000
C = .00662305741829981 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
8871875.5
U-FRACTION IN SYSTEM:
seconds
DT =
1627947.1
SUM OF SQUARES =
0.0000000
C = .00662305741828182 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
6182333.6
U-FRACTION IN SYSTEM:
0
DT =
813973.55
SUM OF SQUARES =
0.0000000
C = .00662305741827508 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
3155747.9
U-FRACTION IN SYSTEM:
seconds
DT =
406986.78
SUM OF SQUARES =
0.0000000
C = .00662305741827373 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
1527800.8
U-FRACTION IN SYSTEM:
0
DT =
203493.39
SUM OF SQUARES =
0.0000000
C = .00662305741827412 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
713827.26
U-FRACTION IN SYSTEM:
seconds
DT =
101746.69
SUM OF SQUARES =
0.0000000
C = .00662305741851277 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
306840.48
U-FRACTION IN SYSTEM:
0
DT =
1600.0000
SUM OF SQUARES =
0.0000000
C = .00662305741857946 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
103347.09
U-FRACTION IN SYSTEM:
seconds
DT = 0.40000000
SUM OF SQUARES =
0.0000000
C = .00662305741857946 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
1600.4001
U-FRACTION IN SYSTEM:
1
0
seconds
DT =
2205718.8
SUM OF SQUARES =
0.0000000
C = .00662305741832062 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
0
seconds
TIME =
15553118.
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
DT =
2122341.4
SUM OF SQUARES =
0.0000000
C = .00662305741832428 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
17622748.
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
CPU time used in timestep
TIME =
19656769.
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
seconds
0
seconds
DT =
2034020.9
SUM OF SQUARES =
0.0000000
C = .00662305741770409 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
21665556.
U-FRACTION IN SYSTEM:
1
DT =
2069630.6
SUM OF SQUARES =
0.0000000
C = .00662305741832675 FE = .68534915460493
NI = .31465084539507
.025 [m]
0
seconds
DT =
2008786.4
SUM OF SQUARES =
0.0000000
C = .00662305741717907 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
0
seconds
1
seconds
output ignored...
... output resumed
CPU time used in timestep
TIME =
25631983.
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
DT =
1976188.0
SUM OF SQUARES =
0.0000000
C = .00662305741634156 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
27597242.
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
CPU time used in timestep
TIME =
29553810.
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SYSTEM:
0
seconds
0
seconds
0
seconds
1
seconds
0
seconds
DT =
1925261.8
SUM OF SQUARES =
0.0000000
C = .00662305741442645 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
45027629.
U-FRACTION IN SYSTEM:
seconds
DT =
1927969.3
SUM OF SQUARES =
0.0000000
C = .00662305741455064 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
43104744.
U-FRACTION IN SYSTEM:
1
DT =
1931068.4
SUM OF SQUARES =
0.0000000
C = .00662305741468989 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
41179482.
U-FRACTION IN SYSTEM:
seconds
DT =
1934640.9
SUM OF SQUARES =
0.0000000
C = .00662305741484568 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
39251513.
U-FRACTION IN SYSTEM:
0
DT =
1938796.6
SUM OF SQUARES =
0.0000000
C = .00662305741502275 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
37320445.
U-FRACTION IN SYSTEM:
seconds
DT =
1943685.0
SUM OF SQUARES =
0.0000000
C = .00662305741522232 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
35385804.
U-FRACTION IN SYSTEM:
0
DT =
1949512.6
SUM OF SQUARES =
0.0000000
C = .00662305741544927 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
33447007.
U-FRACTION IN SYSTEM:
seconds
DT =
1956567.4
SUM OF SQUARES =
0.0000000
C = .0066230574157082 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
31503322.
U-FRACTION IN SYSTEM:
0
DT =
1965259.0
SUM OF SQUARES =
0.0000000
C = .00662305741600359 FE = .68534915460493
NI = .31465084539507
.025 [m]
0
seconds
DT =
1922884.8
SUM OF SQUARES =
0.0000000
C = .00662305741431691 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
0
seconds
TIME =
46940040.
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
DT =
1912411.1
SUM OF SQUARES =
0.0000000
C = .00662305741421878 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
48348752.
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
1
CPU time used in timestep
TIME =
49541944.
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
seconds
DT =
1193191.7
SUM OF SQUARES =
0.0000000
C = .00662305741412172 FE = .68534915460493
NI = .31465084539507
.025 [m]
CPU time used in timestep
TIME =
50000000.
U-FRACTION IN SYSTEM:
seconds
DT =
1408712.0
SUM OF SQUARES =
0.0000000
C = .00662305741416191 FE = .68534915460493
NI = .31465084539507
.025 [m]
0
seconds
DT =
458056.12
SUM OF SQUARES =
0.0000000
C = .00662305741411571 FE = .68534915460493
NI = .31465084539507
.025 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-06
0.10010000E-03
0.40010010
1600.4001
103347.09
306840.48
713827.26
1527800.8
3155747.9
6182333.6
8871875.5
11225058.
13430776.
15553118.
17622748.
19656769.
21665556.
23655795.
25631983.
27597242.
29553810.
31503322.
33447007.
35385804.
37320445.
39251513.
41179482.
43104744.
45027629.
46940040.
48348752.
49541944.
50000000.
exh3-plot
MACRO exh3\plot.DCMDIC> go d-m
TIME STEP AT TIME 5.00000E+07
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC>
DIC>
DIC> read exh3
OK
DIC>
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1: s-d-a x dist glob
INFO: Distance is set as independent variable
POST-1: s-d-a y w-p c
POST-1: s-p-c time 367200 5E7
POST-1: s-s-s y n 0.1 0.18
POST-1: s-s-s y y
POST-1: app y exh3.exp 0; 1 3;
POST-1: s-p-o n y y n y n n,,,,,,,,
POST-1:
POST-1: set-ax-text-st x
AUTOMATIC AXIS TEXT (Y OR N) /N/: n
AXIS TEXT : Distance [m]
POST-1:
POST-1: set-ax-text-st y
AUTOMATIC AXIS TEXT (Y OR N) /N/: n
AXIS TEXT : Mass percent Carbon
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
exi1-setup
MACRO exi1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi1\setup.DCM"SYS: @@
SYS: @@ Diffusion in complex phases.
SYS: @@ Diffusion in including effects from chemical ordering.
SYS: @@ The datafile AlFeNi-data.TDB contains both a thermodynamic
SYS: @@ and kinetic description for the ordered and disordered BCC.
SYS: @@
SYS:
SYS: @@ exi1_setup.DCM
SYS:
SYS:
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8: sw user AlFeNi-data.TDB
Current database: User defined Database
This database does not support the DATABASE_INFORMATION command
VA DEFINED
TDB_USER: def-sys fe al ni
FE
AL
DEFINED
TDB_USER: rej ph *
B2_BCC
BCC_DIS
REJECTED
TDB_USER: res ph bcc_dis b2_ord
BCC_DIS
B2_ORD RESTORED
TDB_USER: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
-OKTDB_USER: go -m
NO TIME STEP DEFINED
DIC> set-cond glob T 0 1277; * N
NI
B2_ORD
DIC>
DIC> enter-region beta
DIC>
DIC> enter-grid beta
WIDTH OF REGION /1/: 2e-3
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 70
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.85
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.1765
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /BETA/: beta
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: b2_ord
DIC>
DIC> enter-composition
REGION NAME : /BETA/: beta
PHASE NAME: /B2_ORD/: b2_ord
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: mole-fraction
PROFILE FOR /AL/: ni
TYPE /LINEAR/: function
Function F(X)= 0.28-0.277*erf((x-1e-3)/3e-6);
PROFILE FOR /NI/: al
TYPE /LINEAR/: function
Function F(X)= 0.4295-0.0105*erf((x-1e-3)/3e-6);
DIC>
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 345600
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /34560/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC> s-a-s-v
AUTOMATIC STARTING VALUES FOR PHASE COMPOSITIONS /YES/: no
START VALUES FOR PHASES IN REGION BETA
PHASE: B2_ORD
MAJOR CONSTITUENTS IN PHASE B2_ORD: NI;AL
DIC> @@0.001
DIC> @@0.001
DIC> @@0.998
DIC> @@0.998
DIC> @@0.001
DIC> @@0.001
DIC> @@0.001
DIC> @@0.001
DIC> @@0.998
DIC> @@0.998
DIC> @@0.001
DIC> @@0.001
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC> save exi1 yes
DIC>
DIC> set-inter
--OK--DIC>
exi1-run
MACRO exi1\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi1\run.DCM"DIC>
DIC>
DIC> @@ exi1_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE i1
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exi1
OK
DIC>
DIC> @@
DIC> @@ Start the simulation
DIC> @@
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: AL = .429499966538504 FE = .290500916207633
NI = .279999117253863
TOTAL SIZE OF SYSTEM: .002 [m]
U-FRACTION IN SYSTEM: AL = .429499966538504 FE = .290500916207633
NI = .279999117253863
TOTAL SIZE OF SYSTEM: .002 [m]
6 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: BETA
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: AL = .429499966538504 FE = .290500916207633
NI = .279999117253863
TOTAL SIZE OF SYSTEM: .002 [m]
CPU time used in timestep
0
seconds
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM: AL = .429499966538504 FE = .290500916207633
NI = .279999117253863
TOTAL SIZE OF SYSTEM: .002 [m]
CPU time used in timestep
TIME = 0.40010010
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
1
CPU time used in timestep
TIME =
49.932678
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
0
TOTAL SIZE OF SYSTEM:
1
TOTAL SIZE OF SYSTEM:
1
TOTAL SIZE OF SYSTEM:
2
TOTAL SIZE OF SYSTEM:
1
TOTAL SIZE OF SYSTEM:
2
TOTAL SIZE OF SYSTEM:
2
TOTAL SIZE OF SYSTEM:
2
25311.547
seconds
DT =
6340.1699
SUM OF SQUARES =
0.0000000
AL = .429499966538499 FE = .290500916207638
NI = .279999117253863
.002 [m]
CPU time used in timestep
TIME =
seconds
DT =
3170.0850
SUM OF SQUARES =
0.0000000
AL = .429499966538495 FE = .290500916207635
NI = .279999117253869
.002 [m]
CPU time used in timestep
TIME =
12631.207
U-FRACTION IN SYSTEM:
seconds
DT =
1585.0425
SUM OF SQUARES =
0.0000000
AL = .429499966538501 FE = .290500916207629
NI = .27999911725387
.002 [m]
CPU time used in timestep
TIME =
6291.0375
U-FRACTION IN SYSTEM:
seconds
DT =
792.52124
SUM OF SQUARES =
0.0000000
AL = .429499966538517 FE = .29050091620762
NI = .279999117253863
.002 [m]
CPU time used in timestep
TIME =
3120.9525
U-FRACTION IN SYSTEM:
seconds
DT =
396.26062
SUM OF SQUARES =
0.0000000
AL = .429499966538519 FE = .29050091620762
NI = .279999117253862
.002 [m]
CPU time used in timestep
TIME =
1535.9100
U-FRACTION IN SYSTEM:
seconds
DT =
198.13031
SUM OF SQUARES =
0.0000000
AL = .429499966538503 FE = .290500916207633
NI = .279999117253863
.002 [m]
CPU time used in timestep
TIME =
743.38877
U-FRACTION IN SYSTEM:
seconds
DT =
99.065155
SUM OF SQUARES =
0.0000000
AL = .429499966538502 FE = .290500916207635
NI = .279999117253863
.002 [m]
CPU time used in timestep
TIME =
347.12814
U-FRACTION IN SYSTEM:
seconds
DT =
49.532578
SUM OF SQUARES =
0.0000000
AL = .429499966538504 FE = .290500916207633
NI = .279999117253863
.002 [m]
CPU time used in timestep
TIME =
148.99783
U-FRACTION IN SYSTEM:
seconds
DT = 0.40000000
SUM OF SQUARES =
0.0000000
AL = .429499966538504 FE = .290500916207633
NI = .279999117253863
.002 [m]
DT =
3
12680.340
seconds
SUM OF SQUARES =
0.0000000
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
AL = .429499966538508
NI = .279999117253851
.002 [m]
CPU time used in timestep
TIME =
50672.227
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM:
3
TOTAL SIZE OF SYSTEM:
4
TOTAL SIZE OF SYSTEM:
4
TOTAL SIZE OF SYSTEM:
3
TOTAL SIZE OF SYSTEM:
4
TOTAL SIZE OF SYSTEM:
3
TOTAL SIZE OF SYSTEM:
3
TOTAL SIZE OF SYSTEM:
3
TOTAL SIZE OF SYSTEM:
3
TOTAL SIZE OF SYSTEM:
seconds
DT =
34560.000
SUM OF SQUARES =
0.0000000
AL = .429499966538314 FE = .290500916207556
NI = .27999911725413
.002 [m]
CPU time used in timestep
TIME =
345600.00
U-FRACTION IN SYSTEM:
seconds
DT =
34560.000
SUM OF SQUARES =
0.0000000
AL = .429499966538331 FE = .290500916207582
NI = .279999117254086
.002 [m]
CPU time used in timestep
TIME =
327152.23
U-FRACTION IN SYSTEM:
seconds
DT =
34560.000
SUM OF SQUARES =
0.0000000
AL = .429499966538356 FE = .290500916207628
NI = .279999117254016
.002 [m]
CPU time used in timestep
TIME =
292592.23
U-FRACTION IN SYSTEM:
seconds
DT =
34560.000
SUM OF SQUARES =
0.0000000
AL = .42949996653839 FE = .29050091620771
NI = .279999117253901
.002 [m]
CPU time used in timestep
TIME =
258032.23
U-FRACTION IN SYSTEM:
seconds
DT =
34560.000
SUM OF SQUARES =
0.0000000
AL = .429499966538418 FE = .290500916207772
NI = .27999911725381
.002 [m]
CPU time used in timestep
TIME =
223472.23
U-FRACTION IN SYSTEM:
seconds
DT =
34560.000
SUM OF SQUARES =
0.0000000
AL = .429499966538442 FE = .290500916207755
NI = .279999117253803
.002 [m]
CPU time used in timestep
TIME =
188912.23
U-FRACTION IN SYSTEM:
seconds
DT =
34560.000
SUM OF SQUARES =
0.0000000
AL = .429499966538477 FE = .290500916207704
NI = .279999117253819
.002 [m]
CPU time used in timestep
TIME =
154352.23
U-FRACTION IN SYSTEM:
seconds
DT =
34560.000
SUM OF SQUARES =
0.0000000
AL = .4294999665385 FE = .290500916207642
NI = .279999117253858
.002 [m]
CPU time used in timestep
TIME =
119792.23
U-FRACTION IN SYSTEM:
seconds
DT =
25360.680
SUM OF SQUARES =
0.0000000
AL = .429499966538515 FE = .290500916207635
NI = .27999911725385
.002 [m]
CPU time used in timestep
TIME =
85232.227
U-FRACTION IN SYSTEM:
FE = .29050091620764
3
seconds
DT =
18447.773
SUM OF SQUARES =
0.0000000
AL = .429499966538376 FE = .290500916207578
NI = .279999117254046
.002 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-06
0.10010000E-03
0.40010010
49.932678
148.99783
347.12814
743.38877
1535.9100
3120.9525
6291.0375
12631.207
25311.547
50672.227
85232.227
119792.23
154352.23
188912.23
223472.23
258032.23
292592.23
327152.23
345600.00
exi1-plot
MACRO exi1\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi1\plot.DCM"DIC>
DIC> @@ exi1_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE i1
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 3.45600E+05
DIC> read exi1
OK
DIC>
DIC> @@
DIC> @@ ENTER THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
INFO:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
s-d-a x dist glob
Distance is set as independent variable
s-d-a y m-f al
s-p-c time last
plot
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: ent tab prof
Variable(s) x(al) x(ni)
POST-1:
POST-1: ent fun rdist
FUNCTION: 1e6*(gd-10e-4)
&
POST-1: s-d-a y prof
COLUMN NUMBER /*/: 1 2
POST-1:
POST-1: s-d-a x rdist
POST-1:
POST-1: plo
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: app y exi1.exp
PROLOGUE NUMBER: /0/: 1
DATASET NUMBER(s): /-1/: 1
POST-1:
POST-1: s-s-s x n -300 300
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
exi2-setup
MACRO exi2\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi2\setup.DCM"SYS: @@
SYS: @@ Diffusion in complex phases.
SYS: @@ This example demonstrates the use of the model for calculation of
SYS: @@ diffusion through a stoichiometric phase. The flux of a component in
SYS: @@ the stoichiometric phase is assumed to be proportional to the
SYS: @@ difference in chemical potential at each side of the stoichiometric
SYS: @@ phase multiplied with the mobility for the component in the phase. The
SYS: @@ mobility is assessed from experimental information and is basically
SYS: @@ the tracer diffusivity for the component.
SYS: @@ This calculation is compared with experimental data where a sample of
SYS: @@ pure iron has been exposed to a gas atmosphere with a certain carbon
SYS: @@ activity. The weight gain is then measured as a function of time.
SYS: @@ The experimental data is obtained from Ozturk B., Fearing V. L.,
SYS: @@ Ruth A. Jr. and Simkovich G., Met. Trans A, vol 13A (1982), pp. 1871-1873.
SYS: @@
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM DATABASE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ USE A PUBLIC DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: switch FEDEMO
Current database: Iron Demo Database
VA
/- DEFINED
TDB_FEDEMO: def-sys fe c
FE
C DEFINED
TDB_FEDEMO: rej ph * all
GAS:G
LIQUID:L
CEMENTITE
DIAMOND_FCC_A4
GRAPHITE
HCP_A3
LAVES_PHASE_C14
M23C6
M7C3 REJECTED
TDB_FEDEMO: res ph bcc fcc cementite grap
BCC_A2
FCC_A1
GRAPHITE RESTORED
TDB_FEDEMO: get
REINITIATING GES5 .....
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
BCC_A2
FCC_A1
KSI_CARBIDE
M5C2
CEMENTITE
List of references for assessed data
'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo -C, C-Mn'
'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C
-FE'
'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes'
'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425'
'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89;
Molar volumes'
'B. Uhrenius (1993-1994), International journal of refractory metals and
hard mater, Vol. 12, pp. 121-127; Molar volumes'
-OKTDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_FEDEMO: @@
TDB_FEDEMO: app user cembccstoik.TDB
Current database: User defined Database
This database does not support the DATABASE_INFORMATION command
VA DEFINED
TDB_APP: def-sys fe c
FE
C DEFINED
TDB_APP: rej ph * all
BCC_A2
CEMENTITE REJECTED
TDB_APP: res ph fcc bcc cementite
*** FCC INPUT IGNORED
BCC_A2
CEMENTITE RESTORED
TDB_APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
*** ERROR 1000 IN TDBGRT
*** NO REFERENCE FILE
*** ERROR 1000 IN TDBGRT
*** NO REFERENCE FILE
-OKTDB_APP:
TDB_APP: @@
TDB_APP: @@ ENTER THE DICTRA MONITOR
TDB_APP: @@
TDB_APP: go d-m
NO TIME STEP DEFINED
*** ENTERING FCC_A1 AS A DIFFUSION NONE PHASE
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC>
DIC> set-ref c grap,,,,,,,,,,,
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob t 0 723; * n
DIC>
DIC> @@
DIC> @@ ENTER REGIONS carb AND fer
DIC> @@
DIC> enter-region
REGION NAME : fer
DIC>
DIC> enter-region
REGION NAME : carb
ATTACH TO REGION NAMED /FER/:
ATTACHED TO THE RIGHT OF FER /YES/:
DIC> @@
DIC> @@ ENTER LINEAR GRIDS INTO THE REGIONS
DIC> @@
DIC>
DIC> @@
DIC> @@ Enter a size for the ferrite
DIC> @@
DIC> @@
DIC> @@
DIC> enter-grid
REGION NAME : /FER/: fer
WIDTH OF REGION /1/: 3.3E-6
TYPE /LINEAR/: lin 50
DIC>
DIC> @@
DIC> @@ Enter a size (very small) for the cementite layer
DIC> @@
DIC> @@
DIC> enter-grid
REGION NAME : /CARB/: carb
WIDTH OF REGION /1/: 1E-12
TYPE /LINEAR/: lin
NUMBER OF POINTS /50/: 10
DIC>
DIC>
DIC> @@
DIC> @@ ENTER PHASES INTO REGIONS
DIC> @@
DIC> enter-phase act carb matrix
cementite
COMPOSITION RECORD FOR STOICHIOMETRIC PHASE CEMENTITE IN REGION CARB CREATED
DIC> enter-phase act fer
matrix
bcc#1
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITIONS IN THE PHASES
DIC> @@
DIC> enter-composition
REGION NAME : /FER/: carb
PHASE NAME: /CEMENTITE/: cementite
DIC>
DIC> enter-composition
REGION NAME : /FER/: fer
PHASE NAME: /BCC_A2/: bcc#1
COMPOSITION TYPE /MOLE_FRACTION/: weig-fraction
PROFILE FOR /C/: C lin 1E-5 1E-5
DIC>
DIC> set-cond bound upp
CONDITION TYPE /CLOSED_SYSTEM/: mix
Dependent substitutional element:FE
Dependent interstitial element:VA
LOW TIME LIMIT /0/: 0
ACR(C)(TIME)= 9;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ simulate for 150 minutes
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 9000
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /900/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exi2 Y
DIC>
DIC> set-inter
--OK--DIC>
exi2-run
MACRO exi2\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi2\run.DCM"DIC>
DIC>
DIC> @@ exi2_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE i2
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
*** ENTERING FCC_A1 AS A DIFFUSION NONE PHASE
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC> read exi2
OK
DIC>
DIC> @@
DIC> @@ Start the simulation
DIC> @@
DIC> sim
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
3
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: C = 4.6598005784384E-05 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
U-FRACTION IN SYSTEM: C = 4.6598005784384E-05 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
4 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: CARB
0.111097719336122
0.111119939666141
9.691611002362172E-020
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.96916110E-19
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14617667E-04 AND -0.14617667E-04
POSITION OF INTERFACE FER / CARB IS
0.32999985E-05
U-FRACTION IN SYSTEM: C = 4.65258726084234E-05 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
CPU time used in timestep
0 seconds
2.264815947299283E-005
2.265270404058167E-005
5.027029744193626E-020
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.50270297E-19
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.46363829E-07 AND -0.46363829E-07
POSITION OF INTERFACE FER / CARB IS
0.32999939E-05
U-FRACTION IN SYSTEM: C = 4.6983979832688E-05 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
CPU time used in timestep
0 seconds
9.341884324918437E-007
9.344812013987078E-007
5.109455433669931E-022
TIME = 0.27909042E-02 DT = 0.26908042E-02 SUM OF SQUARES = 0.51094554E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.16437826E-07 AND -0.16437826E-07
POSITION OF INTERFACE FER / CARB IS
0.32999497E-05
U-FRACTION IN SYSTEM: C = 5.12591893482394E-05 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
24
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: CARB
CPU time used in timestep
0 seconds
2.027667719546845E-005
2.028151298187676E-005
2.492045378187009E-020
TIME = 0.81725125E-02 DT = 0.53816084E-02 SUM OF SQUARES = 0.24920454E-19
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.25990487E-08 AND -0.25990487E-08
POSITION OF INTERFACE FER / CARB IS
0.32999357E-05
U-FRACTION IN SYSTEM: C = 5.24416018575729E-05 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
CPU time used in timestep
1 seconds
3.430896440407393E-006
3.434042119347870E-006
1.408874640560179E-024
TIME = 0.18935729E-01 DT = 0.10763217E-01 SUM OF SQUARES = 0.14088746E-23
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.19913385E-08 AND -0.19913385E-08
POSITION OF INTERFACE FER / CARB IS
0.32999143E-05
U-FRACTION IN SYSTEM: C = 5.4300019672132E-05 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
CPU time used in timestep
0 seconds
2.458075288947014E-006
2.460115293322461E-006
9.188298948509551E-025
TIME = 0.40462163E-01 DT = 0.21526433E-01 SUM OF SQUARES = 0.91882989E-24
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14811247E-08 AND -0.14811247E-08
POSITION OF INTERFACE FER / CARB IS
0.32998824E-05
U-FRACTION IN SYSTEM: C = 5.70985325141529E-05 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
1
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: CARB
CPU time used in timestep
0 seconds
1.561011360758783E-006
1.562220505488591E-006
8.244754572392648E-025
TIME = 0.83515029E-01 DT = 0.43052867E-01 SUM OF SQUARES = 0.82447546E-24
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.10766505E-08 AND -0.10766505E-08
POSITION OF INTERFACE FER / CARB IS
0.32998360E-05
output ignored...
... output resumed
POSITION OF INTERFACE FER / CARB IS
0.32712688E-05
U-FRACTION IN SYSTEM: C = .00292698161361261 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
44
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: CARB
CPU time used in timestep
0 seconds
3.382688098867191E-008
3.388131432298893E-008
6.850971551063791E-027
TIME =
4110.7537
DT =
900.00000
SUM OF SQUARES = 0.68509716E-26
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.38861536E-11 AND -0.38861536E-11
POSITION OF INTERFACE FER / CARB IS
0.32677713E-05
U-FRACTION IN SYSTEM: C = .00328024173504268 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
15
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: CARB
CPU time used in timestep
0 seconds
1.314638216630524E-008
1.317550715169034E-008
2.301691407306965E-027
TIME =
5010.7537
DT =
900.00000
SUM OF SQUARES = 0.23016914E-26
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.34644318E-11 AND -0.34644318E-11
POSITION OF INTERFACE FER / CARB IS
0.32646533E-05
U-FRACTION IN SYSTEM: C = .00359516638951739 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
11
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: CARB
CPU time used in timestep
0 seconds
6.203563492397131E-009
6.221402339780677E-009
5.507872519869538E-028
TIME =
5910.7537
DT =
900.00000
SUM OF SQUARES = 0.55078725E-27
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.31588373E-11 AND -0.31588373E-11
POSITION OF INTERFACE FER / CARB IS
0.32618104E-05
U-FRACTION IN SYSTEM: C = .00388231182053263 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
19
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: CARB
CPU time used in timestep
0 seconds
3.285493905118506E-009
3.297333057016741E-009
1.343786651590565E-028
TIME =
6810.7537
DT =
900.00000
SUM OF SQUARES = 0.13437867E-27
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.29236900E-11 AND -0.29236900E-11
POSITION OF INTERFACE FER / CARB IS
0.32591790E-05
U-FRACTION IN SYSTEM: C = .00414808183129114 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
6
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: CARB
CPU time used in timestep
0 seconds
1.876998084857064E-007
1.885282157903399E-007
3.676035728629550E-027
TIME =
7710.7537
DT =
900.00000
SUM OF SQUARES = 0.36760357E-26
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.27352335E-11 AND -0.27352335E-11
POSITION OF INTERFACE FER / CARB IS
0.32567173E-05
U-FRACTION IN SYSTEM: C = .00439672071771754 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
5
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: CARB
CPU time used in timestep
0 seconds
1.130104476018543E-007
1.136119435637637E-007
1.069940558361613E-027
TIME =
8610.7537
DT =
900.00000
SUM OF SQUARES = 0.10699406E-26
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.25796702E-11 AND -0.25796702E-11
POSITION OF INTERFACE FER / CARB IS
0.32543956E-05
U-FRACTION IN SYSTEM: C = .00463121854944559 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
4
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: CARB
CPU time used in timestep
0 seconds
7.062813212272239E-008
7.107671560352021E-008
1.760176709653493E-028
TIME =
9000.0000
DT =
389.24625
SUM OF SQUARES = 0.17601767E-27
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.24483429E-11 AND -0.24483429E-11
POSITION OF INTERFACE FER / CARB IS
0.32534426E-05
U-FRACTION IN SYSTEM: C = .00472747477504784 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC> set-inter
--OK--DIC>
0.0000000
0.10000000E-06
0.10010000E-03
0.27909042E-02
0.81725125E-02
0.18935729E-01
0.40462163E-01
0.83515029E-01
0.16962076
0.34183223
0.68625517
1.3751010
2.7527928
5.5081762
11.018943
22.040477
44.083545
88.169681
176.34195
352.68649
705.37558
1410.7537
2310.7537
3210.7537
4110.7537
5010.7537
5910.7537
6810.7537
7710.7537
8610.7537
9000.0000
exi2-plot
MACRO exi2\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi2\plot.DCM"DIC>
DIC> @@ exi2_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE i2
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 9.00000E+03
*** ENTERING FCC_A1 AS A DIFFUSION NONE PHASE
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC>
DIC>
DIC> read exi2 Y
OK
DIC>
DIC>
DIC> @@
DIC> @@ Plot the size of cementite layer as a function of time
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: ent-symb func csize
FUNCTION: 1e6*(poi(car,u)-poi(car,l));
POST-1:
POST-1: ent-symb func minutes
FUNCTION: time/60;
POST-1:
POST-1: s-d-a x minutes
POST-1: s-d-a y csize
POST-1:
POST-1: s-p-c inter first
POST-1:
POST-1: s-a-t-s x n time [minutes]
POST-1: s-a-t-s y n distance [?m]
POST-1:
POST-1: plot
POST-1:
POST-1: @<? HIT_RETURN_TO_CONTINUE>
Felaktig kommandosyntax.
POST-1:
POST-1: @@
POST-1: @@ Assume a certain time for nucleation of the cementite layer
POST-1: @@
POST-1: ent-symb func cortim
FUNCTION: (time+1400)/60;
POST-1:
POST-1: @@
POST-1: @@ plot the weight gain as a function of time
POST-1: @@
POST-1: ent-symb func cwei
FUNCTION: 1e12*((poi(car,u)-poi(car,l)-1E-12)*12.01/2.33E-5*1e-4)**2;
POST-1:
POST-1:
POST-1: s-d-a x cortim
POST-1: s-d-a y cwei
POST-1:
POST-1: @@
POST-1: @@ Compare with experimental data
POST-1: @@
POST-1: app y exi2.exp 0; 1
POST-1:
POST-1:
POST-1: s-a-t-s x n time [minutes]
POST-1: s-a-t-s y n ^grD$m^up2$/A^up2$ [g^up2$/cm^up4$ x 10^up12$]
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
Example i3 Diffusion in FeO
1600
1400
Temperature C
1200
1000
800
600
48
51
54
57
Mole Percent O
60
63
exi3a-setup
MACRO exi3a\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi3a\setup.DCM"SYS: @@
SYS: @@ Diffusion in complex phases.
SYS: @@ Oxidation of iron sample and consequent growth of an oxide layer.
SYS: @@
SYS:
SYS: @@ exi3_setup.DCM
SYS:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ WE SELECT A USER DATABASE FOR READING THE THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw user FeO.TDB
Current database: User defined Database
This database does not support the DATABASE_INFORMATION command
VA
/- DEFINED
TDB_USER: def-sys fe o
FE
O DEFINED
TDB_USER: rej sp *
/VA
O
FE+2
FE+4
FE2O3
FEO3/2
O-2
REJECTED
TDB_USER: res sp fe fe+2 fe+3 o o2 o-2 va
FE
FE+2
O
O2
VA RESTORED
TDB_USER: rej ph * all
GAS:G
BCC_A2
REJECTED
TDB_USER: res ph bcc spinel gas
BCC_A2
SPINEL:I
RESTORED
TDB_USER:
TDB_USER: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
Reference REF368
missing
Reference REF304
missing
Reference REF420
missing
Reference REF420
missing
Reference REF368
missing
Reference REF368
missing
Reference REF368
missing
Reference REF418
missing
Reference REF418
missing
Reference REF304
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
FE
FE+3
FEO
O2
FE+3
O-2
SPINEL:I
GAS:G
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
FUNCTIONS ....
-OKTDB_USER:
TDB_USER: @@
TDB_USER: @@ SWITCH TO A USER DEFINED MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_USER: @@
TDB_USER: app user FeOmob.TDB
Current database: User defined Database
test database
VA
/DEFINED
TDB_APP: def-sys fe o
FE DEFINED
TDB_APP: rej sp *
/VA
O
FE+2
FE2O3
FEO
O-2
O2 REJECTED
TDB_APP: res sp fe fe+2 fe+3 o o2 o-2 va
FE
FE+2
O
O2
VA RESTORED
TDB_APP: rej ph * all
SPINEL:I
GAS:G
REJECTED
TDB_APP: res ph bcc spinel gas
BCC_A2
SPINEL:I
RESTORED
TDB_APP:
TDB_APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
*** ERROR 1000 IN TDBGRT
*** NO REFERENCE FILE
*** ERROR 1000 IN TDBGRT
*** NO REFERENCE FILE
-OKTDB_APP:
TDB_APP:
TDB_APP: @@
TDB_APP: @@ ENTER THE DICTRA MONITOR
TDB_APP: @@
TDB_APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 823; * N
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
@@
@@ SET REFERENCE STATE FOR O TO O2 (GAS)
@@
set-ref o gas,,,,,,,
@@
@@ ENTER REGIONS fer AND sp
@@
ent-reg fer
ent-reg sp,,,,,,,,
@@
@@ ENTER PHASES INTO REGIONS
@@
ent-phase act fer matrix bcc#1
ent-phase act sp matrix spinel
@@
@@ ENTER GRIDS INTO THE REGIONS
@@
@@
@@ Enter a size for the ferrite
@@
@@
ent-grid fer 4.99999e-3 geo 64 0.95
@@
@@ Enter a thin initial size for the oxide
@@
@@
ent-grid sp 1.00e-10 lin 25
@@
@@ ENTER INITIAL COMPOSITIONS IN BCC
@@
O
FE
FE+3
FEO3/2
FE+3
O-2
BCC_A2
GAS:G
DIC> ent-comp fer bcc#1 m-f
PROFILE FOR /O/: o lin 1e-9 1e-9
DIC>
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITIONS IN THE OXIDE
DIC> @@
DIC> ent-comp sp spinel m-f
this is a phase with charged species
with more than 2 sublattices
PROFILE FOR /FE/: FE lin 4.28771E-01 4.28549E-01
DIC>
DIC>
DIC> @@
DIC> @@ ENTER A BOUNDARY CONDITION "GAS" ON THE UPPER (RIGHTMOST) INTERFACE
DIC> @@ OF THE OXIDE. THIS WILL ALLOW THE SYSTEM TO EXPAND AND THE OXIDE LAYER
DIC> @@ TO GROW EXTERNALY. FOR THIS EXAMPLE WE HAVE SPECIFIED AN OXYGEN ACTIVITY
DIC> @@ THAT IS LOW ENOUGH IN ORDER NOT TO FORM CORUNDUM (FE2O3). WE ALSO
DIC> @@ SPECIFY THAT THERE IS NO FLUX OF FE ACROSS THIS INTERFACE, I.E. NO FE
DIC> @@ IS ALLOWED TO ENTER OR LEAVE THE SYSTEM.
DIC> @@
DIC> set-cond boundary upper gas
TYPE OF CONDITION FOR COMPONENT FE /ZERO_FLUX/: zero-flux
TYPE OF CONDITION FOR COMPONENT O /ZERO_FLUX/: act
LOW TIME LIMIT /0/: 0 4.5e-4; * N
DIC>
DIC>
DIC> @@
DIC> @@ ENTER START VALUES FOR INITIAL INTERFACE VELOCITIES
DIC> @@
DIC> s-a-s-v -1e-5 1e-5 yes
STARTING VALUES WILL BE TAKEN FROM PROFILES
DIC>
DIC>
DIC> @@
DIC> @@ SIMULATE FOR 24 HOURS
DIC> @@
DIC> s-s-time 86400,,,,
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC> @@
DIC> @@ SPECIFY THAT POTENTIALS AND NOT ACTIVITIES ARE VARIED AT THE PHASE
DIC> @@ INTERFACE, AND ALSO USE A FULLY IMPLICIT SCHEME FOR TIME INTEGRATION.
DIC> @@
DIC> s-s-c 0 1 1 YES POT YES YES 1 2,,,,,,,,,,
RELEASING OLD STARTING VALUES
DIC>
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exi3.DIC Y
DIC>
DIC> set-inter
--OK--DIC>
exi3a-run
MACRO exi3a\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi3a\run.DCM"DIC>
DIC>
DIC> @@ exi3_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE i3
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exi3
OK
DIC>
DIC> @@
DIC> @@ Start the simulation
DIC> @@
DIC> sim y
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
3
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: FE = 0.99999999500542 O = 2.10000395011622E-08
TOTAL SIZE OF SYSTEM: .0049999901 [m]
U-FRACTION IN SYSTEM: FE = 0.99999999500542 O = 2.10000395011622E-08
TOTAL SIZE OF SYSTEM: .0049999901 [m]
2 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: FER
0.345635026472601
0.345634255702871
0.345634427607327
4.595685746902947E-002
1.109881473307396E-022
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.11098815E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.39538536E-03 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49999900E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.66828829E-03 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.49999901E-02
U-FRACTION IN SYSTEM: FE = 0.9999999895583 O = 3.45820350693507E-08
TOTAL SIZE OF SYSTEM: .00499999012729 [m]
4
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: FER
CPU time used in timestep
1 seconds
1.496442766103080E-005
1.496628020328761E-005
1.496711475334305E-005
029
TIME = 0.30000000E-06 DT = 0.20000000E-06 SUM OF SQUARES = 0.15630496E-28
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14844554E-03 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49999899E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.20395237E-03 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.49999901E-02
U-FRACTION IN SYSTEM: FE = 0.9999999871464 O = 4.27401496013001E-08
TOTAL SIZE OF SYSTEM: .00499999013839 [m]
CPU time used in timestep
1 seconds
1.366609137821060E-008
1.365580506402956E-008
1.363607433461218E-008
034
TIME = 0.70000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.26114782E-33
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14901928E-03 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49999899E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.21639152E-03 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.49999902E-02
U-FRACTION IN SYSTEM: FE = 0.99999998168818 O = 6.0051514796462E-08
TOTAL SIZE OF SYSTEM: .00499999016534 [m]
CPU time used in timestep
1 seconds
5.631985441283712E-007
5.633529292092908E-007
5.633509728160813E-007
034
TIME = 0.15000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.24443230E-33
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.93188681E-04 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49999898E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.13306338E-03 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.49999902E-02
U-FRACTION IN SYSTEM: FE = 0.99999997510656 O = 8.13417191170326E-08
TOTAL SIZE OF SYSTEM: .00499999019724 [m]
CPU time used in timestep
2 seconds
8.093983848882604E-006
8.097774983601744E-006
8.097407887649479E-006
032
TIME = 0.31000000E-05 DT = 0.16000000E-05 SUM OF SQUARES = 0.65006906E-31
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.70573171E-04 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49999897E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.10154569E-03 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.49999902E-02
U-FRACTION IN SYSTEM: FE = 0.99999996496664 O = 1.13836444590503E-07
TOTAL SIZE OF SYSTEM: .0049999902468 [m]
CPU time used in timestep
8.115497833801339E-006
033
2 seconds
8.118305962585836E-006
8.118181440603294E-006
2.221963460526305E-007
1.563049595583591E-
2.991788556352093E-011
2.611478249786794E-
2.450232388401917E-010
2.444322953099865E-
1.136094131158317E-008
6.500690647052995E-
7.293145044102196E-009
6.475939438002081E-
3.631257773451234E-010
1.625981401876614E-
output ignored...
... output resumed
CPU time used in timestep
6 seconds
2.944660672421924E-007
2.949205565595671E-007
2.948945539203347E-007
032
TIME =
56943.895
DT =
8640.0000
SUM OF SQUARES = 0.16259814E-31
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.54606870E-09 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49450694E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.78102585E-09 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.50235126E-02
U-FRACTION IN SYSTEM: FE = .995207546349209 O = .0156153968700816
TOTAL SIZE OF SYSTEM: .00502351264021 [m]
11
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: SP
CPU time used in timestep
2 seconds
1.740313899119267E-007
1.743421429103277E-007
1.743411933826456E-007
033
TIME =
65583.895
DT =
8640.0000
SUM OF SQUARES = 0.15422486E-32
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.50613974E-09 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49406963E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.72095165E-09 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.50253686E-02
U-FRACTION IN SYSTEM: FE = .99483330292771 O = .0168491451161591
TOTAL SIZE OF SYSTEM: .00502536861511 [m]
8
GRIDPOINT(S) REMOVED FROM CELL #1
GRIDPOINT(S) REMOVED FROM CELL #1
GRIDPOINT(S) REMOVED FROM CELL #1
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC> set-inter
--OK--DIC>
3.693121131639430E-
6.971019944406911E-011
8.726870060504662E-
1.027101821996951E-011
9.403954806578300E-
REGION: SP
CPU time used in timestep
2 seconds
9.242443306617677E-009
9.188773383536457E-009
9.305157039689410E-009
035
TIME =
86400.000
DT =
3536.1047
SUM OF SQUARES = 0.94039548E-34
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.44390631E-09 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49311722E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.61659008E-09 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.50294268E-02
U-FRACTION IN SYSTEM: FE = .994026787786631 O = .0195361314315839
TOTAL SIZE OF SYSTEM: .00502942684378 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
1.258619564711479E-010
REGION: SP
CPU time used in timestep
3 seconds
6.101158264628796E-008
6.117714485796163E-008
6.116558140048531E-008
035
TIME =
82863.895
DT =
8640.0000
SUM OF SQUARES = 0.87268701E-34
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.44668804E-09 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49327419E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.64035085E-09 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.50288162E-02
U-FRACTION IN SYSTEM: FE = .994147932539141 O = .0191049370150188
TOTAL SIZE OF SYSTEM: .00502881621589 [m]
8
1.542248588278841E-
REGION: SP
CPU time used in timestep
4 seconds
8.227972700372290E-008
8.249872395175805E-008
8.245479222387599E-008
033
TIME =
74223.895
DT =
8640.0000
SUM OF SQUARES = 0.36931211E-32
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.47396620E-09 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49366013E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.67933125E-09 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.50271430E-02
U-FRACTION IN SYSTEM: FE = .99448034740077 O = .0180107442597281
TOTAL SIZE OF SYSTEM: .00502714296921 [m]
10
2.255094104955882E-010
0.0000000
0.10000000E-06
0.30000000E-06
0.70000000E-06
0.15000000E-05
0.31000000E-05
0.63000000E-05
0.12700000E-04
0.25500000E-04
0.51100000E-04
0.10230000E-03
0.20470000E-03
0.40950000E-03
0.81910000E-03
0.16383000E-02
0.32767000E-02
0.65535000E-02
0.13107100E-01
0.26214300E-01
0.52428700E-01
0.10485750
0.20971510
0.41943030
0.83886070
1.6777215
3.3554431
6.7108863
13.421773
26.843545
53.687091
107.37418
214.74836
429.49673
858.99346
1717.9869
3435.9738
6871.9477
13743.895
22383.895
31023.895
39663.895
48303.895
56943.895
65583.895
74223.895
82863.895
86400.000
exi3a-plot
MACRO exi3a\plot.DCMDIC>
DIC> @@ exi3_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE i3
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 8.64000E+04
DIC> read exi3
OK
DIC>
DIC> @@
DIC> @@ ENTER THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: @@ LET'S PLOT THICKNESS OF THE OXIDE LAYER GROWING AT THE SURFACE.
POST-1: @@ FOR THIS PURPOSE WE NEED TO ENTER A FUNCTION ACCORDING TO BELOW.
POST-1: ent func oxideth
FUNCTION: poi(sp,upper)-poi(sp,lower)
&
POST-1: @@
POST-1: @@ WE PUT THIS FUNCTION ON Y-AXIS
POST-1: @@
POST-1: s-d-a y oxideth
POST-1:
POST-1: @@
POST-1: @@ AND PLOT OXIDE THICKNESS VERSUS TIME
POST-1: @@
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1:
POST-1: @@
POST-1: @@ SINCE WE ARE PLOTTING A FUNCTION WE NEED TO SPECIFY A PLOT CONDITION
POST-1: @@
POST-1: s-p-c interface sp upper
POST-1:
POST-1: plot
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: @@
POST-1: @@ NOW LET'S PLOT THE MOBILITY IN SPINEL FOR FE+2 ON THE SECOND SUB-LATTICE
POST-1: @@
POST-1: s-d-a y logm(sp,fe+2#2)
POST-1:
POST-1: @@
POST-1: @@ LIMIT THE PLOT TO THE SPINEL PHASE
POST-1: @@
POST-1: s-d-a x dis local sp
INFO: Distance is set as independent variable
POST-1:
POST-1: s-p-c time 86400
POST-1:
POST-1: plo
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: @@
POST-1: @@ LET'S COMPARE MOBILITIES IN SPINEL FOR FE+2 AND FE+3 SPECIES PRESENT ON THE
POST-1: @@ SECOND SUB-LATTICE. FOR THIS COMPARISON WE NEED TO ENTER A TABLE.
POST-1: @@
POST-1: ent table mobfe
Variable(s) logm(sp,fe+2#2) logm(sp,fe+3#2)
POST-1:
POST-1: s-d-a y mobfe
COLUMN NUMBER /*/:
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: @@
POST-1: @@ NOW LET'S PLOT THE INTERDIFFUSION COEFFICIENT OF FE IN SPINEL
POST-1: @@
POST-1: s-d-a y logdc(sp,fe,fe,o)
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
Example i3 Diffusion in FeO with GB contribution
1600
1400
Temperature C
1200
1000
800
600
48
51
54
57
Mole Percent O
60
63
exi3b-setup
MACRO exi3b\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi3b\setup.DCM"SYS: @@
SYS: @@ Diffusion in complex phases.
SYS: @@ Oxidation of iron sample and consequent growth of an oxide layer
SYS: @@ using the grain boundary diffusion contribution model.
SYS: @@
SYS:
SYS: @@ exi3_setup.DCM
SYS:
SYS: @@
SYS: @@ WE START BY GOING TO THE DATABASE MODULE
SYS: @@
SYS: go da
THERMODYNAMIC DATABASE module
Current database: Steels/Fe-Alloys v8.0
VA DEFINED
L12_FCC
B2_BCC
B2_VACANCY
HIGH_SIGMA
DICTRA_FCC_A1 REJECTED
TDB_TCFE8:
TDB_TCFE8: @@
TDB_TCFE8: @@ WE SELECT A USER DATABASE FOR READING THE THERMODYNAMIC DATA
TDB_TCFE8: @@
TDB_TCFE8: sw user FeO.TDB
Current database: User defined Database
This database does not support the DATABASE_INFORMATION command
VA
/- DEFINED
TDB_USER: def-sys fe o
FE
O DEFINED
TDB_USER: rej sp *
/VA
O
FE+2
FE+4
FE2O3
FEO3/2
O-2
REJECTED
TDB_USER: res sp fe fe+2 fe+3 o o2 o-2 va
FE
FE+2
O
O2
VA RESTORED
TDB_USER: rej ph * all
GAS:G
BCC_A2
REJECTED
TDB_USER: res ph bcc spinel gas
BCC_A2
SPINEL:I
RESTORED
TDB_USER:
TDB_USER: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
Reference REF368
missing
Reference REF304
missing
Reference REF420
missing
Reference REF420
missing
Reference REF368
missing
Reference REF368
missing
Reference REF368
missing
Reference REF418
missing
Reference REF418
missing
Reference REF304
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
FE
FE+3
FEO
O2
FE+3
O-2
SPINEL:I
GAS:G
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
Reference REF30
missing
Reference REF30
missing
Reference REF30
missing
Reference REF420
missing
Reference REF420
missing
FUNCTIONS ....
-OKTDB_USER:
TDB_USER: @@
TDB_USER: @@ SWITCH TO A USER DEFINED MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_USER: @@
TDB_USER: app user FeOmob.TDB
Current database: User defined Database
test database
VA
/DEFINED
TDB_APP: def-sys fe o
FE DEFINED
TDB_APP: rej sp *
/VA
O
FE+2
FE2O3
FEO
O-2
O2 REJECTED
TDB_APP: res sp fe fe+2 fe+3 o o2 o-2 va
FE
FE+2
O
O2
VA RESTORED
TDB_APP: rej ph * all
SPINEL:I
GAS:G
REJECTED
TDB_APP: res ph bcc spinel gas
BCC_A2
SPINEL:I
RESTORED
TDB_APP:
TDB_APP: get
ELEMENTS .....
SPECIES ......
PHASES .......
PARAMETERS ...
FUNCTIONS ....
List of references for assessed data
*** ERROR 1000 IN TDBGRT
*** NO REFERENCE FILE
*** ERROR 1000 IN TDBGRT
*** NO REFERENCE FILE
-OKTDB_APP:
TDB_APP:
TDB_APP: @@
TDB_APP: @@ ENTER THE DICTRA MONITOR
TDB_APP: @@
TDB_APP: go d-m
NO TIME STEP DEFINED
DIC>
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 823; * N
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
@@
@@ SET REFERENCE STATE FOR O TO O2 (GAS)
@@
set-ref o gas,,,,,,,
@@
@@ ENTER REGIONS fer AND sp
@@
ent-reg fer
ent-reg sp,,,,,,,,
@@
@@ ENTER PHASES INTO REGIONS
@@
ent-phase act fer matrix bcc#1
ent-phase act sp matrix spinel
@@
@@ ENTER GRIDS INTO THE REGIONS
@@
@@
@@ Enter a size for the ferrite
@@
@@
ent-grid fer 4.99999e-3 geo 64 0.95
@@
@@ Enter a thin initial size for the oxide
@@
@@
ent-grid sp 1.00e-10 lin 10
@@
@@ ENTER INITIAL COMPOSITIONS IN BCC
O
FE
FE+3
FEO3/2
FE+3
O-2
BCC_A2
GAS:G
DIC> @@
DIC> ent-comp fer bcc#1 m-f
PROFILE FOR /O/: o lin 1e-9 1e-9
DIC>
DIC>
DIC> @@
DIC> @@ ENTER INITIAL COMPOSITIONS IN THE OXIDE
DIC> @@
DIC> ent-comp sp spinel m-f
this is a phase with charged species
with more than 2 sublattices
PROFILE FOR /FE/: FE lin 4.28771E-01 4.28549E-01
DIC>
DIC>
DIC> @@
DIC> @@ ENTER A BOUNDARY CONDITION "GAS" ON THE UPPER (RIGHTMOST) INTERFACE
DIC> @@ OF THE OXIDE. THIS WILL ALLOW THE SYSTEM TO EXPAND AND THE OXIDE LAYER
DIC> @@ TO GROW EXTERNALY. FOR THIS EXAMPLE WE HAVE SPECIFIED AN OXYGEN ACTIVITY
DIC> @@ THAT IS LOW ENOUGH IN ORDER NOT TO FORM CORUNDUM (FE2O3). WE ALSO
DIC> @@ SPECIFY THAT THERE IS NO FLUX OF FE ACROSS THIS INTERFACE, I.E. NO FE
DIC> @@ IS ALLOWED TO ENTER OR LEAVE THE SYSTEM.
DIC> @@
DIC> set-cond boundary upper gas
TYPE OF CONDITION FOR COMPONENT FE /ZERO_FLUX/: zero-flux
TYPE OF CONDITION FOR COMPONENT O /ZERO_FLUX/: act
LOW TIME LIMIT /0/: 0 4.5e-4; * N
DIC>
DIC>
DIC> @@
DIC> @@ ENTER START VALUES FOR INITIAL INTERFACE VELOCITIES
DIC> @@
DIC> s-a-s-v -1e-5 1e-5 yes
STARTING VALUES WILL BE TAKEN FROM PROFILES
DIC>
DIC>
DIC> @@
DIC> @@ SIMULATE FOR 24 HOURS
DIC> @@
DIC> s-s-time 86400,,,,
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC> @@
DIC> @@ SPECIFY THAT POTENTIALS AND NOT ACTIVITIES ARE VARIED AT THE PHASE
DIC> @@ INTERFACE, AND ALSO USE A FULLY IMPLICIT SCHEME FOR TIME INTEGRATION.
DIC> @@
DIC> s-s-c 0 1 1 YES POT YES YES 1 2,,,,,,,,,,
RELEASING OLD STARTING VALUES
DIC>
DIC>
DIC> @@ Enable the grainboundary diffusion contribution model
DIC> GB
REGION NAME : /SP/: SP
PHASE NAME: /SPINEL/: SPINEL
Enable model for grainboundary contribution to diffusion /YES/: YES
Grainboundary thickness /5E-10/: 5e-10
Grainsize(T,P,TIME)= 10.0e-6;
Bulkdiffusion activation energy multiplier /.5/: 0.333333
Enable model for dislocation contribution to diffusion /YES/: NO
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exi3b.DIC Y
DIC>
DIC>
DIC>
DIC> set-inter
--OK--DIC>
exi3b-run
MACRO exi3b\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi3b\run.DCM"DIC>
DIC>
DIC> @@ exi3_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE i3
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exi3b
OK
DIC>
DIC> @@
DIC> @@ Start the simulation
DIC> @@
DIC> sim y
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
Trying old scheme
3
Automatic start values will be set
Old start values kept
Automatic start values will be set
Old start values kept
Automatic start values will be set
U-FRACTION IN SYSTEM: FE = 0.99999999500542 O = 2.10000395011622E-08
TOTAL SIZE OF SYSTEM: .0049999901 [m]
U-FRACTION IN SYSTEM: FE = 0.99999999500542 O = 2.10000395011622E-08
TOTAL SIZE OF SYSTEM: .0049999901 [m]
2 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: FER
8 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: SP
4.141089174324655E-002
4.141088853900977E-002
4.141061810418874E-002
2.455172928406264E-004
027
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.92489274E-26
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.17021234E-03 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49999900E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.31079144E-03 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.49999901E-02
U-FRACTION IN SYSTEM: FE = 0.99999999220163 O = 2.74320841042908E-08
TOTAL SIZE OF SYSTEM: .00499999011406 [m]
4
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: FER
CPU time used in timestep
0 seconds
1 GRIDPOINT(S) ADDED
TO
CELL #1
REGION: SP
7.882707588161485E-006
7.881996736368658E-006
7.881956548231107E-006
031
TIME = 0.30000000E-06 DT = 0.20000000E-06 SUM OF SQUARES = 0.80081013E-30
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.37989117E-03 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49999899E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.57564406E-03 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.49999902E-02
U-FRACTION IN SYSTEM: FE = 0.9999999844774 O = 5.04578953280467E-08
TOTAL SIZE OF SYSTEM: .00499999015321 [m]
CPU time used in timestep
0 seconds
8.756278013917150E-006
8.757753225710002E-006
8.757950790163934E-006
032
TIME = 0.70000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.42637390E-31
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.17418703E-03 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49999898E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.23821432E-03 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.49999902E-02
U-FRACTION IN SYSTEM: FE = 0.99999997883772 O = 6.95150875710513E-08
TOTAL SIZE OF SYSTEM: .00499999017882 [m]
CPU time used in timestep
1 seconds
8.595216711556193E-008
8.603795578319728E-008
8.599979562241110E-008
033
TIME = 0.15000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.36871496E-32
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14558382E-03 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49999897E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.21103529E-03 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.49999902E-02
U-FRACTION IN SYSTEM: FE = 0.99999996818142 O = 1.03280821699165E-07
TOTAL SIZE OF SYSTEM: .00499999023118 [m]
CPU time used in timestep
0 seconds
4.818019761706434E-007
4.819412311082719E-007
4.819397115274064E-007
032
TIME = 0.31000000E-05 DT = 0.16000000E-05 SUM OF SQUARES = 0.36619482E-31
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.93876853E-04 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49999896E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.13361821E-03 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.49999903E-02
U-FRACTION IN SYSTEM: FE = 0.9999999549909 O = 1.46038774660041E-07
TOTAL SIZE OF SYSTEM: .00499999029477 [m]
CPU time used in timestep
1.094723923164097E-005
9.248927376631403E-
0 seconds
1.095168464280933E-005
3.310926551917118E-007
8.008101344355386E-
4.068145973696446E-009
4.263739003370391E-
4.035000618875213E-010
3.687149620337253E-
2.460369134634178E-010
3.661948196949974E-
7.076351490165385E-010
5.426458081587942E-
1.095123371287053E-005
output ignored...
... output resumed
CPU time used in timestep
1 seconds
5.273126367262701E-007
5.281055409063795E-007
5.280436775085431E-007
033
TIME =
56943.895
DT =
8640.0000
SUM OF SQUARES = 0.54264581E-32
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.70247324E-09 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49272775E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.10045412E-08 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.50312191E-02
U-FRACTION IN SYSTEM: FE = .993661313442046 O = .0206594986371046
TOTAL SIZE OF SYSTEM:
9
.00503121912996 [m]
GRIDPOINT(S) REMOVED FROM CELL #1
REGION: SP
CPU time used in timestep
0 seconds
2.946697696464319E-007
2.952137789163994E-007
2.951649812336557E-007
033
TIME =
65583.895
DT =
8640.0000
SUM OF SQUARES = 0.31792890E-32
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.64894697E-09 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49216706E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.92920487E-09 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.50336406E-02
U-FRACTION IN SYSTEM: FE = .993180425222953 O = .0222444953190999
TOTAL SIZE OF SYSTEM: .00503364055816 [m]
8
GRIDPOINT(S) REMOVED FROM CELL #1
GRIDPOINT(S) REMOVED FROM CELL #1
GRIDPOINT(S) REMOVED FROM CELL #1
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
DIC>
DIC> set-inter
--OK--DIC>
4.420611075476327E-
1.220613479459113E-010
1.116211819721618E-
1.085103619290851E-011
6.394689268473244E-
REGION: SP
CPU time used in timestep
0 seconds
1.518630779353292E-008
1.512784628436771E-008
1.530720423223038E-008
035
TIME =
86400.000
DT =
3536.1047
SUM OF SQUARES = 0.63946893E-34
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.56483688E-09 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49094993E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.78548583E-09 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.50388274E-02
U-FRACTION IN SYSTEM: FE = .992153345776667 O = .0256664953652279
TOTAL SIZE OF SYSTEM: .00503882741973 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
1.988141837829538E-010
REGION: SP
CPU time used in timestep
1 seconds
1.056451897213970E-007
1.059238746988451E-007
1.059045711811337E-007
032
TIME =
82863.895
DT =
8640.0000
SUM OF SQUARES = 0.11162118E-31
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.57100536E-09 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49114966E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.81838320E-09 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.50380472E-02
U-FRACTION IN SYSTEM: FE = .99230753888443 O = .0251191535728178
TOTAL SIZE OF SYSTEM: .00503804718195 [m]
7
3.179289041007992E-
REGION: SP
CPU time used in timestep
1 seconds
1.646046367731663E-007
1.649792393718524E-007
1.649481809118956E-007
033
TIME =
74223.895
DT =
8640.0000
SUM OF SQUARES = 0.44206111E-32
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.60654846E-09 AND
0.0000000
POSITION OF INTERFACE FER / SP IS
0.49164301E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS
0.86919653E-09 AND
0.0000000
POSITION OF INTERFACE SP / gas interface IS
0.50359098E-02
U-FRACTION IN SYSTEM: FE = .992730588972695 O = .0237257327417128
TOTAL SIZE OF SYSTEM: .00503590983743 [m]
11
3.823722313996704E-010
0.0000000
0.10000000E-06
0.30000000E-06
0.70000000E-06
0.15000000E-05
0.31000000E-05
0.63000000E-05
0.12700000E-04
0.25500000E-04
0.51100000E-04
0.10230000E-03
0.20470000E-03
0.40950000E-03
0.81910000E-03
0.16383000E-02
0.32767000E-02
0.65535000E-02
0.13107100E-01
0.26214300E-01
0.52428700E-01
0.10485750
0.20971510
0.41943030
0.83886070
1.6777215
3.3554431
6.7108863
13.421773
26.843545
53.687091
107.37418
214.74836
429.49673
858.99346
1717.9869
3435.9738
6871.9477
13743.895
22383.895
31023.895
39663.895
48303.895
56943.895
65583.895
74223.895
82863.895
86400.000
exi3b-plot
MACRO exi3b\plot.DCMDIC>
DIC> @@ exi3_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE i3
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 8.64000E+04
DIC> read exi3b
OK
DIC>
DIC> @@
DIC> @@ ENTER THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION
1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: @@ LET'S PLOT THICKNESS OF THE OXIDE LAYER GROWING AT THE SURFACE.
POST-1: @@ FOR THIS PURPOSE WE NEED TO ENTER A FUNCTION ACCORDING TO BELOW.
POST-1: ent func oxideth
FUNCTION: poi(sp,upper)-poi(sp,lower)
&
POST-1: @@
POST-1: @@ WE PUT THIS FUNCTION ON Y-AXIS
POST-1: @@
POST-1: s-d-a y oxideth
POST-1:
POST-1: @@
POST-1: @@ AND PLOT OXIDE THICKNESS VERSUS TIME
POST-1: @@
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1:
POST-1: @@
POST-1: @@ SINCE WE ARE PLOTTING A FUNCTION WE NEED TO SPECIFY A PLOT CONDITION
POST-1: @@
POST-1: s-p-c interface sp upper
POST-1:
POST-1: app y exi3a.exp 0; 1;
POST-1:
POST-1: plot
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:
This page was generated 2015-11-20 16:20