(e) Solve for x: (-Sin(x)) x (Cos(2x)) = 1 for x ∈ [-180 ; +180] Use Cos(2x) (-Sin(x)) x (Cos(2x)) -Sin(x) x (1 – 2Sin2x) - 1 +2Sin3x -Sin(x) - 1 = = = = 1 – 2Sin2x -Sin(x) x (1 – Sin2x) = 0 0 1 By trial and error Sin(x) = 1 is a solution (Sin(x) – 1) )+2Sin3x + 0x - Sin(x) - 1 ( 2Sin2x - 2Sin(x) + 1 3 2 2Sin x - 2Sin x ----------------------* 2Sin2x - Sin(x) 2Sin2x – 2Sin(x) -------------------* Sin(x) - 1 Sin(x) - 1 --------------* * (Sin(x) – 1)(2Sin2x - 2Sin(x) + 1) and = 0 2Sin2x - 2Sin(x) + 1 has no real roots and so (Sin(x) – 1) = 0 Sin(x) = 1 x = 90 + 360k is the only solution. See graph over page. (f) Find the values of x for which: (-Sin(x)) x (Cos(2x)) > 0 for x ∈ [0 ; +180] +2Sin3x -Sin(x) > 0 Sin(x) (2Sin2(x) - 1) > 0 Critical values when Sin(x) = 0 OR 2Sin2(x) - 1 = 0 2Sin2(x) = 1 Remember: x ∈ [0 ; +180] Sin(x) = 0 x = 0 or 180 2Sin2(x) = 1 Sin2(x) = 0.5 Sin(x) = 0.707 x = 45 or x = 135 Number line 0--------------45---------------------------------------135-------------180 Sample using y x = 30 y = x = 90 = +2Sin3x -Sin(x) 0.25 – 0.5 < 0 y= 2–1>0 x = 150 y = 0.25 – 0.5 < 0 Therefore: (-Sin(x)) x (Cos(2x)) > 0 for x ∈ [0 ; +180] 45 < x < 135 =====>
© Copyright 2026 Paperzz