Seediscussions,stats,andauthorprofilesforthispublicationat:https://www.researchgate.net/publication/258807871 Syncline-toppedanticlinalridgesfromthe HighAtlas:AMoroccanconundrum,and inspiringstructuresfromtheSyrianArc,Israel ArticleinTerraNova·August2011 DOI:10.1111/j.1365-3121.2011.01016. CITATIONS READS 12 123 3authors: AndréMichard H.Ibouh UniversitéParis-Sud11 CadiAyyadUniversity,Fac.ofSciencesand… 175PUBLICATIONS3,554CITATIONS 41PUBLICATIONS112CITATIONS SEEPROFILE SEEPROFILE AndréCharrière PaulSabatierUniversity-ToulouseIII 62PUBLICATIONS526CITATIONS SEEPROFILE Allin-textreferencesunderlinedinbluearelinkedtopublicationsonResearchGate, lettingyouaccessandreadthemimmediately. Availablefrom:AndréMichard Retrievedon:19September2016 doi: 10.1111/j.1365-3121.2011.01016.x Syncline-topped anticlinal ridges from the High Atlas: a Moroccan conundrum, and inspiring structures from the Syrian Arc, Israel A. Michard,1 H. Ibouh2 and A. Charrière3 1 10, rue des Jeûneurs, 75002 Paris, France; 2Faculté des Sciences et Techniques, De´partement de Ge´ologie, Bd A. Khattabi BP 549, 40000 Gue´liz Marrakech, Morocco; 326 rue J.-P. Chabrol, 34740 Vendargues, France ABSTRACT We question for the first time the origin of enigmatic structures, herein termed syncline-topped anticlinal ridges (STARs). In the Central High Atlas (CHA) of Morocco, small synclines of Upper Palaeocene-? Eocene deposits are only preserved on top of Triassic–Jurassic anticlinal ridges. We explain these peculiar structures through a three-step evolution: (i) early halokinetic evolution leading to the formation of elongated diapiric ridges over basement faults, ending with magmatic intrusions and enhanced diapiric ascent up to the surface; (ii) Palaeocene-? Introduction Fold-and-thrust belts usually result from superimposed folding episodes. Classical examples are those of the External Western Alps (Lemoine, 1972) and Provence areas in SE France (Andreani et al., 2010; with references therein), where the early, Late Cretaceous–Eocene folds were partly eroded before being reactivated by the Neogene shortening event. In such classical examples, early anticlines are converted into tighter anticlines or thrusts, whereas late synclines develop above early ones. Alonso (1989) demonstrated theoretically that the reactivation of flexural folds and flexural-slip folds below an unconformity produces folds of the same sense of curvature in layers above and below the unconformity. In contrast, the High Atlas Belt offers three stunning examples of perched synclines developed on top of narrow anticline hinges in the Imilchil area east of Marrakech (Fig. 1). All these perched synclines correspond to Upper Palaeocene-? Lower Eocene formations overlying tight, elongated anticlinal ridges made up of Mesozoic rocks (Fig. 2). These anomalous structures, termed herein Ôsyncline-topped anticlinal ridgesÕ (STARs) depend clearly on superimposed folding Correspondence: Em. Pr. André Michard, 10 rue des Jeûneurs, 75002 Paris, France. Tel.: +33(0)142360483; e-mail: andremichard@ orange.fr 2011 Blackwell Publishing Ltd Eocene unconformable sedimentation; (iii) Late Eocene– Quaternary shortening phases, which resulted in the erosion of the Palaeocene-? Early Eocene deposits, except in the breached anticlinal axes. The comparison with the breached valley (‘makhteshim’) of the Syrian Arc in the Negev Desert allows us to emphasize the role of the early diapiric evolution of the CHA domain in the genesis of the STAR structure. Terra Nova, 00, 1–10, 2011 events as the layers forming the perched synclines overlie unconformably the oldest formations of the anticline. Why the Tertiary deposits do not occur within the wide, low elevation synclines next to the tight, culminating anticlines, but only occur over the eroded crest of the latter? This enigma has been never addressed up to now. Geological setting The Moroccan High Atlas is the most elevated part of the intracontinental belts developed in northern Africa (Fig. 1, insert) through inversion of former Triassic–Liassic rift basins during the Africa–Eurasia convergence (Frizon de Lamotte et al., 2008; with references therein). Its high elevation depends on the hot mantle anomaly developed under northern Morocco during the Neogene (Teixell et al., 2005; Missenard et al., 2006; Fullea et al., 2010). The Central High Atlas (CHA) corresponds to the deepest part of the former Atlas basin, underlain by a necked continental crust (Gouiza et al., 2010). In contrast with the other segments of the Atlas, the CHA is characterized by alkalinetransitional gabbroic magmatism emplaced in the form of sills, dykes and outpours (Fig. 2; Saidi, 1992; Zayane, 1992; Armando, 1999; Lhachmi et al., 2001; Ibouh et al., 2002; Zayane et al., 2002). This event occurred shortly after the Bathonian emersion of the Atlas domain (Fig. 3), during the latest Dogger and Late Jurassic (Hailwood and Mitchell, 1971; Armando, 1999; Haddoumi et al., 2010) although the latest basalts emplaced during the Barremian, coeval with the youngest red beds (Haddoumi et al., 2010). Marine sedimentation resumed during the Aptian, extending all over Morocco during the Cenomanian– Turonian high stand. Regression began during the Late Cretaceous, but the earliest unconformable, continental red beds are those of the Imilchil region (herein discussed). They were previously regarded as Jurassic or Cretaceous (e.g. Laville and Piqué, 1992) or possibly Triassic (Barbero et al., 2007), but are now dated from the Thanetian-?Ypresian (Charrière et al., 2009). In both the North and South Sub-Atlas Zones, superimposed folding events are dated from the Late Eocene, Early Miocene and Pliocene– Quaternary (Frizon de Lamotte et al., 2000; El Harfi et al., 2001; Teson and Teixell, 2008; Frizon de Lamotte et al., 2008). Within the mountain belt, narrow, faulted anticlinal ridges cored by Triassic argillites and magmatic rocks extend between wide open synclines (Fig. 2). Syncline-topped anticlinal ridges from Central High Atlas In the Imilchil area (Fig. 4), the Tassent and Tasraft Ridges north of the Plateau des Lacs Syncline offer the best examples of STAR. A third 1 Synclinal-topped anticlinal ridges • A. Michard et al. Terra Nova, Vol 00, No. 0, 1–10 ............................................................................................................................................................. Fig. 1 Schematic structural map of the High Atlas Mountains (after Teixell et al., 2003; modified) with location of Figs 2 and 4. Amg, Amagmag; Azk, Azourki; Tml, Tioumliline; TTZr, Talmest-Tazoult Ridge; Tz, Tizal. Fig. 2 Generalized cross-section of the Central High Atlas showing the Tasraft, Tassent and Amagmag anticlinal ridges topped by small synclines of unconformable Upper Palaeocene-? Lower Eocene deposits. At Tioumliline and Izerki, the Upper Triassic diapirs contain halite (Teixell et al., 2003; Ettaki et al., 2007). See Fig. 1 for location. example is the Amagmag Ridge (Fig. 2), east of the Ait Ali-Ou-Ikkou (AAK) syncline. The intervening AAK-Msadrid Ridge is devoid of any Tertiary perched syncline. 2 In every case, the ridge axis consists of a somehow chaotic association involving: (i) Triassic reddish, gypsiferous argillites and green, spilitic basalts of the CAMP event (Verati et al., 2007); (ii) slivers of recrystallized Lower Liassic carbonates, sometime deformed into upright isoclinal folds, and (iii) Late Jurassic plutonic rocks, including stratified troctolites and 2011 Blackwell Publishing Ltd Terra Nova, Vol 00, No. 0, 1–10 A. Michard et al. • Synclinal-topped anticlinal ridges ............................................................................................................................................................. Fig. 3 Columnar section of the Mesozoic–Cenozoic series of the Central High Atlas, after Frizon de Lamotte et al. (2008) and Charrière et al. (2009), modified. The left part of the column summarizes the sequence of the Imilchil ridge axes, the right part that of the adjoining areas (CHA main synclines and southern Sub-Atlas Zone, respectively). gabbros, pneumatolytic gabbros (ÔdioritesÕ) and cross-cutting syenites dykes (Fig. 4). The sandy-conglomer 2011 Blackwell Publishing Ltd atic layers that occur elsewhere at the bottom of the Triassic sequence in the Atlas and High Moulouya domains (Figs 1 and 3) are lacking, suggesting a décollement on top of the Palaeozoic – Early to Middle Triassic basement. The ÔchaoticÕ assemblage of every ridge axis is bounded by faults (Ibouh, 1995; Fadile, 2003; Ibouh, 2004). In the main part of the ridge, the bounding faults are steeply dipping (e.g. Tassent Ridge, Fig. 5), whereas they display shallow dipping and pericline geometry at the end of the ridges (e.g. Tasraft Ridge, Fig. 6). Within the Upper Liassic–Dogger series adjacent to the anticlinal ridges, varied stratigraphic observations suggest a coeval growth of the ridges, namely, fanned sedimentary bedding, frequent hydroplastic slump structures (Ibouh, 1995, 2004) and unconformities (e.g. in the AAK syncline at the bottom of the Bathonian red beds; Fadile, 2003). The Lower Tertiary continental formations are particularly well preserved on top of the Tassent Ridge, in correspondence with a saddle of the ridge axis (Fig. 4). There, the continental sequence includes marly sandy red beds and an interbedded basalt outpour. The uppermost red beds on top of the basalts (Fig. 5C,D) yielded Ostracods and Charophytes from the Thanetian–Lower Ypresian (Charrière et al., 2009). The whole continental series displays synformal geometry (Fig. 5). This perched syncline overlies the varied rock units of the ridge axis; it does not extend onto the northern envelope of the ridge, whereas the southern flank of the ridge (Bajocian ÔCalcaires-cornichesÕ) overhangs the Palaeocene syncline by more than 150 m. Unconformable Upper Palaeocene deposits are also well preserved in the eastern pericline of the Tasraft Ridge (Fig. 4). There, the Bajocian limestones surround and slightly overhang both the ridge core and the Palaeocene syncline (Fig. 6). The Palaeocene succession, well dated from the Thanetian (Fig. 6B; Charrière et al., 2009) differs from the Tassent one as it includes several layers of lacustrine to lagoonal limestones interbedded with red marls, sandstones and conglomerates. The basal conglomerates (Fig. 6C) show the characters of a proximal piedmont deposit. The geometry of these Upper Palaeocene deposits corresponds to a faulted (Fig. 6D), asymmetric open syncline, within which fanned bedding (see Charrière et al., 2009, their fig. 2) suggests synsedimentary collapse of the substratum. The Amagmag marly sandy red beds form a perched Palaeocene syncline on top of the Amagmag Ridge (Fig. 2 for location). This structure compares with the Tassent one, except for the lack of interbedded basalt. Discussion Formation of the anticlinal ridges: salt diapirism and magmatic intrusions Addressing the origin of the Imilchil STARs implies first of all to clarify the origin of the anticlinal ridges themselves. The CHA ridges were ascribed to different processes: (i) Jurassic compressional folding associated with reverse faults (Studer and du Dresnay, 1980; Studer, 1987); (ii) Jurassic emplacement of magmatic intrusions (Schaer and Persoz, 1976; Laville and Harmand, 1982); (iii) Jurassic transpression along NEtrending sinistral strike-slip faults associated with en-échelon opening sites (Laville, 1985; Laville et al., 1991; Laville and Piqué, 1992), or (iv) uplifted borders of tilted blocks created by synsedimentary extensional faulting (Jenny et al., 1981; Monbaron, 1982; Poisson et al., 1998). Gomez et al. (2002), Frizon de Lamotte et al. (2000, 2008) and Barbero et al. (2007) emphasized the lack of regional Jurassic compression. The idea that diapirism could explain the early development of some ridges southwest of the Imilchil area (Talmest-Tazoult and Ikerzi; Fig. 1) was proposed by Bouchouata et al. (1995) and Ettaki et al. (2007), respectively. Halite is actually mined in the Ikerzi Ridge. In line with these previous proposals, we consider that the Imilchil anticlinal ridges developed as Ôsalt wallsÕ during the Liassic–Middle Jurassic interval above the dominant, NE-trending basement faults, based on the following evidences: (i) the ridge cores include large amounts of Triassic gypsum-bearing argillites associated with vertical slivers of Lower Liassic limestones; (ii) the ridges are bounded by subtractive 3 Synclinal-topped anticlinal ridges • A. Michard et al. Terra Nova, Vol 00, No. 0, 1–10 ............................................................................................................................................................. 5•• 40' Ta dge ft Ri sra 5•• 30' Fig. 6 2412 Fig. 5B T R t s e n s a i e g d Tassent Bab n’ Ouayad 2804 Sy Tislit Lake de P la a te e Isli Lake 3059 u s a d ri dge Ri s M 32••10' s c La n in cl d 2440 2151 AAK IMILCHIL c e A g R A id N A A K 2804 n n K e S y li 1 2 11 3 12 4 13 5 14 4 km 6 15 7 16 8 17 9 18 10 19 Fig. 4 Structural map of the Imilchil area, after Ibouh (1995), modified. See Fig. 1 for location and Fig. 3 for stratigraphic terms. AAK, Ait Ali-Ou Ikkou. 1. Triassic green basalts and argilittes; 2. Lower Liassic limestones; 3. Ag1 Fm.; 4. Ag2 Fm (ÔCalcairescornichesÕ); 5. Ag3 Fm; 6. Lower Anemzi Fm; 7. Upper Anemzi Fm; 8. Thanetian–Ypresian red marls and sandstones (Tassent); 9. Upper Palaeocene basalts; 10. Thanetian lacustrine-lagoonal limestones, marls, red sandstones and conglomerates (Tasraft); 11. Troctolites; 12. Gabbros; 13. ÔDioritesÕ or pneumatolytic gabbros; 14. Syenites; 15. Doleritic ⁄ undetermined dykes; 16. Faults; 17. Anticlinal axis; 18. Synclinal axis; 19. Quaternary deposits. faults, with stratigraphic omission more and more important from the root zone to the hinge zone; (iii) the progressive growth of the ridge is recorded by fanned bedding, slump structures and unconformities in the Upper Liassic–Middle Jurassic series adjacent to the ridges (Ibouh, 2004). Such characters are usually associated with salt tectonics (e.g. Fossen, 2010). Indeed, beautiful examples of diapiric 4 structures are well known in the western High Atlas, either onshore or offshore (Cochet et al., 1970; Hafid, 2006; Hafid et al., 2008), and alike the western High Atlas, the CHA rift basin was filled with argillaceous–evaporitic deposits during the Carnian–Norian (Oujidi et al., 2000). Magmatic intrusions also played an important role in the genesis of the CHA ridges (Ettaki et al., 2007). The largest intrusions emplaced as sills within the sedimentary cover, particularly beneath the competent Liassic carbonates (Fig. 2). We may admit that magma ascent was favoured within the pre-existing diapirs (this is supported by the ellipsoidal geometry of the individual gabbro massifs described by Bougadir, 1991 and Rahimi et al., 1991). As a feedback, magmatic 2011 Blackwell Publishing Ltd A. Michard et al. • Synclinal-topped anticlinal ridges Terra Nova, Vol 00, No. 0, 1–10 ............................................................................................................................................................. N LL S J. Bab n'Ouayad Tassent perched syncline: basalts red beds F Ag2 F LL LL UTa Anticline core LL UTb Ag1 LL UJg UJg F Ag1 (A) N Dogger (Ag 2) C T to Tislit lake F D Liassic slivers Upper Liassic (Ag 1) S J. Bab n'Ouayad T: Upper Paleocene - ?Ypresian fossils F to Tassent Triassic core ? Upper Paleocene - ? Eocene (peC) Basalt Sandy-argillaceous red beds Unconformity Jurassic intrusion Jurassic b 0 500 m Dogger limestones/marls Green spilitic basalts (B) Violin gypsum argillites W NW E Upper Liassic marly lmst. Lower Liassic limestones SE Basalts T peC b: metagabbro a a: olivine gabbro Triassic T peC (C) Qc T Qc (D) Fig. 5 Tassent Ridge. (A) View of the natural cross-section looking eastward from the Imilchil-Tassent road. (B) Geological crosssection, after Chèvremont (1975), Ibouh (1995) and Charrière et al. (2009); the detail cross-section (uppermost Tertiary layers) is located approximately 2 km east of the main section. (C and D) Close views (approximately located in B) of the supra-basaltic red beds; (C) shows the uppermost, fossiliferous part of the syncline; (D) shows the conformable contact on top of the basalts. Ag1, Toarcian–Aalenian; Ag2, Bajocian limestones; LL, Lower Liassic limestones; peC, Upper Palaeocene-?Early Eocene continental red beds; Qc, Quaternary calcrete and slope breccias; UJg, Upper Jurassic gabbros; UTa ⁄ b, Upper Triassic argillites ⁄ basalts. 2011 Blackwell Publishing Ltd 5 Synclinal-topped anticlinal ridges • A. Michard et al. Terra Nova, Vol 00, No. 0, 1–10 ............................................................................................................................................................. (A) (B) (C) (D) Fig. 6 Tasraft Ridge eastern pericline and Thanetian perched syncline. (A) Geological interpretation of the Google earth satellite image. (B) Terrestrial view (photograph by H. Haddoumi) from the northern end of the track shown in (A). (C) Palaeocene coarse basal conglomerates (located in B) with limestone, basalt and gabbro pebbles or boulders. (D) Verticalized gypsum layers next to the north faulted border of the diapiric ridge. 6 2011 Blackwell Publishing Ltd A. Michard et al. • Synclinal-topped anticlinal ridges Terra Nova, Vol 00, No. 0, 1–10 ............................................................................................................................................................. heating increased halokinetic ascent in the ridges, which could explain the ÔchaoticÕ structure of the ridge core and the coexistence of both hot and cold contacts around the magmatic bodies (Ibouh, 1995; Armando, 1999). It is worth noting that the apatite fission track results obtained from these magmatic rocks suggest a steady cooling from 140 to 50 Ma (Barbero et al., 2007), which is consistent with our interpretation. Tertiary evolution From the latest Cretaceous to the Middle Eocene, the CHA and possibly the entire High Atlas axis emerged between two shallow marine gulfs connected with the Atlantic Ocean (Frizon de Lamotte et al., 2008; fig. 4.19). The palaeomorphology of the Imilchil area before the Upper Palaeocene subaerial sedimentation likely included almost undeformed plateaus and breached diapiric–magmatic ridges as: (i) if we subtract the effects of the Neogene Atlas shortening from the present-day cross-section, the wide, open synclines between the anticlinal ridges become virtually horizontal; (ii) the Miocene–Pliocene conglomerates exceptionally preserved north of the Talmest-Tazoult Ridge overlie the Middle Jurassic series with a very shallow unconformity angle (Bouchouata et al., 1995); (iii) the preserved Palaeocene formations (A) unconformably overlie the ridge cores. The Upper Palaeocene-? Eocene red beds likely extended widely over the CHA up to the Sub-Atlas Zones, but the tiny preserved samples suggest the occurrence of compartments with varied stratigraphic successions. During the Late Eocene–Pliocene shortening of the Atlas Belt (Frizon de Lamotte et al., 2000; El Harfi et al., 2001; Teson and Teixell, 2008), the pre-existing anticlinal ridges were reactivated as anticlines with diapiric core. The Upper Palaeocene-? Lower Eocene formations included between the carbonate rims of the anticlinal ridges were slightly deformed into narrow, open synclines. Due to the successive episodes of shortening and erosion, most of the Upper Palaeocene-? Eocene deposits disappeared from the major synclines between the anticlinal ridges. Only tiny recalls of these subaerial deposits were preserved within the ÔguttersÕ of the breached ridges likely thanks to: (i) the sheltering effect of the carbonate rims surrounding the gutters, and (ii) a particular thickness of the Lower Tertiary deposits due to the collapse of their substratum by karstic dissolution of the Triassic evaporites (cf. Fossen, 2010, fig. GR22). Moreover, the Tasraft and Tassent deposits were protected by the presence of interbedded limestones or basalts, respectively. The ÔMakhteshimÕ of the Syrian Arc in Israel, an inspiring comparison In the Negev Desert, several anticlines of the Syrian Arc (Fig. 7A) offer a peculiar morphology of erosion cirques or breached valleys termed ÔmakhteshimÕ, sing. ÔmakhteshÕ, crater(s) in Hebrew (Zilberman, 2000). It is worthwhile comparing the ÔmakhteshimÕ evolution with that of the Atlas STARs as: (i) they are both located in the south-Tethyan continental margin, with noticeable similarities in their Mesozoic sedimentary evolution (Hirsch, 1990; Segev et al., 2006; Frizon de Lamotte et al., 2011); (ii) alkaline magmatism occurred in both areas with two main episodes, Late Jurassic and Early Cretaceous, respectively (see above, and for the Negev: Garfunkel and Derin, 1988), associated with uplift, erosion and red bed accumulation; and (iii) both areas suffered superimposed folding before and after the Palaeocene–Eocene. Zilberman (2000) recognized two main periods in the ÔmakhteshimÕ folding evolution, pre- and post-Middle– Late Eocene, respectively, separated by the sedimentation of thin, unconformable shallow water series (Fig. 8 A). The CHA anticlinal ridges also involve two main periods of deformation (Fig. 8B), almost coeval with that of the Syrian Arc. However, in the Negev ÔmakhteshimÕ, remains of the intermediate, unconformable series are (B) Fig. 7 Makhtesh Ramon, a polyphase breached anticline from the Syrian Arc, Negev Desert, Israel. (A) Location map. (B) Geological interpretation of the satellite view (Google earth). 2011 Blackwell Publishing Ltd 7 Synclinal-topped anticlinal ridges • A. Michard et al. Terra Nova, Vol 00, No. 0, 1–10 ............................................................................................................................................................. (A) (B) Fig. 8 Comparing the evolution of the Negev ÔmakhteshimÕ (A, after Zilberman, 2000; slightly modified) with that of the Imilchil STARs (B, this work). In (A), Late Jurassic–Early Cretaceous magmatism is featured with grey signature after Garfunkel and Derin (1988). Early Cretaceous basalts also occur in Central High Atlas, but are not exposed around Imilchil. only preserved outside the anticline axis (Fig. 8A, stage d), and not in Ôperched synclinesÕ on top of the anticline core. The peculiarity of the Atlas STARs relies mainly on the early diapiric origin of the CHA anticlines contrasting with the late, open folds of the Syrian Arc. This permitted, first, the development of early breached anticlines, and second, a thicker accumulation of unconformable sediments onto the collapsing diapir cores (Fig. 8 8 B, stage b). Moreover, the stronger shortening, uplift and consecutive erosion of the Atlas belt during the last folding events explain why the Palaeocene–Eocene sequences are not preserved in the synclines next to the ridges, contrary to the Negev case. Conclusions At least three of eight major anticlinal ridges from the CHA have preserved synclines of unconformable Thanetian-?Ypresian formations perched onto the eroded ridge axes. To our knowledge, they are the unique case of ÔSTARsÕ with such geological and geometrical characters (chaotic-intrusive core, faulted flanks) in the world. The interpretation of these unique structures is addressed herein for the first time, based on field observations and detail mapping, and on a comparison Ôall else equalÕ with the anti 2011 Blackwell Publishing Ltd Terra Nova, Vol 00, No. 0, 1–10 A. Michard et al. • Synclinal-topped anticlinal ridges ............................................................................................................................................................. clines from the Negev Desert. Our conclusions are as follows: 1 2 3 4 A primary condition for STAR development is halokinetic formation of an early anticlinal ridge. This is the reason why they escape the AlonsoÕs rule quoted above. The diapiric ridge has to burst through the surface and be deeply eroded, which is favoured by magmatic activity and associated regional uplift. Following the sedimentation of an unconformable sedimentary sequence, regional shortening will form STARs that will be preserved provided that potentially protecting competent lithologies do occur in the underlying stratigraphic column. The isolation of the STARs with respect to other coeval, classical syncline occurrences depends on an important regional uplift and erosion. Acknowledgements Thanks are due to E.C. Rjimati for assistance and stimulating discussions in the field, and to D. Avigad for documentation on the Negev geology. A. M. acknowledges a grant from the Direction du Développement minier (Dr A. Charik) of the Moroccan Ministry of Energy, Mines, Water and Environment. Thorough reviewings by Philippe Olivier and Antonio Teixell are warmly acknowledged. References Alonso, J.L., 1989. Fold reactivation involving angular unconformable sequences: theoretical analysis and natural examples from the Cantabrian Zone (Northwest Spain). Tectonophysics, 170, 57–77. Andreani, L., Loget, N., Rangin, C. and Le Pichon, X., 2010. New structural constraints on the southern Provence thrust belt (France): evidences for an Eocene shortening event linked to the CorsicaSardinia subduction. Bull. Soc. Ge´ol. Fr., 181, 547–563. Armando, G., 1999. Intracontinental alkaline magmatism: geology, petrography, mineralogy and geochemistry of the Jebel Hayim Massif (Central High Atlas – Morocco). Mém. Ge´ol. Lausanne, 31, 106. Barbero, L., Teixell, A., Arboleya, M.L., Del Rio, P., Reiners, P.W. and Bougadir, B., 2007. Jurassic-to-present thermal history of the central High Atlas (Mor- 2011 Blackwell Publishing Ltd occo) assessed by low-temperature thermochronology. Terra Nova, 19, 58–64. Bouchouata, A., Canérot, J., Souhel, A. and Gharib, A., 1995. Stratigraphie séquentielle et évolution géodynamique du Jurassique de la région TalmestTazoult (Haut Atlas central, Maroc). C R Acad. Sci. Paris, 320, 749– 756. Bougadir, B., 1991. Les Complexes Plutoniques Alcalins de la Ride de Tassent (Haut Atlas Central), Pe´trologie, Mécanisme et Cine´matique de Mise en Place. PhD thesis, Univ. Cadi Ayyad, Marrakech, Morocco, 165 p. Charrière, A., Haddoumi, H., Mojon, P.O., Ferrière, J., Cuche, D. and Zili, L., 2009. Mise en évidence par ostracodes et charophytes de lÕâge paléocène des dépôts discordants sur les rides anticlinales de la région dÕImilchil (Haut Atlas, Maroc); conséquences paléogéographiques et structurales. C. R. Palevol., 8, 9–19. Chèvremont, P., 1975. Les Roches Éruptives Basiques des Boutonnières de Tassent et de Tasraft et Leurs Indices Métallifères, Maroc, vol. 209, PhD thesis, Doc. Lab. Géol. Univ. Lyon, France, 148 p. Cochet, E., Duffaud, F., Guy, M., Issenmann, O. and Taussac, R., 1970. Carte géologique du Maroc au 1 ⁄ 100 000, feuille de Tamanar. Notes & Me´m. Serv. ge´ol. Maroc, N 201. El Harfi, A., Lang, J., Salomon, J. and Chellai, E.H., 2001. Cenozoic sedimentary dynamics of the Ouarzazate foreland basin (Central High Atlas Mountains, Morocco). Int. J. Earth Sci., 90, 393–411. Ettaki, M., Ibouh, H., Chellai, E.H. and Milhi, A., 2007. Les structures « diapiriques » liasiques du Haut-Atlas central, Maroc: exemple de la ride dÕIkerzi. Africa Geosci. Rev., 14, 73–99. Fadile, A., 2003. Carte géologique du Maroc au 1 ⁄ 100 000, feuille dÕImilchil. Notes & Me´m. Serv. ge´ol. Maroc, N 397. Fossen, H., 2010. Structural Geology. Cambridge University Press, Cambridge, 480 p. (free access to figures at: http:// www.cambridge.org/fossen). Frizon de Lamotte, D., Saint Bézar, B., Bracène, R. and Mercier, E., 2000. The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics, 19, 740–761. Frizon de Lamotte, D., Zizi, M., Missenard, Y., Hafid, M., El Azzouzi, M., Maury, R.C., Charrière, A., Taki, Z., Benammi, M. and Michard, A., 2008. Chapter 4: the Atlas System. In: Continental Evolution: The Geology of Morocco (A. Michard, O. Saddiqi, A. Chalouan and D. Frizon de Lamotte, eds). Lect. Notes Earth Sci., 116, 133– 202. Frizon de Lamotte, D., Raulin, C., Mouchot, N., Wrobel-Daveau, J.C., Blanpied, C. and Ringenbach, J.C. (2011). The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: initial geometry and timing of the inversion processes. Tectonics, 30, TC3002. Fullea, J., Fernàndez, M., Afonso, J.C., Vergès, J. and Zeyen, H., 2010. The structure and evolution of the lithosphere-asthenosphere boundary beneath the Atlantic-Mediterranean Transition Region. Lithos, 120, 74–95. Garfunkel, Z. and Derin, B., 1988. Reevaluation of Latest Jurassic-Early Cretaceous history of the Negev and the role of magmatic activity. Israel J. Earth Sci., 37, 43–52. Gomez, F., Barazangi, M. and Beauchamp, W., 2002. The role of the Atlas Mountains (northwest Africa) within the African-Eurasian plate-boundary zone: reply. Geology, 30, 96. Gouiza, M., Bertotti, G., Hafid, M. and Cloetingh, S., 2010. Kinematic and thermal evolution of the Moroccan rifted continental margin: Doukkala-High Atlas transect. Tectonics, 29, TC5008. Haddoumi, H., Charrière, A. and Mojon, P.O., 2010. Stratigraphie et sédimentologie des «Couches rouges» continentales du Jurassique-Crétacé du Haut Atlas central (Maroc): implications paléogéographiques et géodynamiques. Geobios, 43, 433–451. Hafid, M., 2006. Styles structuraux du Haut Atlas de Cap Tafelney et de la partie septentrionale du Haut Atlas occidental: tectonique salifère et relation entre lÕAtlas et lÕAtlantique. Notes & Me´m. Serv. ge´ol. Maroc, 465, 172. Hafid, M., Tari, G., Bouhadioui, B., El Moussaid, I., Eccharfaoui, H., Aı̈t Salem, A., Nahim, M. and Dakki, M., 2008. Chapter 6: Atlantic Basins. In: Continental evolution: The Geology of Morocco (A. Michard, O. Saddiqi, A. Chalouan and D. Frizon de Lamotte, eds). Lect. Notes Earth Sci., 116, 303–329. Hailwood, E.A. and Mitchell, J.G., 1971. Palaeomagnetic and radiometric dating results from Jurassic intrusions in South Morocco. Geophys. J. R. Astron. Soc., 24, 351–364. Hirsch, F., 1990. Aperçu de lÕhistoire phanérozoı̈que dÕIsraël. J. African Earth Sci., 11, 177–196. Ibouh, H., 1995. Tectonique en De´crochement et Intrusions Magmatiques au Jurassique. Tectogenèse Polyphasée des Rides Jurassiques DÕImilchil (Haut Atlas Central, Maroc). PhD thesis, Univ. Cadi Ayyad, Marrakech, Morocco, 225 p. Ibouh, H., 2004. Du Rift Avorté au Bassin sur De´crochement, Contrôles Tectonique et Se´dimentaire Pendant le Jurassique (Haut Atlas Central, Maroc). Thèse 9 Synclinal-topped anticlinal ridges • A. Michard et al. Terra Nova, Vol 00, No. 0, 1–10 ............................................................................................................................................................. Doct. Etat Univ. Cadi Ayyad Marrakech, 224 p. Ibouh, H., Saidi, A., Bouabdelli, M., Youbi, N., Boummane, K. and Aı̈t Chayeb, E.H., 2002. Les roches volcaniques triasico-liasiques du Maroc; exemple de la ride de Tasraft (Haut Atlas Central), données pétrologiques, géochimiques et implications géodynamiques. Africa Geosci. Rev., 9, 75–92. Jenny, J., Le Marrec, A. and Monbaron, M., 1981. Les Couches rouges du Jurassique moyen du Haut Atlas central (Maroc): corrélations lithostratigraphiques, éléments de datations et cadre tectono-sédimentaire. Bull. Soc. ge´ol. France, 23, 627–639. Laville, E., 1985. Évolution Sédimentaire, Tectonique et Magmatique du Bassin Jurassique du Haut Atlas (Maroc): Modèle en Relais Multiples de De´crochements. Thèse Doct. Etat, Univ. Sci. Tech. Languedoc, Montpellier, 166 p. Laville, E. and Harmand, C., 1982. Évolution magmatique et tectonique du bassin intracontinental mésozoı̈que du Haut Atlas (Maroc): un modèle de mise en place synsédimentaire de massifs ‘‘anorogéniques’’ liés à des décrochements. Bull. Soc. ge´ol. France, 24, 213–227. Laville, E. and Piqué, A., 1992. Jurassic penetrative deformation and Cenozoic uplift in the Central High Atlas (Morocco): a tectonic model; structural and orogenic inversions. Geol. Rundschau, 81, 157–170. Laville, E., Fedan, B. and Piqué, A., 1991. Déformation synschisteuse jurassique, orogenèse cénozoı̈que: deux étapes de la structuration du Haut Atlas (Maroc). C R Acad. Sci. Paris, 312, 1205–1211. Lemoine, M., 1972. Rythme et modalités des plissements superposés dans les Chaı̂nes subalpines méridionales des Alpes occidentales françaises. Geol. Rundschau, 61, 975–1010. Lhachmi, A., Lorand, J.P. and Fabriès, J., 2001. Pétrologie de lÕintrusion alcaline mésozoı̈que de la région dÕAnemzi, Haut Atlas central, Maroc. J. Afr. Earth Sci., 32, 741–764. Missenard, Y., Zeyen, H., Frizon de Lamotte, D., Leturmy, P., Petit, C., Sébrier, M. and Saddiqi, O., 2006. Crustal versus asthenospheric origin of 10 the relief of the Atlas mountains of Morocco. J. Geophys. Res., 111, B03401. Monbaron, M., 1982. Précisions sur la chronologie de la tectogenèse atlasique, exemple du domaine atlasique mésogéen du Maroc. C R Acad. Sci. Paris, 294, 883–886. Oujidi, M., Courel, L., Benaouiss, N., El Mostaine, M., El Youssi, M., Et Touhami, M., Ouarhache, D., Sabaoui, A. and Tourani, A.I., 2000. Triassic series of Morocco: stratigraphy, paleogeography and structuring of the southwestern peri-Tethyan platform: an overview. In Peri-Tethys Memoir 5: New Data on Peri-Tethyan Sedimentary Basins (S. Crasquin-Soleau and E. Barrier, eds), Me´m. Mus. Nat. Hist. Nat., 182, 23–38. Poisson, A., Hadri, M., Milhi, A., Julien, M. and Andrieux, J., 1998. The central High Atlas (Morocco). Litho- and chrono-stratigraphic correlations during Jurassic times between Tinjdad and Tounfite. Origine of subsidence. In: PeriTethys Memoir 4: Epicratonic Basins of Peri-Tethyan Platforms (S. CrasquinSoleau and E. Barrier, eds), Me´m. Mus. Nat. Hist. Nat., 179, 237–256. Rahimi, A., Bougadir, B., Saidi, A., Reuber, I. and Karson, J.A., 1991. Mécanisme de mise en place dÕintrusions alcalines en niveau structural peu profond retracé par les structures dÕécoulement magmatique: Exemple du Haut Atlas Central (Maroc). C R Acad. Sci. Paris, 313, 571–577. Saidi, A., 1992. Les Processus de Différenciation Magmatique des Complexes Plutoniques Alcalins de la Ride de Tasraft, (Haut Atlas Central, Maroc). PhD thesis, Univ. Cadi Ayyad, Marrakech, Morocco, 152 p. Schaer, J.P. and Persoz, F., 1976. Aspects structuraux et pétrographiques du Haut Atlas calcaire de Midelt (Maroc). Bull. Soc. ge´ol. France, 18, 1239–1250. Segev, A., Rybakov, M., Lyakhovsky, V., Hofstetter, A., Tibor, G., Goldshmidt, V. and Ben Avraham, Z., 2006. The structure, isostasy and gravity field of the Levant continental margin and the southeast Mediterranean area. Tectonophysics, 425, 137–157. Studer, M.R., 1987. Tectonique et pétrographie des roches sédimentaires, érup- tives et métamorphiques de la région de Tounfite-Tirrhist. (Haut Atlas central, Mésozoı̈que, Maroc). Notes Serv. ge´ol. Maroc, 43, 321. Studer, M. and du Dresnay, R., 1980. Déformations synsédimentaires en compression pendant le Lias supérieur et le Dogger au Tizi nÕIrhil (Haut Atlas central de Midelt, Maroc). Bull. Soc. ge´ol. France 22, 391–397. Teixell, A., Arboleya, M.L., Julivert, M. and Charroud, M., 2003. Tectonic shortening and topography in the central High Atlas (Morocco). Tectonics, 22, 1051. Teixell, A., Ayarza, P., Zeyen, H., Fernàndez, M. and Arboleya, M.-L., 2005. Effects of mantle upwelling in a compressional setting: the Atlas Mountains of Morocco. Terra Nova, 17, 456–461. Teson, E. and Teixell, A., 2008. Sequence of thrusting and syntectonic sedimentation in the eastern Sub-Atlas thrust belt (Dadès and Mgoun Valleys, Morocco). Int. J. Earth Sci., 97, 103–113. Verati, C., Rapaille, C., Feraud, G., Marzoli, A., Marzoli, H., Bertrand, H. and Youbi, N., 2007. Ar-Ar ages and duration of the Central Atlantic magmatic province volcanism in Morocco and Portugal and its relation to the Triassic-Jurassic boundary. Paleogeogr. Paleoclim. Paleoecol., 244, 308–325. Zayane, R., 1992. Se´rie Plutonique Jurassique du Haut Atlas Central Marocain (Re´gion DÕImilchil): Pétrographie et Géochimie; Aspects Métamorphiques et Structuraux de sa Mise en Place. PhD thesis, Univ. Bretagne occidentale, Brest, 201 p. Zayane, R., Essaifi, A., Maury, R.C., Piqué, A., Laville, E. and Bouabdelli, M., 2002. Cristallisation fractionnée et contamination crustale dans la série magmatique jurassique transitionnelle du Haut Atlas central (Maroc). C. R. Geoscience, 334, 97–104. Zilberman, E., 2000. Formation of ‘‘makhteshim’’ – unique erosion cirques in the Negev, southern Israel. Israel J. Earth Sci., 49, 127–141. Received 5 April 2011; revised version accepted 30 June 2011 2011 Blackwell Publishing Ltd
© Copyright 2026 Paperzz