MATH 31B BRIDGE PROGRAM: HW 3 SOLUTIONS JOE HUGHES 5 6. log2 (8 3 ) = 5 3 log2 (8) = 5 3 · 3 = 5. 1 7. 64 = 43 , so 4 = 64 3 . Therefore log64 4 = 31 . 15. 7log7 (29) = 29 because 7x and log7 x are inverses. 2 21. If 2x −2x = 8, then after taking the logarithm to base 2 of each side, we get x2 −2x = 3. Therefore x = 3 or x = −1. 24. The equation log3 y + 3 log3 (y 2 ) = 14 can be written as 7 log3 (y) = 14 by the rules of logarithms. Therefore log3 (y) = 2, or y = 32 = 9. 25. The simplest example is probably a = 1, b = e. Then ln(ab) = ln(e) = 1, but ln(a) ln(b) = 0 · 1 = 0. 29. d dx x ln(x) 39. d dx = ln(x) + ln(ln(x)) = 68. If y = x(x+1)3 , (3x−1)2 x x 1 d ln(x) dx = ln(x) + 1. ln(x) = 1 x ln(x) . then ln(y) = ln(x) + 3 ln(x + 1) − 2 ln(3x − 1) Therefore d x(x + 1)3 h 1 3 6 i dy =y ln(y) = + − dx dx (3x − 1)2 x x + 1 3x − 1 87. Take u = 2x + 4, so du = 2 dx and Z Z dx 1 du 1 1 = = ln(u) + C = ln(2x + 4) + C 2x + 4 2 u 2 2 89. Set u = t2 + 4, then du = 2t dt and Z Z t 1 du 1 1 dt = = ln(u) + C = ln(t2 + 4) + C 2 t +4 2 u 2 2 90. Set u = x3 + 2, then du = 3x2 dx and Z Z x2 1 du 1 1 dx = = ln(u) + C = ln(x3 + 2) + C x3 + 2 3 u 3 3 1 2 102. JOE HUGHES R 3x dx = 3x = eln(3)x . 3x ln(3) + C, either by remembering the rule for R bx dx or by writing
© Copyright 2026 Paperzz