1032 |||| CHAPTER 16 VECTOR CALCULUS Notice also that the gradient vectors are long where the level curves are close to each other and short where the curves are farther apart. That’s because the length of the gradient vector is the value of the directional derivative of f and closely spaced level curves M indicate a steep graph. A vector field F is called a conservative vector field if it is the gradient of some scalar function, that is, if there exists a function f such that F 苷 ∇f . In this situation f is called a potential function for F. Not all vector fields are conservative, but such fields do arise frequently in physics. For example, the gravitational field F in Example 4 is conservative because if we define mMG f 共x, y, z兲 苷 2 ⫹ y2 ⫹ z2 sx then ⵜf 共x, y, z兲 苷 苷 ⭸f ⭸f ⭸f i⫹ j⫹ k ⭸x ⭸y ⭸z ⫺mMGy ⫺mMGz ⫺mMGx k 2 2 3兾2 i ⫹ 2 2 2 3兾2 j ⫹ 2 共x ⫹ y ⫹ z 兲 共x ⫹ y ⫹ z 兲 共x ⫹ y 2 ⫹ z 2 兲3兾2 2 苷 F共x, y, z兲 In Sections 16.3 and 16.5 we will learn how to tell whether or not a given vector field is conservative. 16.1 EXERCISES 1–10 Sketch the vector field F by drawing a diagram like I II 3 5 Figure 5 or Figure 9. 1. F共x, y兲 苷 2 共i ⫹ j兲 2. F共x, y兲 苷 i ⫹ x j 3. F共x, y兲 苷 y i ⫹ j 4. F共x, y兲 苷 共x ⫺ y兲 i ⫹ x j 1 1 2 5. F共x, y兲 苷 yi⫹xj sx 2 ⫹ y 2 6. F共x, y兲 苷 _3 3 _5 5 yi⫺xj sx 2 ⫹ y 2 7. F共x, y, z兲 苷 k 8. F共x, y, z兲 苷 ⫺y k _3 III _5 IV 3 5 9. F共x, y, z兲 苷 x k 10. F共x, y, z兲 苷 j ⫺ i _3 3 _5 5 11–14 Match the vector fields F with the plots labeled I– IV. Give reasons for your choices. 11. F共x, y兲 苷 具 y, x典 _3 _5 12. F共x, y兲 苷 具1, sin y典 13. F共x, y兲 苷 具x ⫺ 2, x ⫹ 1 典 14. F共x, y兲 苷 具 y, 1兾x典 15–18 Match the vector fields F on ⺢3 with the plots labeled I–IV. Give reasons for your choices. 15. F共x, y, z兲 苷 i ⫹ 2 j ⫹ 3 k 16. F共x, y, z兲 苷 i ⫹ 2 j ⫹ z k SECTION 16.1 VECTOR FIELDS 31. f 共x, y兲 苷 共x ⫹ y兲2 32. f 共x, y兲 苷 sin sx 2 ⫹ y 2 18. F共x, y, z兲 苷 x i ⫹ y j ⫹ z k I II 1 1 z 0 z 0 _1 _1 y 0 _1 0 1 y _1 1 0x 1 _4 1 0 _1 x III IV 1 z 0 z 0 _1 _1 4 4 _4 _4 III 4 _4 IV 4 4 1 _1 0 1 y 1 0 _1 x _4 _1 y 0 1 _1 1 0x 19. If you have a CAS that plots vector fields (the command is fieldplot in Maple and PlotVectorField in Mathematica), use it to plot F共x, y兲 苷 共 y 2 ⫺ 2 x y兲 i ⫹ 共3x y ⫺ 6 x 2 兲 j ⱍ ⱍ 20. Let F共x兲 苷 共r 2 ⫺ 2r兲x, where x 苷 具x, y典 and r 苷 x . Use a CAS to plot this vector field in various domains until you can see what is happening. Describe the appearance of the plot and explain it by finding the points where F共x兲 苷 0. 21–24 Find the gradient vector field of f . 21. f 共x, y兲 苷 xe xy 22. f 共x, y兲 苷 tan共3x ⫺ 4y兲 23. f 共x, y, z兲 苷 sx ⫹ y ⫹ z 2 2 2 24. f 共x, y, z兲 苷 x cos共 y兾z兲 25–26 Find the gradient vector field ∇ f of f and sketch it. 25. f 共x, y兲 苷 x 2 ⫺ y 26. f 共x, y兲 苷 sx 2 ⫹ y 2 27–28 Plot the gradient vector field of f together with a contour map of f . Explain how they are related to each other. 27. f 共x, y兲 苷 sin x ⫹ sin y 28. f 共x, y兲 苷 sin共x ⫹ y兲 29–32 Match the functions f with the plots of their gradient vector fields (labeled I– IV). Give reasons for your choices. 29. f 共x, y兲 苷 x 2 ⫹ y 2 4 _4 _4 4 _4 33. A particle moves in a velocity field V共x, y兲 苷 具x 2, x ⫹ y 2 典 . If it is at position 共2, 1兲 at time t 苷 3, estimate its location at time t 苷 3.01. 34. At time t 苷 1 , a particle is located at position 共1, 3兲. If it Explain the appearance by finding the set of points 共x, y兲 such that F共x, y兲 苷 0. CAS 4 II _1 CAS 1033 17. F共x, y, z兲 苷 x i ⫹ y j ⫹ 3 k I CAS |||| 30. f 共x, y兲 苷 x共x ⫹ y兲 moves in a velocity field F共x, y兲 苷 具xy ⫺ 2, y 2 ⫺ 10 典 find its approximate location at time t 苷 1.05 . 35. The flow lines (or streamlines) of a vector field are the paths followed by a particle whose velocity field is the given vector field. Thus the vectors in a vector field are tangent to the flow lines. (a) Use a sketch of the vector field F共x, y兲 苷 x i ⫺ y j to draw some flow lines. From your sketches, can you guess the equations of the flow lines? (b) If parametric equations of a flow line are x 苷 x共t兲, y 苷 y共t兲, explain why these functions satisfy the differential equations dx兾dt 苷 x and dy兾dt 苷 ⫺y. Then solve the differential equations to find an equation of the flow line that passes through the point (1, 1). 36. (a) Sketch the vector field F共x, y兲 苷 i ⫹ x j and then sketch some flow lines. What shape do these flow lines appear to have? (b) If parametric equations of the flow lines are x 苷 x共t兲, y 苷 y共t兲, what differential equations do these functions satisfy? Deduce that dy兾dx 苷 x. (c) If a particle starts at the origin in the velocity field given by F, find an equation of the path it follows. APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES CHAPTER 16 EXERCISES 16.1 27. A125 6 PAGE 1032 N 1. |||| y 6 6 1 _2 0 _1 6 x 1 29. III 35. (a) _1 33. 共2.04, 1.03兲 31. II (b) y 苷 1兾x, x 0 y _2 3. 5. y y x 0 2 0 x 2 x 0 y 苷 C兾x _2 EXERCISES 16.2 7. 9. z x 11. II 19. z x y 13. I y 15. IV N PAGE 1043 243 17 3. 1638.4 5. 8 7. 3 共145 1兲 97 1 13. 5 15. 3 s14 共e 6 1兲 17. (a) Positive (b) Negative 6 19. 45 21. 5 cos 1 sin 1 23. 1.9633 1 1. 54 1 11. 12 3兾2 27. 3 2 3 25. 15.0074 2.5 2.5 17. III 9. s5 2 .5 The line y 苷 2x 4.5 2.5 4.5 4.5 29. (a) 11 8 1兾e (b) 1.6 F(r(1)) 4.5 1 F ” r ” ’’ 2 œ„ 21. f 共x, y兲 苷 共xy 1兲e xy i x 2e xy j x i sx 2 y 2 z 2 y z j k sx 2 y 2 z 2 sx 2 y 2 z 2 23. f 共x, y, z兲 苷 25. f 共x, y兲 苷 2x i j y 2 _6 _4 _2 0 _2 4 6 x 0 F(r(0)) 1 1.6 0.2 33. 2k, 共4兾, 0兲 s2 共1 e14 兲 35. (a) x 苷 共1兾m兲 xC x 共x, y, z兲 ds, y 苷 共1兾m兲 xC y 共x, y, z兲 ds, z 苷 共1兾m兲 xC z 共x, y, z兲 ds, where m 苷 xC 共x, y, z兲 ds (b) 共0, 0, 3兲 1 4 1 2 37. Ix 苷 k ( 2 3 ), Iy 苷 k ( 2 3 ) 2 39. 2 41. 26 43. 1.67 10 4 ft-lb 45. (b) Yes 47. ⬇22 J 31. 172,704 5,632,705
© Copyright 2026 Paperzz