(© Tony Kelly & Kieran Mills) COMPLEX NUMBERS & MATRICES (Q 3, PAPER 1) 2002 3 (a) Express −1 + 3i in the form r (cos θ + i sin θ ), where i 2 = −1. 3 (b) (i) Given that z = 2 − i 3, find the real number t such that z 2 + tz is real. (ii) w is a complex number such that ww − 2iw = 7 − 4i, where w is the complex conjugate of w. Find two possible values of w. Express each in the form p + qi, where p, q ∈ R. 3 (c) The following three statements are true whenever x and y are real numbers: • x+y=y+x • xy = yx • If xy = 0 then either x = 0 or y = 0. ⎛ 3 −1⎞ Investigate whether the statements are also true when x is the matrix ⎜ ⎟ and ⎝ −6 2 ⎠ ⎛ 2 3⎞ y is the matrix ⎜ ⎟. ⎝ 6 9⎠ SOLUTION 3 (a) STEPS 1. Find r = z = Re 2 + Im 2 first. 2. Draw a free-hand picture to see what quadrant θ is in. 3. Find θ from tan θ = Im Re and by looking at the picture. 4. Write z = r (cos θ + i sin θ ). 2 2 1. z = −1 + 3i ⇒ r = z = (−1) + ( 3 ) = 2 2. Draw a picture. 3. tan θ = z 3 = 3 ⇒ θ = 60o (First quadrant) −1 ∴θ = 120o = 2π (Second quadrant) 3 4. ∴ z = 2(cos 23π + i sin 23π ) Im 3 1 θ -1 Re (© Tony Kelly & Kieran Mills) 3 (b) (i) z = 2 − i 3 ⇒ z 2 + tz = (2 − i 3 ) 2 + t (2 − i 3 ) = 4 − 4 3i + 3i 2 + 2t − it 3 = (1 + 2t ) − (4 3 + t 3 )i As this number is real ⇒ 4 3 + t 3 = 0 ⇒ t = −4 3 (b) (ii) Let w = p + qi and w = p − qi. ww − 2iw = 7 − 4i ⇒ ( p + qi )( p − qi ) − 2i ( p + qi ) = 7 − 4i ⇒ p 2 + q 2 − 2ip − 2qi 2 = 7 − 4i ⇒ ( p 2 + q 2 + 2q) − 2ip = 7 − 4i Equate the real and imaginary parts ⇒ ( p 2 + q 2 + 2q ) = 7 and −2 p = −4 ⇒ p = 2 ⇒ (2) 2 + q 2 + 2q = 7 ⇒ q 2 + 2q − 3 = 0 ⇒ (q + 3)(q − 1) = 0 ⇒ q = −3, 1 Answers: 2 − 3i, 2 + i 3 (c) • • ⎛ 3 −1⎞ ⎛ 2 3 ⎞ ⎛ 5 2 ⎞ ⎛ 2 3 ⎞ ⎛ 3 −1⎞ ⎛ 5 2 ⎞ x+ y =⎜ ⎟ and y + x = ⎜ ⎟=⎜ ⎟+⎜ ⎟ ⎟=⎜ ⎟+⎜ ⎝ −6 2 ⎠ ⎝ 6 9 ⎠ ⎝ 0 11⎠ ⎝ 6 9 ⎠ ⎝ −6 2 ⎠ ⎝ 0 11⎠ ∴ x + y = y + x (True) ⎛ 3 −1⎞ ⎛ 2 3 ⎞ ⎛ 0 0 ⎞ ⎛ 2 3 ⎞ ⎛ 3 −1⎞ ⎛ −12 4 ⎞ xy = ⎜ ⎟ and yx = ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎟=⎜ ⎟⎜ ⎝ −6 2 ⎠ ⎝ 6 9 ⎠ ⎝ 0 0 ⎠ ⎝ 6 9 ⎠ ⎝ −6 2 ⎠ ⎝ −36 12 ⎠ ∴ xy ≠ yx (False) • If xy = 0 then either x = 0 or y = 0. This is false as it was already shown in the previous part xy = 0 even though x ≠ 0 and y ≠ 0.
© Copyright 2025 Paperzz