Solve the equation on [0,2π) 2cos2θ-1 + cosθ + 1 = 0 2cos2θ + cosθ = 0 cosθ(2cosθ + 1) = 0 cosθ = 0 2cosθ+1=0 cosθ=-1/2 π/2, 3π/2 2π/3, 4π/3 1 Solve the equation on [0,360o) sinxcos(π/4) + cosxsin(π/4) + sinxcos(π/4) - cosx sin(π/4)=-1 2sinxcos(π/4)=-1 2sinx(√2/2)=-1 √2sinx=-1 sinx= -√2/2 225o, 315o 2 Solve: 2cos2x = 1 cos2x = 1/2 cosx = ±√2/2 π/4 + πn 3π/4 +πn n∈ZZ 3 Solve: Sin2x sinx 2=0 (sinx2)(sinx + 1) = 0 sinx2=0 sinx +1=0 sinx=2 sinx=1 3π/2 +2πn n∈ZZ None 4 Verify: sec2xsin2x pythagorean identities (1/cos2x)sin2x reciprocal identities sin2x/cos2x multiply fractions quotient identities tan2x 5 Verify: sin(3π-x) = sinx sin3πcosx - cos3πsinx sum and difference formula 0cosx - (-1)sinx evaluate trig functions 0+sinx sinx simplify 6 cos2θ = 1-sin2θ cos2θ = 1-(2/3)2 cos2θ=1-4/9 cos2θ = 5/9 cosθ = -√5/3 7 Use the triangle to find cos(2θ) tan(2θ) 2 5 θ cos(2θ)= 1-2sin2θ = 1-2(2/5)2 = 1-2(4/25) = 1-8/25 = 17/25 tan(2θ) = sin(2θ)/cos(2θ) sin(2θ) = 2sinθcosθ = 2(2/5)(√21/5)= 4√21/25 tan(2θ) = 4√21/25÷17/25= 4√21/17 8
© Copyright 2026 Paperzz